0
  1. Trang chủ >
  2. Giáo Dục - Đào Tạo >
  3. Cao đẳng - Đại học >

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 20 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 20 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 20 doc

... Inc.ensurestheremovalofHgfromtheenvironmentthroughatmosphericdissipation.CurrentstudiesarenowfocusingonbiologicalreductionandmethylationreactionsasaremedialapproachtoimmobilizeHg.A.ReductionofMercury(II)NumerousmicroorganismsavoidHgtoxicitybyreducingionicHg(Hg2ϩ)tovolatileHg0,apotentiallyusefulapplicationtoremoveHgfromHg-contaminatedwater.ThereductionofHg2ϩtoHg0canbemediatedbyanumberofmicroorganisms,includingentericbacteria,Pseudomonassp.,Staphylococcusaureus,Thiobacillusferrooxidans,Streptomycessp.,andCryptococcussp.(121).TheabilityofbacteriatoreduceHg2ϩislinkedtoHgresis-tance(mer)operons(122).Thehypothesizedplasmid-mediateddetoxificationmechanismisshowninFig.6.Theplasmidcodesforaprotein(merP)thatinitiallybindstoHg2ϩ in the periplasm. The Hg2ϩis then transported through the inner membrane to the cytoplasmby the membrane-bound protein merT. In the cytoplasm, ... CN-oxidizing, and Se-reducing microbes combined and immobi-lized in calcium alginate beads. Tests were conducted in single-pass 1 -in- diameter columnswith a retention time of 9 to 18 hours. The system ... Another cell-free system was used to treat mining processsolution containing cyanide and Se. The system contained cell-free extracts of P. pseudoal-caligenes, P. stutzeri, CN-oxidizing, and...
  • 27
  • 649
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 10 docx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 10 docx

... the years; these include vanilin, indulin, ferrulic acid, and, most importantly,14C-labeled synthetic lignins. Various fungal enzymes are involved in lignin degradation, including lignin peroxidase, ... strains and the extrac-tion of enzymes, provide complementary information on enzyme production by emphasi-zing the potential of the living hyphae and the sum of past and present activities re-spectively. ... enzymes in the upper part of the profile couldbe due to the presence of fungi (chitin in the cell walls) and arthropods (chitin in the exoskeleton) serving as substrates.Enzyme determination using...
  • 18
  • 521
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 13 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 13 doc

... Inc.mouswiththermaloptimarelevanttoanorganismdependent(52)onafluxofdissolvedcompoundsfromenzymesalreadyreleasedandfunctioningoverlongerperiodsintheenvironment.Forexample,notetheshiftinthermalactivityoptimaforcold-adaptedprote-asesfrom13°Cto10°Cto8°Casafunctionofincreasingholdingtime(Fig.3).Wealsosuggestthatthefurtherexploratorystudyofmicrobialenzymesproducedinenvironmentscharacterizedbysharpthermalgradientsmayyieldenzymeswithbothhighcatalyticactiv-ityandlonglifetimesatextremetemperatures(hotorcold),acombinationoffeaturesthatsofarhasbeenobservedonlyasaresultofgeneticengineering(describedlater )and apparentlynotofevolutionarypressuresinnature.Thetemporallyandspatiallyfluctuatingthermalgradientswithinsulfidestructuresandseaicemayhaveprovidedthenecessaryselectivepressure.V.STATUSOFTHESEARCHFORHYPERTHERMOPHILICMICROORGANISMSANDENZYMESA.FocusonCulturableHyperthermophilesAlthoughthediscoveryofhyperthermophilicmicroorganismsatmarinehydrothermalventswasreportedin1982(53,54),theirpotentiallyexcitingactivitiesinsituhavebeenstudiedbyfewandremainpoorlyconstrained(1,28).Theinsituactivitiesofenzymesthathyperthermophilesmayreleaseintotheirsurroundingsarecompletelyunknown.Thisgenerallackofecologicalinformationonthefunctioningofeitherhyperthermophilicor-ganismsorenzymesintheirnaturalsettingsstandsincontrasttowhatisknownaboutorganismsandenzymesattheotherendofthetemperaturespectrum(seeSec.V.B);marinepsychrophileshavebeenknownandstudiedforalmostacentury,muchoftheworkecologicallymotivatedfromtheoutset(14).Perhapsbecauseoftheimmediaterecog-nitionofpracticalapplicationsforneworganismsfunctionalateverhighertemperatures(11,55),researcheffortsnowongoingworldwidehavefocusedheavilyonorganismandenzymeperformanceundercontrolledlaboratoryconditions,withspecificbiotechnologi-calorindustrialgoalsmotivatingthechoiceoforganism,enzyme,ortestconditions .The desiretoachieveafundamentalunderstandingofthebiochemical,metabolic,andgeneticbasisforhyperthermophilyhasoftenbeenpresentedasabettermeanstomanipulatestrainsandtheirproductsinvitroforcommercialpurposes.However ,the rstwhole-genomesequenceforanyorganism,informationofthemostfundamentalnature,wasobtainedforthedeep-seahyperthermophileMethanococcusjannaschii(56).Althoughecologicalconsiderationsbegstudyandenzymeforagingscenariosforhyperthermophileshavenotyetbeenformulated,theacquisitionofculturablehyperther-mophilesfrommarinehydrothermalventsnowbordersonroutine.Currentrepositoriesofmarinehyperthermophiles,virtuallyallofwhichareobligatelyanaerobic,includerepre-sentativesof25genera(examplesofwhichareshowninFig.4initalics)andphysiologicalprocesses ... Inc.thermalextremeortheother,thecombinationofthisinformationwithotherbiochemicalandtheoreticalstudieshasbeenthemostrevealing(e.g.,25–27).Forexample,featuresofasuccessfulhyperthermophilicenzymecanincludeincreasedcompactness,stabiliza-tionofαhelices,increasedsaltbridgesandionpairsforstabilizingsecondarystructures,oranincreasednumberofhydrogenbonds,eachtowardretainingstabilityinthefaceofveryhighdenaturingtemperatures.Thecold-adaptedenzyme,incontrast,showsgreaterflexibilityandlesscompaction,lackssaltbridgesandionpairs,andhasareducednumberofhydrogenbonds,alltowardretainingactivityundervery-low-energynear-freezingcon-ditions.Noorganism,however,appearstohaveevolvedauniformstrategyforstabilizingorallowingactivityofallofitsenzymesatagivenextremetemperature.Instead,itssuiteofenzymesencompassesarangeofuniquecombinationsofmolecularadapationsthatreflectthehostofcomplexevolutionaryandecologicalfactors,includingacquisitionofsuccessfultraitsthroughgeneticexchangeintheenvironment(28),thatdefineacontempo-rarymicroorganism.Acommonthemeforhyperthermophilyandpsychrophily,relatingenzymesdirectlytotheproducingorganism(andthusallowingatleastsomecommonterminology),isthatthehighertheToptforgrowthoftheorganism,thehighertheToptforitsenzymes:justasenzymesoptimizedforactivityatthehighesttemperaturesclearlyderivefromhyperther-mophilesadaptedtogrowthatthehighesttemperatures(Table1),enzymeswiththelowestthermaloptimaderivefrompsychrophileswiththelowestgrowthoptima(Table2) .In fact, ... Inc.C.ForaginginSubzeroSeaIceThethreebasicfeaturesoftheenzymeforagingmodelofVetterandcoworkers(10)forparticleaggregates(Fig.1)alsopertaintotheotherendofthetemperaturespectrumformicrobiallifeandenzymaticactivityepitomizedbyseaice.Aggregatesofmineralgrainsandotherparticlesandprecipitates(includingmicroorganismsandsalts)areknowntoconcentratewithinthefluidinclusionsofseaice(6),mostnotablyintheArctic,whereseabedsedimentsentrainintocoastaliceasitforms(35).TheseaggregatesincludePOM-richdetritalparticles(36)andlargeexopolymers(37)asaresultoftheautotrophicandheterotrophiccommunitiesthatdevelopannuallywithintheicecover(38–40),aswellasgenerallyelevatedlevelsofdissolvedorganiccarbon(41,42)includingenzymes(19 ,20) .Thesea-icematrixisalsohighlyporous,especiallyinsummertime,flushingregularlywiththetidesorinfluenceofwaveswhileretainingparticleaggregatesandorganismswithinit(43,44).Evenduringwintertime(intheArctic),whensea-icetemperaturescandropbelow 20 C(Fig.2)toaslowasϪ35°C,dependingonsnowcoverandatmosphericconditions(8),interiormovementsofbrinefluidthroughfinelyconnectedchannelsarepossibleonascalerelevanttobacteriaandenzymes.Thishasbeendemonstratedbyphysicalanalysesofundisturbedicesectionsusingnuclearmagneticresonance(NMR)andtransmissionmicroscopy(45).Incontrasttoresearchonhydrothermalstructures,lessinformationisavailableontheabundanceorpossiblezonation,phylogeneticorotherwise(Fig.2),ofmicroorganismsinthesecoldestofwintertimesea-icehabitats(e.g.,18,36).Onlyin1999wasanonde-structive(nonwarming,nonmelting)methodforstudyingmicrobiallifeinsupercooledicedeveloped(36).Althoughextremetemperaturesdeterminethesolidphaseofbothhydrothermalstructures(bycontrollingmineralprecipitationreactions)andseaice(byfreezingwater),onlythehydrothermalstructureremainsintactforreadystudyattempera-tureslessextremethanthoseinsitu.Sea-icestructurechangesnonuniformlywitheveryincrementalchange(upordown)intemperature,presentingspecialchallengestoapostsamplingevaluationofinsitumicrobialcommunities,products,orprocesses.Nevertheless,thepredictionfromthethreebasicfeatures(abundantattachmentsites,organicmaterial,andporosity)thatenzymeforagingisanimportantmicrobialstrategyforgrowthandsurvivalinseaicehasbeensupportedbydirectenvironmentalmeasure-mentsinbothwintertime(18)andsummertimesea-icesamples(19 ,20) .Notonlyhavehydrolyticactivitiesonsubstrateanalogsforprotein,chitin,andvariouscarbohydratesbeenreadilydetected,but,wheremeasuredandcomparedacrossothersubzeroenviron-ments(Arcticseawaterandsinkingaggregates),thelowestthermaloptimaforenzymeactivitieswereobservedinmultiyearseaice(19).Theoptimawereconsistentlypsychro-philic,downto10°C,comparedtopreviousreportsof30°C–50°C(19 ,20, andcitationstherein)(Table2).Inotherwords,theicecoverovertheArcticOcean,whichinsomeareaspersiststhroughadecadeofwinters(rarelyifeverthecaseinAntarcticwaters),clearlyselectsforcold-adaptedandevenstrictlypsychrophilicenzymes,asitdoesforpsychrophilicorganisms(discussedlater),makingitanobviousenvironmentforcontinuedsearchanddiscoveryofnewenzymesinthisthermalclass.Specialfeaturestoconsiderinasearchforcold-adaptedenzymesinseaiceresemblethoseforseafloorsulfidestructures,albeitatsubzerotemperatures:sharpthermalgradientsinwintertimeice(Fig.2),linkedsalinity(andotherchemical)gradients(Fig.2),andthe in uence...
  • 36
  • 341
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 14 doc

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 14 doc

... alter the physicalstate or the location of the contaminants. In contrast, biodegradation is the primary processinvolved in the transformation and mineralization of xenobiotic compounds and, in the latter ... of the Copyright © 200 2 Marcel Dekker, Inc.affectthedynamicsoftheacclimationresponse,includingchemicalstructureandconcen-trationofthepollutant,presenceoforganicandinorganicnutrients,typeandphysiologicalstateofthecommunity,physical/chemicalparametersoftheenvironment(temperature,pH,redoxpotential,salinity),andbiologicalfactorssuchaspredationandcompetition(104–109).TheresponsedepictedinFig.4isacommunitylevelresponse,composedofnumerous ... results in the elimination of the pollutant and its metabolites. Abiotic degra-dation may occur, but it is less common and often results in incomplete decontamination and sometimes the formation...
  • 27
  • 541
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 1 ppsx

... proposed in systems involving phenoloxidase enzymes. The deamination of amino acids, such as serine, phenylalanine, proline, methionine, and cysteine by birnessite, and the role of pyrogallol in influencing ... effective for both L- and D- glutamic acid. The PLP-Cu2ϩ-smectitehas acted as a ‘‘pseudoenzyme’’ wherein the PLP was active and independent of the protein matrix of the enzyme and the silicate structure ... aspartase-Ca-montmoril-lonite systems (159). Deamination of l- and d-glutamic and aspartic amino acids and oftheir DL racemic mixtures in the presence of Na-montmorillonite showed a stereoselectiv-ity...
  • 46
  • 555
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 2 pptx

... Inc.Currently,itisevidentthatmicroorganismsformcomplexmicrobialfoodwebsinallaquaticecosystems,andthattheiractivitiesandmetabolismsoftenaretightlycoupled and/ ormutuallyaffected(132,143,144).Therefore,itisnotsurprisingthatenzymaticpropertiesandactivitiesofdifferentcomponentscreatingthemicrobialfoodwebsinlakeecosystemshavedemonstratedcloserelationships.Severalreportshavedocumentedthestrongdependencyofbacterialsecondaryproductiononectoenzymeactivitiesofaquaticmicroorganisms(2–4,16,17,19,25,28,29,33,36,59).Thereoftenisasignificantcorrelationbetweenphytoplanktonprimaryproductionandactivitiesofdifferentectoenzymesinfreshwaterecosystems(25,28,29,33,52).Ourstudiesinlakesofdifferingdegreesofeutrophicationhaveshownmicrobialesteraseactivitytobepositivelycorrelatedtophytoplanktonprimaryproduction,bacterialsecondaryproduction,andconcentrationofdissolvedorganiccarbon (DOC) (Fig.13).Wehavefoundasignificantnegativerelationshipbetweenenzymeactivityandtheper-centageofphytoplanktonextracellularrelease(PER)ofphotosyntheticorganiccarboninthestudiedlakes.ThisnegativecorrelationbetweenPERandesteraseactivityindicatedthatenzymesynthesiswaspartiallyinhibitedinbacteriabylow-molecular-weightphoto-syntheticproductsofphytoplanktonthatwerereadilyutilizedbythesemicroheterotrophs:i.e.,catabolicrepressionofesterasesynthesiswasfoundinlakescharacterizedbyhighPERofphytoplankton(29,33).VIII.ECTOENZYMEACTIVITYANDLAKEWATEREUTROPHICATIONTheimportanceoforganicmatterasavariableforevaluatingthetrophicstatusoflakeshasbeenrecognizedsincethebeginningofthe20thcentury(145,146).Increasingconcen-trationsoforganicconstituentsinwaterarethedistinctindicatorsofacceleratedeutrophi-cationprocessesinmanylakes(147–149).OurstudiesclearlydemonstratedthatenzymeactivitiesweresignificantlypositivelyproportionaltoDOCcontentoflakes(Fig.13C).Asdescribedearlierinthischapter,severalmicrobialectoenzymesareresponsibleforrapidtransformationanddegradationofbothdissolvedorganicmatterandPOMinfresh-waterecosystems.Therefore,wehypothesizethatan‘‘enzymaticapproach’’canbeveryusefulinthestudiesoflakeeutrophication.Severalreportspointedoutthatmicrobialenzymaticactivitieswerecloselyrelatedtotheindicesofwatereutrophicationand/orthetrophicstatusofaquaticecosystems(25,27,29,31,33,38,52,58,62,78).Ourstudiesalongthetrophicgradientoflakes(fromoligo/mesotrophictohypereutrophiclakes[Fig.14A]supportourhypothesis(andtheassumptionsofothers)thatselectedenzymaticmicrobialactivitiesareverypracticalforarapidrecognitionofthecurrenttrophicstatusoflakes.Activitiesofalkalinephosphatase,esterase,andaminopeptidaseincreasedexponentiallyalongatrophicgradientandcorre-latedsignificantlywiththetrophicstateindexofthestudiedlakes(Fig.14B,C,D).Wealsofoundastrongrelationshipbetweenactivitiesofectoenzymesandphytoplanktonprimaryproductionintheselakes.RapidincreasesinectoenzymeactivitieswereobservedespeciallyinarangeofgraduallyeutrophiclakeswhenthevalueofCarlson’strophicstateindex(TSI)wasabove55(150)(Fig.14).Moreover, ... for the enzymes involved in the transformation and degrada-tion of polymeric substrates outside the cell membrane: ectoenzymes (19), extracellular enzymes (20) , and exoenzymes (21). In this chapter, ... resulting low-molecular-weight products are then transported across the cell mem-brane and utilized inside the cytoplasm. The hydrolysis of polymers is an acknowledged rate-limiting step in the utilizationof...
  • 38
  • 511
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 3 pdf

... forchitin-hydrolyzing activity by using MUF-β-d-N, N′-diacetylchitobioside, and chitobiaseactivity was then assayed in protein extracts prepared from the positive clones. The chi-tinases of marine bacteria ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st(5)distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st(5)andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st[5])orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13,14)(Table1).Dissolvedenzymes(15)andlargeparticlesϾ8 ... Inc.Investigationsofextracellularenzymesfrommarineanimalsandenzymesisolatedfromprokaryotesareconsideredonlyifaclearconnectiontomarineecologyisestablished.Thetermextracellularenzymesisusedthroughoutthischapter,whereasChro´st(5)distin-guishesbetweenectoenzymesandextracellularenzymes.EctoenzymesaredefinedbyChro´st(5)andinChapter2asenzymeslocatedintheperiplasmicspaceorattachedtotheoutermembraneofthebacterialcell.Extracellularenzymesareenzymesfreelydis-solvedinthewaterorattachedtoparticlesotherthantheenzyme-synthesizingcell .In thischapter,however,thetermextracellularenzymesreferstobothectoenzymesandextracellularenzymes,unlessotherwisestated.EarlystudiesonthefateoforganicaggregatesanddissolvedpolymersintheseawerepresentedbyRiley(6),Walsh(7),andKhailovandFinenko(8).Overbeck(9)re-viewedtheearlystudiesonextracellularenzymeactivityintheaquaticenvironment.II.ECOLOGICALPRINCIPLESOFENZYMATICPATTERNSINTHESEAA.TheConceptoftheMicrobialLoopandtheRoleofExtracellular Enzymes Themicrobialloop(10)encompassesthecombinedactivitiesofautotrophicandheterotro-phic—eukaryoticaswellasprokaryotic—organismssmallerthan20µm.Theseorgan-isms,representedbybacteria,nanoflagellates,ciliates,andphototrophicprochlorophytes,aswellascyanobacteria,formafoodweboftheirown,looselyconnectedtothefoodwebofthelargergrazers.Ingeneral,thenutritionalbasisofthemicrobialfoodwebisprovidedbythepoolofdissolvedorganicmatter(DOM)andparticulateorganicmatter(POM).TheDOMpoolisapriorireservedforbacterialutilization,whereascompetitionwithmetazoansoccursforPOM.ThiscompetitionisdeterminedbythebacterialpotentialforenzymaticdissolutionofPOMontheonehandandthefeedingactivityofthemetazo-ansontheotherhand.Thebulkofboththedissolvedandparticulateresources,however,requiresenzymatichydrolysispriortouptakebybacteria(Fig.1).Thustheenzymaticactivitiesofbacteriainitiateorganiccarbon(C)remineralizationanddefinethetypeandquantityofsubstrateavailabletothetotalmicrobialfoodweband,tocertainextent,alsotothetoppredatorsinthesystem.B.FreeandAttachedEnzymeActivityGenerally,extracellularenzymesmaybeboundtothecell(definedasectoenzymesbyChro´st[5])orinthefreeandadsorbedstate(11,12).Mostofthetotalenzymeactivityinseawaterhasbeenfoundtobeassociatedwiththeparticlesizeclassdominatedbybacteria(Ͼ0.2µm–3µm)(13,14)(Table1).Dissolvedenzymes(15)andlargeparticlesϾ8...
  • 35
  • 594
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 4 potx

... Inc.Althoughthisstudyinvolvedtheuseofageneticallymodifiedmicrobe,themodi - cationswerenotintendedtohaveafunctionalimpact;theywereinsertedasgeneticmark-ers.Asecondstudycomparingtheeffectofthesamegeneticallymarkedstraintothatofafunctionallymodifiedstrainshowedeffectsthataremoreinteresting(36).Theaimofthisworkwastodeterminetheimpactintherhizosphereofwildtypealongwithfunction-allyandnonfunctionallymodifiedPseudomonasfluorescensstrains.Thewild-typeF113straincarriedageneencodingtheproductionoftheantibiotic2,4-diacetylphloroglucinol(DAPG),usefulinplantdiseasecontrol,andwasmarkedwithalacZYgenecassette .The firstmodifiedstrainwasafunctionalmodificationofstrainF113withrepressedproductionofDAPG,creatingtheDAPGnegativestrainF113G22.Thesecondpairedcomparisonwasanonfunctionalmodificationofwild-type(unmarked)strainSBW25,constructedtocarrymarkergenesonly,creatingstrainSBW25EeZY-6KX.Significantperturbationswererecordedintheindigenousbacterialpopulationstruc-ture;theF113(DAPGϩ)straincausedashifttowardslower-growingcolonies(Kstrate-gists)comparedwiththenon-antibiotic-producingderivative(F113G22)andSBW25strains.TheDAPGϩstrainalsosignificantlyreduced,incomparisonwiththoseoftheotherinocula,thetotalPseudomonassp.populations,butdidnotaffectthetotalmicrobialpopulations.ThesurvivalofF113andF113G22wasanorderofmagnitudelowerthanthatoftheSBW25strains.TheDAPGϩstraincausedasignificantdecreaseintheshoot-to-rootratioincomparisontothatofthecontrolandotherinoculants,indicatingplantstress.F113increasedsoilalkalinephosphatase,phosphodiesterase,andarylsulfataseac-tivities(Table2)comparedtothoseofthecontrols.Theotherinoculareducedthesameenzyme ... Inc.Theresultsshowedlargedifferencesbetweenthe2daysofsamplinginsoilenzymeactivities(e.g.,alkalinephosphatase,Fig.2)andavailablesoilnutrients(e.g.,nitrate,Fig.3).Differenceswerefoundalsobetweenthevariousoilseedrapevarietieswithmostsoilenzymesmeasuredandwiththeavailablesoilnutrients.However,therewaslittlediffer-encebetweentheenzymeactivitiesintherhizosphereoftheGMandnon-GMplants.Themajorfactorinfluencingtheenzymeactivitiesandsoilnutrientsbetweenthetwosamplingdayswasthesoilmoisturecontent,whichwasincreasedbyovernightrain.Therefore,inthisfieldtrial,thedifferencesbetweensoilenzymeactivitieswerenotattrib-utabletoplantgeneticmodification,buttoenvironmentalvariationandtodifferencesinplantvariety.V.CONCLUSIONSClearlyenzymeactivitiesareusefulindeterminingperturbationsinthesoilenvironmentbroughtaboutbychangesinagriculturalpractices,theuseofagrochemicals,pollutionevents,ortheexploitationofgeneticallymodifiedorganisms.Biocontrolofpestsanddiseasesisameansbywhichenzymefunctionhasbeenexploited(43),butthereisevengreateropportunitytomonitorandmanipulateenzymesasgenerationsofplantnutrients,plant-growth-promotingagents,soilstructurestimulants,andbioremediationcatalysts.Althoughbioremediationhashadlessattentionthanbiocontrol,thepotentialforexploitationisenormous(44).Mostresearchhasbeenfocusedonmicrobialinoculants(bioaugmentation),butitisequallyrelevanttoconsiderhowtooptimizethefunctionoftheindigenousorganisms(biostimulation).Phytoremediation,byplantrootsthemselvesorassociatedmicrobiota(rhizoremediation),isbecominganincreasinglyinterestingcleanupsolutionforsoils.Mostattentionhasbeenpaidtoheavymetaldecontamination ,and whereasthereisinevitablysomeenzymeinvolvement,littlehasbeencharacterized.How-ever,rhizospheremicroorganismsproduceenzymesthathavethecapacitytocatabolizeawiderangeoforganicpollutants.MicrobialdehalogenationisdescribedindetailinChapters1 8and1 9,butofspecialinterestarehydrogencyanideandothernitriles.Notonly ... would in- crease the microbial P demand.Inverse trends were found with the C and N cycle enzymes in comparison to the general trend found in the P and S cycle enzymes. The F113 (DAPGϩ) strain was...
  • 15
  • 455
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 5 ppt

... short-chain poly-P was higher in the internal hyphae (67). Long-chain poly-P seems to be more efficient in transporting Pi from the extraradical to the intraradical part of the fungi. Activity of enzymes ... © 200 2 Marcel Dekker, Inc.ThepatternsofenzymeactivityandmRNAaccumulationsuggestthatchitinases and -1 ,3-glucanasesmightbepartoftheearlydefenseresponsebytheplanttotheinvad-ingfungus,whichisthensuppressedassymbioticinteractionsdevelop.Inthiscontext,planthydrolasesmaybeinvolvedintheregulationofAMdevelopment.Nevertheless,someexperimentaldatarevealedthatitisnotlikelythatplantchitinasesandglucanasesareessentialtothecontrolofthegrowthofAMfungi.TransgenicplantsconstitutivelyexpressinghighlevelsofdifferentacidicformsoftobaccoPRs(includingchitinasesand -1 ,3-glucanases)becamenormallycolonizedbytheAMfungi(122,123).Thefactthatchitinasesand -1 ,3-glucanasesinducedbytheAMsymbioticfungiorbyconstitutivegeneexpression,donotpreventrootcolonizationsuggeststhattheyareineffectiveincontrollingfungaldevelopment.ThelowenzymaticaffinityforAMfungalcomponentsorinaccessibilityoftheseenzymestofungalcellwallcomponentsmaycausethisineffec-tiveness(112).Conversely,specificacidicformsofchitinaseand -1 ,3-glucanaseareactivatedinseveralplantscolonizedbyAMfungi.Thesesymbiotic,specificisoenzymeshavebeenreportedinpea(124),tobacco(118),andtomato(125–127)rootsandaredifferentfrompathogen-inducedisoformsorconstitutiveenzymes.Inaddition,newchitosanaseisoformshavebeenshowninpea(128)andtomato(126).Chitosanasesarehydrolyticenzymesactingonchitosan,aderivativepartiallyorfullydeacetylatedofchitin(129).Interestingly,themycorrhizal-relatedchitinaseisoformdescribedintomato-colonizedrootsappearedtodisplaychitosanaseactivity.Thisbifunctionalcharacterwasnotfoundfortheconstitutive enzymes, orinPhytophthorasp.–inducedchitinases(126).Mycorrhizal-specificplantchi-tinasesarenotactiveinpathogen-infectedroots(118,124–125)orinRhizobiumsp.legumesymbiosis(130),indicatingadifferentialinductionandfunction.AlthoughtheprecisefunctionofplanthydrolaseactivitiesintheestablishmentofAMsymbioticinteractionisstillunclear,theirstimulationseemstobeakeypointinthemechanismofrecognitionandsignalingbetweenplantrootsandAMfungi.AregulatoryroleoftheseenzymesduringestablishmentofAMandotherrootsymbiosishasbeenproposed.Stimulationofspecificplantchitinaseshasbeenreportedinsoybean/Rhizobiumsp.(131)andectomycorrhiza(132).Ithasbeenpostulatedthatchitinasesmaybeinvolvedintherecognitionoftherhizobialnodulationsignalsand,thus,intheregulationofthenodulationprocess(133).Thedatasuggestaspecificrolefortheseenzymes,onethatcouldberelatedintheAMsymbiosistothedetection,modification ,and/ orreleaseofchitinorchitosanoligomersfromthefungalcellwallthatcanactassignalingcompoundsduringthedevelopmentofAM(Fig.3).Inthisprocessofsignalexchange,themodulationof ... drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids.New...
  • 27
  • 420
  • 0
Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

Enzymes in the Environment: Activity, Ecology and Applications - Chapter 8 potx

... affecting the efficiency of interaction of the substrate and enzyme molecules. In other words, a portion of the enzyme molecules existing in the field soil may not be actively engaged in catalyzing their ... transforma-tions include the effect of bonding of β-d-glucosidase to a phenolic copolymer of l-tyro-sine, pyrogallol, or resorcinol (108) and of linking of urease to tannic acid (49,52). Sarkar and ... Radosevich, SJ Traina, OH Tuovinen. Atrazine mineralization in laboratory-aged soilmicrocosms inoculated with S-triazine-degrading bacteria. J Environ Qual 26 :206 –214,1997.99. R Rai, RP Singh. Effect...
  • 22
  • 429
  • 0

Xem thêm

Từ khóa: activity ecology and applicationsfuture applications and needs for measurement in the environmentthe british empire ecology and famines in late 19th century central indiatransport and fate of toxicants in the environment damian sheafungal diversity in molecular terms profiling identification and quantification in the environmentageing and deterioration of materials in the environment application of multivariate data analbehavior and fate of aromatic bromine compounds in the environment3  mouse models of dicer dependent inactivation of mirna activity in the early limb mesenchyme and the growth platesources and occurrence of phosphates in the environmentmonitoring of nitrogen compounds in the environment biota and foodproperties and occurrence in the environmentformation and occurrence in the environmentinfluences of experience in the environment on human development and behaviorapplications in the treatment of rhinophyma and other cutaneous surgical proceduresalliances conflicts and mediations the role of population mobility in the integration of ecology into poverty reductionNghiên cứu sự biến đổi một số cytokin ở bệnh nhân xơ cứng bì hệ thốngBáo cáo quy trình mua hàng CT CP Công Nghệ NPVNghiên cứu sự hình thành lớp bảo vệ và khả năng chống ăn mòn của thép bền thời tiết trong điều kiện khí hậu nhiệt đới việt namNghiên cứu tổ chức pha chế, đánh giá chất lượng thuốc tiêm truyền trong điều kiện dã ngoạiNghiên cứu tổ hợp chất chỉ điểm sinh học vWF, VCAM 1, MCP 1, d dimer trong chẩn đoán và tiên lượng nhồi máu não cấpMột số giải pháp nâng cao chất lượng streaming thích ứng video trên nền giao thức HTTPNghiên cứu tổ chức chạy tàu hàng cố định theo thời gian trên đường sắt việt namGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitGiáo án Sinh học 11 bài 13: Thực hành phát hiện diệp lục và carôtenôitPhối hợp giữa phòng văn hóa và thông tin với phòng giáo dục và đào tạo trong việc tuyên truyền, giáo dục, vận động xây dựng nông thôn mới huyện thanh thủy, tỉnh phú thọPhát triển mạng lưới kinh doanh nước sạch tại công ty TNHH một thành viên kinh doanh nước sạch quảng ninhNghiên cứu về mô hình thống kê học sâu và ứng dụng trong nhận dạng chữ viết tay hạn chếThiết kế và chế tạo mô hình biến tần (inverter) cho máy điều hòa không khíBT Tieng anh 6 UNIT 2Tăng trưởng tín dụng hộ sản xuất nông nghiệp tại Ngân hàng Nông nghiệp và Phát triển nông thôn Việt Nam chi nhánh tỉnh Bắc Giang (Luận văn thạc sĩ)chuong 1 tong quan quan tri rui roGiáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtGiáo án Sinh học 11 bài 14: Thực hành phát hiện hô hấp ở thực vậtChiến lược marketing tại ngân hàng Agribank chi nhánh Sài Gòn từ 2013-2015