4 randall d knight physics for scientists and engineers a strategic approach with modern physics 07

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4 pptx

Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4 pptx
... approximate sin (1) , 13 15 1 + ≈ 0.8 41 6 67 12 0 10 7 To see that this has the required accuracy, sin (1) ≈ 0.8 41 4 71 Solution 3 .19 Expanding the terms in the approximation in Taylor series, ∆x3 ∆x4 ∆x2 f ... Example 4. 4 .1 Consider the partial fraction expansion of + x + x2 (x − 1) 3 The expansion has the form a0 a1 a2 + + (x − 1) (x − 1) x 1 127 The coefficients are (1 + x + x2 )|x =1 = 3, 0! d a1 = (1 + ... − x→0 10 9 x =0 c ln lim x→+∞ 1+ x x = lim x→+∞ = lim x→+∞ = lim x→+∞ = lim ln + 1/ x 1+ x→+∞ 1+ =1 Thus we have lim x→+∞ 1+ 11 0 x x 1 x − x2 1/ x2 x→+∞ = lim x ln 1+ x x ln + x x = e x 1 d It...
  • 40
  • 180
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx

Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4 ppsx
... continuously deformed to C2 on the domain where the integrand is analytic Thus the integrals have the same value 5 14 -4 -2 -2 -4 Figure 11 .2: The contours and the singularities of 3z +1 -6 -4 -2 -2 -4 -6 ... , C2 and C2 C z dz = z3 − C1 z− + √ C2 z− C3 z− + = 2 + 2 + 2 z− √ √ √ z− z− z √ dz e 2 /3 z − e− 2 /3 z √ √ dz 2 /3 z − 9e z − e− 2 /3 z √ √ dz z − e 2 /3 z − e− 2 /3 z− 9 √ z e 2 /3 ... deform C onto C1 and C2 = C + C1 520 C2 -4 C1 C2 -2 C -2 -4 Figure 11.5: The contours for (z +z+ı) sin z z +ız We use the Cauchy Integral Formula to evaluate the integrals along C1 and C2 ...
  • 40
  • 192
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 4 pot

Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 4 pot
... 4x3 To check the theorem, d x x2 d ∆[A(x)] = dx dx x2 x4 2x x x2 = + 2x 4x3 x x = x4 − 2x3 + 4x4 − 2x3 = 5x4 − 4x3 16 .4. 2 The Wronskian of a Set of Functions A set of functions {y1 , y2 , ... Example 16 .4. 1 Consider the the matrix A(x) = x x2 x2 x4 The determinant is x5 − x4 thus the derivative of the determinant is 5x4 − 4x3 To check the theorem, d x x2 d ∆[A(x)] = dx dx x2 x4 2x x ... [¯] = y 9 03 For the same reason, if yp is a particular solution, then yp is a particular solution as well Since the real and imaginary parts of a function y are linear combinations of y and y ,...
  • 40
  • 170
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 1 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 1 docx
... differential equation as ∞ w = c1 z 3 /4 1+ n =1 n 16 ∞ zn n!(n + 1) ! + c2 z 1 /4 n =1 ∞ c1 z 3 /4 + c2 z 1 /4 1+ n =1 23.2 .1 1+ 16 n 16 n zn n!(n + 1) ! zn n!(n + 1) ! Indicial Equation Now let’s ... c2 = (1 − c1 r1 ) r2 We substitute this into the second equation (1 − c1 r1 )r2 = r2 c1 (r1 − r1 r2 ) = − r2 c r1 + 11 81 n c1 = = = − r2 − r1 r2 r1 √ 1 √ √ 1+ 5 √ 1+ √ √ 1+ 5 1 =√ Substitute ... 31 an = 2(n 1) /2 (n − 2)(n − 4) · · · (1) For the even terms, a2 = a4 = 22 a6 = 42 an = 2(n−2)/2 (n − 2)(n − 4) · · · (2) Thus an = 2(n 1) /2 (n−2)(n 4) ··· (1) 2(n−2)/2 (n−2)(n 4) ···(2) 11 83 for...
  • 40
  • 130
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 2 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 2 pps
... + x + x2 /2 + O(x3 ))(x + a2 x2 + a3 x3 + O(x4 )) = (2a2 x + 6a3 x2 ) + (2x + 4a2 x2 ) + (6x + 6(1 + a2 )x2 ) = O(x3 ) = 17 a2 = 4, a3 = 17 y1 = x − 4x2 + x3 + O(x4 ) Now we see if the second ... yields z= t dz = − dt t d d = −t2 dz dt w + d2 d d = −t2 −t2 dz dt dt d d = t4 + 2t3 dt dt 1 24 0 The equation for u is then t4 u + 2t3 u + (2t + 3t2 )(−t2 )u + t2 u = u + −3u + u = t We see that ... − a0 (2n)(2n − 2) · · · · a0 = (−1)n n , n≥0 m=1 2m = (−1)n a2n−1 2n + a2n−3 = (2n + 1)(2n − 1) a2n+1 = − a1 (2n + 1)(2n − 1) · · · · a1 = (−1)n n , n≥0 m=1 (2m + 1) = (−1)n If {w1 , w2 } is...
  • 40
  • 90
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 3 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 3 pdf
... 10−29 4. 14 × 10 37 2.09 × 10 45 One Term Relative Error 0 .32 03 0.1 044 0.0507 0.0296 0.0192 0.0 135 0.0100 0.0077 0.0061 0.0 049 Three Term Relative Error 0. 649 7 0.0182 0.0020 3. 9 · 10 4 1.1 · 10 4 3. 7 ... = x 3x2 − P2 (x) = 5x − 3x P3 (x) = 35 x4 − 30 x2 + P4 (x) = Expanding cos(πx) in Legendre polynomials cos(πx) ≈ cn Pn (x), n=0 and calculating the generalized Fourier coefficients with the formula ... even for fairly small values of x 24. 3 Integration by Parts Example 24. 3. 1 The complementary error function erfc(x) = √ π 12 63 ∞ e−t dt x 1.75 1.5 1.25 0.75 0.5 0.25 Figure 24. 1: Plot of K0 (x) and...
  • 40
  • 171
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 4 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 4 docx
... the eigenvalues as λn and the eigenfunctions as φn for n ∈ Z+ For the moment we assume that λ = is not an eigenvalue and that the eigenfunctions are real-valued We expand the function f (x) ... compute the eigenvalues However, we can often use the formula to obtain information about the eigenvalues before we solve a problem Example 27 .4. 2 Consider the self-adjoint eigenvalue problem −y ... equation formally self-adjoint xy + y + xy = d (xy ) + xy = dx Result 27.2.1 If L = L∗ then the linear operator L is formally self-adjoint Second order formally self-adjoint operators have the form...
  • 40
  • 158
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 5 pdf
... not a good approximation 13 54 0 .5 -1 0 .4 0.2 -0 .5 0 .5 -1 -0 .5 0 .5 -0 .5 -0.2 -1 -0 .4 Figure 28.7: Three Term Approximation for a Function with Jump Discontinuities and a Continuous Function A ... -1 0 .5 -0 .5 0 .5 1 .5 -1 -0 .5 0 .5 -0 .5 -0 .5 -1 1 .5 -1 Figure 28.3: A Function Defined on the range −1 ≤ x < and the Function to which the Fourier Series Converges bn = = = 3/2 3 f (x) sin −1 5/ 2 ... + for − < x < −1/2 for − 1/2 < x < 1/2 for 1/2 < x < 1 355 0 .5 0.2 0.1 -1 -0 .5 0 .5 0. 25 0.1 -0.1 -0.2 0.1 Figure 28.8: Three Term Approximation for a Function with Continuous First Derivative and...
  • 40
  • 90
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 6 pps

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 6 pps
... Parseval’s theorem for this series to find the value of ∞ 16 n=1 π 1 = n6 π −π ∞ 16 n=1 ∞ n=1 x3 π − x 3 16 = n6 945 6 = n6 945 13 76 ∞ n=1 n6 dx Solution 28.2 We differentiate the partial sum of ... 16 = n4 π n=1 ∞ π x4 dx −π 2π 2π + 16 = n4 n=1 ∞ n=1 4 = n4 90 1375 Now we integrate the series for f (x) = x2 x ξ2 − ∞ π2 3 dξ = n=1 ∞ (−1)n n2 x cos(nξ) dξ x π (−1)n − x =4 sin(nx) 3 n3 n=1 ... = π 4( −1)n = n2 a0 = Thus the Fourier series is ∞ π2 (−1)n x = +4 cos(nx) for x ∈ (−π π) n2 n=1 ∞ n=1 n4 We apply Parseval’s theorem for this series to find the value of ∞ 2π 1 + 16 = n4 π...
  • 40
  • 164
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 7 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 7 docx
... eigenvalues and eigenfunctions for: d4 φ = λφ, dx4 φ(0) = φ (0) = 0, φ(1) = φ (1) = Hint, Solution 144 2 29.5 Hints Hint 29.1 Hint 29.2 Hint 29.3 Hint 29 .4 Write the problem in Sturm-Liouville form to ... = 0, λ = 1 /4 is not an eigenvalue 144 9 Now consider the case λ = 1 /4 A set of solutions is √ (x + 1)(1+ 1 4 )/2 , (x + 1)(1− √ 1 4 )/2 We can write this in terms of the exponential and the logarithm ... p0 y = µy, for a ≤ x ≤ b, α1 y(a) + α2 y (a) = 0, β1 y(b) + β2 y (b) = 0, where the pj are real and continuous and p2 > on [a, b], and the αj and βj are real can be written in the form of a regular...
  • 40
  • 161
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 8 potx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 8 potx
... s 146 8 From part (a) we know that there are only positive eigenvalues The general solution of the differential equation is φ = c1 cos(λ1 /4 x) + c2 cosh(λ1 /4 x) + c3 sin(λ1 /4 x) + c4 sinh(λ1 /4 x) ... conditions c1 sin(λ1 /4 ) + c2 sinh(λ1 /4 ) = −c1 λ1/2 sin(λ1 /4 ) + c2 λ1/2 sinh(λ1 /4 ) = We see that sin(λ1 /4 ) = The eigenvalues and eigenfunctions are λn = (nπ )4 , φn = sin(nπx), 146 9 n ∈ N Chapter ... r≤ √ Thus the smallest zero of J0 (x) is less than or equal to ≈ 2 .44 94 (The smallest zero of J0 (x) is approximately 2 .40 483 .) (1 Solution 29.9 We assume that < l < π Recall that the solution...
  • 40
  • 117
  • 0

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 9 docx

Advanced Mathematical Methods for Scientists and Engineers Episode 4 Part 9 docx
... the answer for ν = 0? Hint, Solution 1 49 9 Exercise 31.12 Find the inverse Laplace transform of ˆ f (s) = s3 − 2s2 +s−2 with the following methods ˆ Expand f (s) using partial fractions and then ... transform to find y(t) We could expand the right side in partial fractions and then use a table of Laplace transforms Since the function is analytic except for 15 29 isolated singularities and vanishes ... Laplace transform of y (s) by first finding its partial fraction expansion ˆ s/3 s/3 s − + +1 s +4 s +1 s/3 4s/3 + =− s +4 s +1 y(t) = − cos(2t) + cos(t) 3 y (s) = ˆ s2 Example 31 .4. 3 Consider...
  • 40
  • 129
  • 0

Xem thêm

Từ khóa: NHẬN ĐỊNH VỀ TAI BIẾN TRƯỢT LỞ ĐẤT ĐÁ DỌC TUYẾN ĐƯỜNG HỒ CHÍ MINH ĐOẠN TỪ QUẢNG BÌNH ĐẾN THỪA THIÊN HUẾXÂY DỰNG HỆ THỐNG XEM VIDEO TRỰC TUYẾN TRÊN HỆ ĐIỀU HÀNH ANDROIDTRẠM BIẾN ÁP 560KVA-22/0,4KV CẤP ĐIỆN HỘ NUÔI TÔM ÔNG TRẦN VĂN THƠICÁC QUY ĐỊNH VỀ KIỂM ĐỊNH CHẤT LƯỢNG CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠOskkn nâng cao chất lượng và hiệu quả làm bài tập về chức năng giao tiếp trong tiếng anhskkn phát huy tính tích cực của học sinh THPT trong luyện tập chạy bềnThông tư 11 2016 TT-BCT quy định biểu mẫu về Văn phòng đại diện, Chi nhánh của thương nhân nước ngoài tại VNThông tư 169 2015 TT-BTC về miễn thuế nhập khẩu phụ tùng, linh kiện phương tiện vận hành khách bằng xe buýtThông tư 12 2015 TT-BKHCN quy định về phân tích an toàn đối với nhà máy điện hạt nhânThông tư 48 2015 TT-BLĐTBXH quy định Quy chuẩn kỹ thuật quốc gia về an toàn lao động đốiThông tư 51 2015 TT-BLĐTBXH về an toàn lao động đối với Xe nâng hàng sử dụng động cơ, có trọng nâng từ 1.000kg trở lênThông tư 53 2015 TT-BLĐTBXH về quy trình tiếp công dân và xử lý đơn thuộc lĩnh vực quản lý nhà nước của ngành Lao độngThông tư 54 2015 TT-BLĐTBXH hướng dẫn về thời giờ làm việc, thời giờ nghỉ ngơi đối với người lao động làm công việc sản xuất có tính thời vụĐỀ CƯƠNG CHI TIẾT HỌC PHẦN : Kinh tế hợp tác trong nông nghiệpThông tư số 163 2015 TT-BTC sửa đổi mức thuế suất thuế nhập khẩu ưu đãi đối với xe có động cơThông tư quy định kỹ thuật và định mức kỹ thuật,.. khí tượng thủy vănThông tư 14 2015 TT-BKHĐT Danh mục máy móc, thiết bị, phụ tùng thay thế, bán thành phẩm trong nước đã sản xuất đượcThông tư 153 2015 TT-BTC quy định về phí sử dụng đường bộ tại 2 trạm thu phí trên Quốc lộ 5Thông tư 14 2015 TTLT-BTNMT-BTP quy định việc tổ chức thực hiện đấu giá quyền sử dụng đất để giao đất có thu tiền sử dụng đất hoặc cho thuê đấtĐỀ CƯƠNG CHI TIẾT HỌC PHẦN Địa lý Kinh tế Việt Nam