advanced engineering mathematics – mathematics

35 15 0
advanced engineering mathematics – mathematics

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Review: Linear prediction, projection in Hilbert space.. Partial autocorrelation function...[r]

(1)

Introduction to Time Series Analysis Lecture 8.

1 Review: Linear prediction, projection in Hilbert space Forecasting and backcasting

3 Prediction operator

(2)

Linear prediction

Given X1, X2, , Xn, the best linear predictor

Xn+mn = α0 +

n

X

i=1

αiXi

of Xn+m satisfies the prediction equations

E Xn+m − Xnn+m

=

E Xn+m − Xn+mn Xi

(3)

Projection theorem

If H is a Hilbert space,

M is a closed subspace of H, and y ∈ H,

then there is a point P y ∈ M

(the projection of y on M) satisfying

1 kP y − yk ≤ kw − yk

2 hy − P y, wi =

for w ∈ M

y y−Py

Py

(4)

Projection theorem for linear forecasting

Given 1, X1, X2, , Xn ∈

r.v.s X : EX2 < ∞ , choose α0, α1, , αn ∈ R

so that Z = α0 + Pni=1 αiXi minimizes E(Xn+m − Z)2

Here, hX, Y i = E(XY ),

M = {Z = α0 + Pni=1 αiXi : αi ∈ R} = ¯sp{1, X1, , Xn}, and

(5)

Projection theorem: Linear prediction

Let Xnn+m denote the best linear predictor:

kXn+mn − Xn+mk2 ≤ kZ − Xn+mk2 for all Z ∈ M

The projection theorem implies the orthogonality

hXnn+m − Xn+m, Zi = for all Z ∈ M

⇔ hXnn+m − Xn+m, Zi = for all Z ∈ {1, X1, , Xn}

⇔ E X

n

n+m − Xn+m

=

E Xnn+m − Xn+m

Xi

(6)

Linear prediction

That is, the prediction errors (Xnn+m − Xn+m) are orthogonal to the prediction variables (1, X1, , Xn).

(7)

One-step-ahead linear prediction

Write Xnn+1 = φn1Xn + φn2Xn−1+ · · · + φnnX1

Prediction equations: E (Xn+1n − Xn+1)Xi

= 0, for i = 1, , n ⇔

n

X

j=1

φnjE (Xn+1−jXi) = E(Xn+1Xi)

n

X

j=1

φnjγ(i − j) = γ(i)

(8)

One-step-ahead linear prediction

Prediction equations: Γnφn = γn

Γn =

       

γ(0) γ(1) · · · γ(n − 1)

γ(1) γ(0) γ(n − 2)

γ(n − 1) γ(n − 2) · · · γ(0)

        ,

φn = (φn1, φn2, , φnn) ′

, γn = (γ(1), γ(2), , γ(n)) ′

(9)

Mean squared error of one-step-ahead linear prediction

Pnn+1 = E Xn+1 − Xnn+1

2

= E Xn+1 − Xn+1n Xn+1 − Xn+1n

= E Xn+1 Xn+1 − Xnn+1

= γ(0) − E(φ′nXXn+1)

= γ(0) − γn′ Γ−1 n γn,

where X = (Xn, Xn−1, , X1) ′

(10)

Mean squared error of one-step-ahead linear prediction

Variance is reduced:

Pnn+1 = E Xn+1 − Xnn+1

2

= γ(0) − γn′ Γ−1 n γn

= Var(Xn+1) − Cov(Xn+1, X)Cov(X, X)

−1

Cov(X, Xn+1)

= E (Xn+1 − 0)2 − Cov(Xn+1, X)Cov(X, X)

−1

Cov(X, Xn+1),

where X = (Xn, Xn−1, , X1) ′

(11)

Introduction to Time Series Analysis Lecture 8.

1 Review: Linear prediction, projection in Hilbert space Forecasting and backcasting

3 Prediction operator

(12)

Backcasting: Predicting m steps in the past

Given X1, , Xn, we wish to predict X1−m for m >

That is, we choose Z ∈ M = ¯sp{X1, , Xn} to minimize kZ −X1−mk2

The prediction equations are

hX1n−m − X1−m, Zi = for all Z ∈ M

⇔ E X1n−m − X1−m

Xi

(13)

One-step backcasting

Write the least squares prediction of X0 given X1, , Xn as

X0n = φn1X1 + φn2X2 + · · · + φnnXn = φ ′ nX,

where the predictor vector is reversed: now X = (X1, , Xn) ′

The prediction equations are

E((X0n − X0) Xi) = for i = 1, , n

⇔ E     n X j=1

φnjXj − X0

  Xi

 =

n

X

j=1

φnjγ(j − i) = γ(i)

(14)

One-step backcasting

The prediction equations are

Γnφn = γn,

which is exactly the same as for forecasting, but with the indices of the predictor vector reversed: X = (X1, , Xn)

(15)

Example: Forecasting AR(1)

AR(1) model: Xt = φ1Xt−1 + Wt

linear prediction of X2: X21 = φ11X1

Prediction equation: γ(0)φ11 = γ(1)

= Cov(X0, X1)

= φ1γ(0)

(16)

Example: Backcasting AR(1)

AR(1) model: Xt = φ1Xt−1 + Wt

linear prediction of X0: X01 = φ11X1

Prediction equation: γ(0)φ11 = γ(1)

= Cov(X0, X1)

= φ1γ(0)

(17)

Introduction to Time Series Analysis Lecture 8.

1 Review: Linear prediction, projection in Hilbert space Forecasting and backcasting

3 Prediction operator

(18)

The prediction operator

For random variables Y, Z1, , Zn, define the

best linear prediction of Y given Z = (Z1, , Zn) ′

as the operator P(·|Z) applied to Y :

P(Y |Z) = µY + φ ′

(Z − µZ)

with Γφ = γ,

where γ = Cov(Y, Z)

(19)

Properties of the prediction operator

1 E(Y − P(Y |Z)) = 0, E((Y − P(Y |Z))Z) =

2 E((Y − P(Y |Z))2) = Var(Y ) − φ′

γ

3. P(α1Y1 + α2Y2 + α0|Z) = α0 + α1P(Y1|Z) + α2P(Y2|Z)

4. P(Zi|Z) = Zi

(20)

Example: predicting m steps ahead

Write Xn+mn = φ(nm1)Xn + φ( m)

n2 Xn−1 + · · · + φ( m) nn X1

Γnφ(nm) = γn(m),

with Γn = Cov(X, X),

γn(m) = Cov(Xn+m, X)

= (γ(m), γ(m + 1), , γ(m + n − 1))′

Also, E((Xn+m − Xnn+m)2) = γ(0) − φ(m) ′

(21)

Introduction to Time Series Analysis Lecture 8.

1 Review: Linear prediction, projection in Hilbert space Forecasting and backcasting

3 Prediction operator

(22)

Partial autocovariance function

AR(1) model: Xt = φ1Xt−1 + Wt

γ(1) = Cov(X0, X1) = φ1γ(0)

γ(2) = Cov(X0, X2)

= Cov(X0, φ1X1 + W2)

= Cov(X0, φ21X0 + φ1W1 + W2)

= φ21γ(0)

(23)

Partial autocovariance function

For AR(1) model: X21 = φ1X1, X01 = φ1X1,

so Cov(X21 − X2, X01 − X0) = Cov(φ1X1 − X2, φ1X1 − X0)

= Cov(W2, φ1X1 − X0)

(24)

Partial autocorrelation function

The Partial AutoCorrelation Function (PACF) of a stationary time series {Xt} is

φ11 = Corr(X1, X0) = ρ(1)

φhh = Corr(Xh − Xh −1

h , X0 − X h−1

0 ) for h = 2,3,

This removes the linear effects of X1, , Xh−1:

, X−1, X0, X1, X2, , Xh−1

| {z }

(25)

Partial autocorrelation function

The PACF φhh is also the last coefficient in the best linear prediction of

Xh+1 given X1, , Xh:

Γhφh = γh Xhh+1 = φ

′ hX

(26)

Example: Forecasting an AR(p)

For Xt = p

X

i=1

φiXt−i + Wt,

Xnn+1 = P(Xn+1|X1, , Xn)

= P

p

X

i=1

φiXn+1−i + Wn+1|X1, , Xn

!

=

p

X

i=1

φiP (Xn+1−i|X1, , Xn) p

(27)

Example: PACF of an AR(p)

For Xt = p

X

i=1

φiXt−i + Wt,

Xn+1n =

p

X

i=1

φiXn+1−i

Thus, φhh =

  

φh if ≤ h ≤ p

(28)

Example: PACF of an invertible MA(q)

For Xt = q

X

i=1

θiWt−i + Wt, Xt = − ∞

X

i=1

πiXt−i + Wt,

Xn+1n = P(Xn+1|X1, , Xn)

= P −

X

i=1

πiXn+1−i + Wn+1|X1, , Xn

!

= −

X

i=1

πiP (Xn+1−i|X1, , Xn)

= −

n

X

πiXn+1−i −

X

(29)

ACF of the MA(1) process

−100 −8 −6 −4 −2 10 0.2

0.4 0.6 0.8

θ/(1+θ2) MA(1): X

(30)

ACF of the AR(1) process

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

φ|h| AR(1): X

(31)

PACF of the MA(1) process

0 10 −0.2

0 0.2 0.4 0.6 0.8

MA(1): X

(32)

PACF of the AR(1) process

0.2 0.4 0.6 0.8

AR(1): X

(33)

PACF and ACF

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

(34)

Sample PACF

For a realization x1, , xn of a time series,

the sample PACF is defined by

ˆ

φ00 = ˆ

φhh = last component of φˆh,

(35)

Introduction to Time Series Analysis Lecture 8.

1 Review: Linear prediction, projection in Hilbert space Forecasting and backcasting

3 Prediction operator

Ngày đăng: 09/03/2021, 06:09

Tài liệu cùng người dùng

Tài liệu liên quan