các dạng on thi 10

18 344 0
các dạng on thi 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

D¹ng I: rót gän biÓu thøc Cã chøa c¨n thøc bËc hai Bµi 1: Thùc hiÖn phÐp tÝnh: 1) 2 5 125 80 605− − + = 2 5 5 5 4 5 11 5= − − + 13 5 9 5 4 5= − = 2) 10 2 10 8 5 2 1 5 + + = + − ( ) 20 5 2 8 5 2 1 5 + = + + − 8(1 5) 2 5 4 + = − 2 5 2(1 5) = − + 2 5 2(1 5) 2 5 2 2 5 2 = − + = − − = − 3) 15 216 33 12 6− + − = 15 2.3 6 33 2.3.2 6= − + − ( ) ( ) 2 2 2 2 3 2.3 6 6 3 2.3.2 6 2 6= − + + − + ( ) ( ) 2 2 3 6 3 2 6= − + − Vì 3 6> và 3 2 6< nên ta có: ( ) ( ) ( ) 2 2 3 6 3 2 6 3 6 2 6 3− + − = − + − = 3 6 2 6 3 6= − + − = 4) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 − + − + + = + + − − − ( ) ( ) 2 2 2 3 2 3 2 3 2 3= − + + = − + + 2 3 2 3 4= − + + = 5) 16 1 4 2 3 6 3 27 75 − − = 16.3 1.3 4.3 2.4 3 6.2 2 3 6 3 3 3 3.3 27.3 75.3 3 9 15 = − − = − − 8 1 4 8 1 4 23 3 3 3 3 3 3 3 5 3 3 5 15   = − − = − − =  ÷   6) 4 3 2 27 6 75 3 5 − + = 6 3 4 3 3 3 5 3= − + = 7) 8) 8 3 2 25 12 4 192− + = 2 2 3 2.5 2 3 4 8 3 2 2 3 10 2 3 8 2 3 0 = − + = = − + = 9) 3 5 3 5− + + Gọi A = 3 5 3 5− + + , ta có: A 2 = ( ) ( ) 3 5 2 3 5 3 5 3 5− + − + + + 3 5 2.2 3 5 4= − + + + = Suy ra A = 2 vậy 3 5 3 5 4− + + = 10) 4 10 2 5 4 10 2 5+ + + − + = 4 10 2 5 4 10 2 5= + + + − + 1 11); 12); 13) ( ) ( ) 5 2 6 49 20 6 5 2 6+ ; 14) 1 1 2 2 3 2 2 3 + + + ; 15) 6 4 2 6 4 2 2 6 4 2 2 6 4 2 + + + + ; 16) ( ) 2 5 2 8 5 2 5 4 + ; 17) 14 8 3 24 12 3 ; 18) 4 1 6 3 1 3 2 3 3 + + + ; 19) ( ) ( ) 3 3 2 1 2 1+ 20) 3 3 1 3 1 1 3 1 + + + + . Bài 2: Cho biểu thức x 1 x x x x A = 2 2 x x 1 x 1 + ữ ữ ữ ữ + a) Rút gọn biểu thức A; b) Tìm giá trị của x để A > - 6. Bài 3: Cho biểu thức x 2 1 10 x B = : x 2 x 4 2 x x 2 x 2 + + + ữ ữ ữ + + a) Rút gọn biểu thức B; b) Tìm giá trị của x để A > 0. Bài 4: Cho biểu thức 1 3 1 C = x 1 x x 1 x x 1 + + + a) Rút gọn biểu thức C; b) Tìm giá trị của x để C < 1. Bài 5: Rút gọn biểu thức : a) 2 2 2 2 x 2 x 4 x 2 x 4 D = x 2 x 4 x 2 x 4 + + + + + + + ; b) x x x x P = 1 1 x 1 x 1 + + ữ ữ ữ ữ + ; 2 c) 2 1 x 1 Q = : x x x x x x + + + ; d) x 1 2 x 2 H = x 2 1 Bài 6: Cho biểu thức 1 1 a 1 M = : a a a 1 a 2 a 1 + + ữ + a) Rút gọn biểu thức M; b) So sánh M với 1. Bài 7: Cho các biểu thức 2x 3 x 2 P = x 2 và 3 x x 2x 2 Q = x 2 + + a) Rút gọn biểu thức P và Q; b) Tìm giá trị của x để P = Q. Bài 8: Cho biểu thức 2x 2 x x 1 x x 1 P = x x x x x + + + + a) Rút gọn biểu thức P b) So sánh P với 5. c) Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức 8 P chỉ nhận đúng một giá trị nguyên. Bài 9: Cho biểu thức 3x 9x 3 1 1 1 P = : x 1 x x 2 x 1 x 2 + + + ữ ữ + + a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P; b) Tìm các số tự nhiên x để 1 P là số tự nhiên; c) Tính giá trị của P với x = 4 2 3 . Bài 10: Cho biểu thức : x 2 x 3 x 2 x P = : 2 x 5 x 6 2 x x 3 x 1 + + + ữ ữ ữ ữ + + a) Rút gọn biểu thức P; b) Tìm x để 1 5 P 2 . Dạng II 3 CÁC BÀI TOÁN VỀ HÀM SỐ VÀ ĐỒ THỊ I.Điểm thuộc đường – đường đi qua điểm. Điểm A(x A ; y A ) thuộc đồ thị hàm số y = f(x) y A = f(x A ). Ví dụ 1: Tìm hệ số a của hàm số: y = ax 2 biết đồ thị hàm số của nó đi qua điểm A(2;4). Giải: Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.2 2 a = 1 Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không? Giải: Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d) II.Cách tìm giao điểm của hai đường y = f(x) và y = g(x). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) (II) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (II) là số giao điểm của hai đường trên. III.Quan hệ giữa hai đường thẳng. Xét hai đường thẳng : (d 1 ) : y = a 1 x + b 1 . (d 2 ) : y = a 2 x + b 2 . a) (d 1 ) cắt (d 2 ) a 1 a 2 . b) d 1 ) // (d 2 ) c) d 1 ) (d 2 ) d) (d 1 ) (d 2 ) a 1 a 2 = -1 IV.Tìm điều kiện để 3 đường thẳng đồng qui. Bước 1: Giải hệ phương trình gồm hai đường thẳng không chứa tham số để tìm (x;y). Bước 2: Thay (x;y) vừa tìm được vào phương trình còn lại để tìm ra tham số . V.Quan hệ giữa (d): y = ax + b và (P): y = cx 2 (c 0). 1.Tìm tọa độ giao điểm của (d) và (P). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình: 4 cx 2 = ax + b (V) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx 2 để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (V) là số giao điểm của (d) và (P). 2.Tìm điều kiện để (d) và (P). a) (d) và (P) cắt nhau phương trình (V) có hai nghiệm phân biệt. b) (d) và (P) tiếp xúc với nhau phương trình (V) có nghiệm kép. c) (d) và (P) không giao nhau phương trình (V) vô nghiệm . VI.Viết phương trình đường thẳng y = ax + b biết. 1.Quan hệ về hệ số góc và đi qua điểm A(x 0 ;y 0 ) Bước 1: Dựa vào quan hệ song song hay vuông góc tìm hệ số a. Bước 2: Thay a vừa tìm được và x 0 ;y 0 vào công thức y = ax + b để tìm b. 2.Biết đồ thị hàm số đi qua điểm A(x 1 ;y 1 ) và B(x 2 ;y 2 ). Do đồ thị hàm số đi qua điểm A(x 1 ;y 1 ) và B(x 2 ;y 2 ) nên ta có hệ phương trình: Giải hệ phương trình tìm a,b. 3.Biết đồ thị hàm số đi qua điểm A(x 0 ;y 0 ) và tiếp xúc với (P): y = cx 2 (c 0). +) Do đường thẳng đi qua điểm A(x 0 ;y 0 ) nên có phương trình : y 0 = ax 0 + b (3.1) +) Do đồ thị hàm số y = ax + b tiếp xúc với (P): y = cx 2 (c 0) nên: Pt: cx 2 = ax + b có nghiệm kép (3.2) +) Giải hệ gồm hai phương trình trên để tìm a,b. VII.Chứng minh đường thẳng luôn đi qua 1 điểm cố định ( giả sử tham số là m). +) Giả sử A(x 0 ;y 0 ) là điểm cố định mà đường thẳng luôn đi qua với mọi m, thay x 0 ;y 0 vào phương trình đường thẳng chuyển về phương trình ẩn m hệ số x 0 ;y 0 nghiệm đúng với mọi m. +) Đồng nhất hệ số của phương trình trên với 0 giải hệ tìm ra x 0 ;y 0 . VIII.Một số ứng dụng của đồ thị hàm số. 1.Ứng dụng vào phương trình. 2.Ứng dụng vào bài toán cực trị. bµi tËp vÒ hµm sè. Bµi tËp 1. cho parabol y= 2x 2 . (p) 5 a. tìm hoành độ giao điểm của (p) với đờng thẳng y= 3x-1. b. tìm toạ độ giao điểm của (p) với đờng thẳng y=6x-9/2. c. tìm giá trị của a,b sao cho đờng thẳng y=ax+b tiếp xúc với (p) và đi qua A(0;-2). d. tìm phơng trình đờng thẳng tiếp xúc với (p) tại B(1;2). e. biện luận số giao điểm của (p) với đờng thẳng y=2m+1. ( bằng hai phơng pháp đồ thị và đại số). f. cho đờng thẳng (d): y=mx-2. Tìm m để +(p) không cắt (d). +(p)tiếp xúc với (d). tìm toạ độ điểm tiếp xúc đó? + (p) cắt (d) tại hai điểm phân biệt. +(p) cắt (d). Bài tập 2. cho hàm số (p): y=x 2 và hai điểm A(0;1) ; B(1;3). a. viết phơng trình đờng thẳng AB. tìm toạ độ giao điểm AB với (P) đã cho. b. viết phơng trình đờng thẳng d song song với AB và tiếp xúc với (P). c. viết phơng trình đờng thẳng d 1 vuông góc với AB và tiếp xúc với (P). d. chứng tỏ rằng qua điểm A chỉ có duy nhất một đờng thẳng cắt (P) tại hai điểm phân biệt C,D sao cho CD=2. Bài tập 3. Cho (P): y=x 2 và hai đờng thẳng a,b có phơng trình lần lợt là y= 2x-5 y=2x+m a. chứng tỏ rằng đờng thẳng a không cắt (P). b. tìm m để đờng thẳng b tiếp xúc với (P), với m tìm đợc hãy: + Chứng minh các đờng thẳng a,b song song với nhau. + tìm toạ độ tiếp điểm A của (P) với b. + lập phơng trình đờng thẳng (d) đi qua A và có hệ số góc bằng -1/2. tìm toạ độ giao điểm của (a) và (d). Bài tập 4. cho hàm số xy 2 1 = (P) a. vẽ đồ thị hàm số (P). b. với giá trị nào của m thì đờng thẳng y=2x+m (d) cắt đồ thị (P) tại hai điểm phân biệt A,B. khi đó hãy tìm toạ độ hai điểm A và B. c. tính tổng tung độ của các hoành độ giao điểm của (P) và (d) theo m. Bài tập5. cho hàm số y=2x 2 (P) và y=3x+m (d) a. khi m=1, tìm toạ độ các giao điểm của (P) và (d). b. tính tổng bình phơng các hoành độ giao điểm của (P) và (d) theo m. 6 c. tìm mối quan hệ giữa các hoành độ giao điểm của (P) và (d) độc lập với m. Bài tập 6. cho hàm số y=-x 2 (P) và đờng thẳng (d) đI qua N(-1;-2) có hệ số góc k. a. chứng minh rằng với mọi giá trị của k thì đờng thẳng (d) luôn cắt đồ thị (P) tại hai điểm A,B. tìm k cho A,B nằm về hai phía của trục tung. b. gọi (x 1 ;y 1 ); (x 2 ;y 2 ) là toạ độ của các điểm A,B nói trên, tìm k cho tổng S=x 1 +y 1 +x 2 +y 2 đạt giá trị lớn nhất. Bài tập7. cho hàm số y= x a. tìm tập xác định của hàm số. b. tìm y biết: + x=4 + x=(1- 2 ) 2 + x=m 2 -m+1 + x=(m-n) 2 c. các điểm A(16;4) và B(16;-4), điểm nào thuộc đồ thị hàm số, điểm nào không thuộc đồ thị hàm số? tại sao. d. không vẽ đồ thị hãy tìm hoành độ giao điểm của đồ thị hàm số đã cho với đồ thị hàm số y= x-6 Bài tập 8. cho hàm số y=x 2 (P) và y=2mx-m 2 +4 (d) a.tìm hoành độ của các điểm thuộc (P) biết tung độ của chúng y=(1- 2 ) 2 . b.chứng minh rằng (P) với (d) luôn cắt nhau tại 2 điểm phân biệt. tìm toạ độ giao điểm của chúng. với giá trị nào của m thì tổng các tung độ của chúng đạt giá trị nhỏ nhất. Bài tập 9. cho hàm số y= mx-m+1 (d). a. chứng tỏ rằng khi m thay đổi thì đờng thẳng (d) luôn đI qua điểm cố định. tìm điểm cố định ấy. b. tìm m để (d) cắt (P) y=x 2 tại 2 điểm phân biệt A và B, sao cho AB= 3 . Bài tập 10. trên hệ trục toạ độ Oxy cho các điểm M(2;1); N(5;-1/2) và đờng thẳng (d) y=ax+b. a. tìm a và b để đờng thẳng (d) đI qua các điểm M, N. b. xác định toạ độ giao điểm của đờng thẳng MN với các trục Ox, Oy. Bài tập 11. cho hàm số y=x 2 (P) và y=3x+m 2 (d). a. chứng minh với bất kỳ giá trị nào của m đờng thẳng (d) luôn cắt (P) tại 2 điểm phân biệt. b. gọi y 1 , y 2 kà các tung độ giao điểm của đờng thẳng (d) và (P) tìm m để có biểu thức y 1 +y 2 = 11y 1 .y 2 7 bài tập 12. cho hàm số y=x 2 (P). a. vẽ đồ thị hàm số (P). b. trên (P) lấy 2 điểm A, B có hoành độ lần lợt là 1 và 3. hãy viết phơng trình đờng thẳng AB. c. lập phơng trình đờng trung trực (d) của đoạn thẳng AB. d. tìm toạ độ giao điểm của (d) và (P). Bài tập 13 a. viết phơng trình đờng thẳng tiếp xúc với (P) y=2x 2 tại điểm A(-1;2). b. cho hàm số y=x 2 (P) và B(3;0), tìm phơng trình thoả mãn điều kiện tiếp xúc với (P) và đi qua B. c. cho (P) y=x 2 . lập phơng trình đờng thẳng đi qua A(1;0) và tiếp xúc với (P). d. cho (P) y=x 2 . lập phơng trình d song song với đờng thẳng y=2x và tiếp xúc với (P). e. viết phơng trình đờng thẳng song song với đờng thẳng y=-x+2 và cắt (P) y=x 2 tại điểm có hoành độ bằng (-1). f. viết phơng trình đờng thẳng vuông góc với (d) y=x+1 và cắt (P) y=x 2 tại điểm có tung độ bằng 9. Dạng III: Hệ phơng trình Baứi 1: : Giải các HPT sau: 1.1. a. 2 3 3 7 x y x y = + = b. 2 3 2 5 2 6 x y x y + = + = Giải: a. Dùng PP thế: 2 3 3 7 x y x y = + = 2 3 2 3 2 2 3 2 3 7 5 10 2.2 3 1 y x y x x x x x x y y = = = = + = = = = Vaọy HPT đã cho có nghiệm là: 2 1 x y = = Dùng PP cộng: 2 3 3 7 x y x y = + = 5 10 2 2 3 7 3.2 7 1 x x x x y y y = = = + = + = = Vaọy HPT đã cho có nghiệm là: 2 1 x y = = - Để giảI loại HPT này ta thờng sử dụng PP cộng cho thuận lợi. 8 2 3 2 5 2 6 x y x y + = −   + =  10 15 10 11 22 2 2 10 4 12 5 2 6 5 2.( 2 6) 2 x y y y x x y x y x y + = − = − = − =     ⇔ ⇔ ⇔ ⇔     + = + = + − = = −     Vậy HPT cã nghiƯm lµ 2 2 x y =   = −  - §èi víi HPT ë d¹ng nµy ta cã thĨ sư dơng hai c¸ch gi¶I sau ®©y: 1.2. 2 3 1 1 2 5 1 1 x y x y  + = −  +    + = −  +  + C¸ch 1: Sư dơng PP céng. §K: 1, 0x y≠ − ≠ . 2 3 1 1 2 5 1 1 x y x y  + = −  +    + = −  +  2 2 1 1 1 3 1 2 2 2 5 2 2 5 1 4 1 1 1 1 1 1 1 y y y x x y y x x x y  = = =      + = − = −      ⇔ ⇔ ⇔ ⇔ ⇔      + = = −      = = + = + +      +  Vậy HPT cã nghiƯm lµ 3 2 1 x y  = −    =  + C¸ch 2: Sư dơng PP ®Ỉt Èn phơ. §K: 1, 0x y≠ − ≠ . §Ỉt 1 1 a x = + ; 1 b y = . HPT ®· cho trë thµnh: 2 3 1 2 5 1 2 5.1 1 2 2 5 1 2 2 1 1 a b a b a a a b b b b + = − + = + = = −     ⇔ ⇔ ⇔     + = = = =     1 2 3 1 2 1 1 1 x x y y  = −   = − +   ⇒ ⇔     = =    (TM§K) Vậy HPT cã nghiƯm lµ 3 2 1 x y  = −    =  Lu ý: - NhiỊu em cßn thiÕu §K cho nh÷ng HPT ë d¹ng nµy. - Cã thĨ thư l¹i nghiƯm cđa HPT võa gi¶i. Bài 2: Giải các hệ phương trình sau (bằng pp thế) 1.1: 3 ) 3 4 2 x y a x y − =   − =  7 3 5 ) 4 2 x y b x y − =   + =  1.2. 2 2 5 ) 2 2 x y a x y  − =   + =   ( ) ( ) 2 1 2 ) 2 1 1 x y b x y  − − =   + + =   Bài 3: Giải các hệ phương trình sau (bằng pp cộng đại số) 9 2.1. 3 3 ) 2 7 x y a x y + =   − =  4 3 6 ) 2 4 x y b x y + =   + =  3 2 10 ) 2 1 3 3 3 x y c x y − =    − =   2.2. 2 3 1 ) 2 2 2 x y a x y  − =   + = −   5 3 2 2 ) 6 2 2 x y b x y  + =   − =   Bài 4: Giải hệ phương trình 2 3 1 ( 1) 6 2 x y m x y m + =   + + =  trong mỗi trường hợp sau a) m = -1 b) m = 0 c) m = 1 Bài 5: a) Xác đònh hệ số avàb, biết rằng hệ phương trình 2 4 5 x by bx ay + =   − = −  có nghiệm là (1; -2) b) Cũng hỏi như vậy nếu hệ phương trình có nghiệm ( ) 2 1; 2− Bài 6: Giải hệ phương trình sau: 2 2 3 1 x y x y  + =   + = −   a) Từ đó suy ra nghiệm của hệ phương trình 2 2 1 1 3 1 1 1 m n m n m n m n  + =   + +   + = −  + +  Bài 7: Giải các hệ phương trình sau: 2 4 3 1 x y x y + =   − =  ; 1 3 2 3 x y x y − =   + =  ; 2 5 3 1 x y x y + =   − =  ; 3 5 0 3 0 x y x y − − =   + − =  ; 0,2 3 2 15 10 x y x y − =   − =  ; 3 2 2 4 2007 x y x y = −   + =  ; 3 2 3 9 6 x y y x − =   − + =  ; 5 2 2 6 y x x y  − =    − =  ; 2 3 6 5 5 5 3 2 x y x y + =    + =   ; 2 5 3 3 15 2 4 2 x y x y + =    + =   Bµi 8: Cho hƯ ph¬ng tr×nh    =+ =− 1 2 byax bayx a) Gi¶i hƯ khi a=3 ; b=-2 b) T×m a;b ®Ĩ hƯ cã nghiƯm lµ (x;y)=( )3;2 Bµi 9: Gi¶i c¸c hƯ ph¬ng tr×nh sau 10 [...]... gặp nhau tại một điểm cách chính giữa quãng đờng AB là 10 km và xe đi chậm tăng vận tốc gấp đôi thì hai xe gặp nhau sau 1 giờ 24 phút HPT: x y = 10 2 1 5 ( x + 2 y ) = 2( x + y ) Bài 8 Hai lớp 9A và 9B có tổng cộng 70 HS nếu chuyển 5 HS từ lớp 9A sang lớp 9B thì số HS ở hai lớp bằng nhau Tính số HS mỗi lớp Bài 9 Hai trờng A, B có 250 HS lớp 9 dự thi vào lớp 10, kết quả có 210 HS đã trúng tuyển... dự thi vào lớp 10 Bài 10 Hai vòi nớc cùng chảy vào một bể không có nớc sau 2 giờ 55 phút thì đầy bể Nếu chảy riêng thì vòi thứ nhất cần ít thời gian hơn vòi thứ hai là 2 giờ Tính thời gian để mỗi vòi chảy riêng thì đầy bể Bài 11 Hai tổ cùng làm chung một công việc hoàn thành sau 15 giờ nếu tổ một làm trong 5 giờ, tổ hai làm trong 3 giờ thì đợc 30% công việc Hỏi nếu làm riêng thì mỗi tổ hoàn thành trong... - 10 = 0 8 3x2 + 14x + 8 = 0 9 4x2 - 5x - 9 = 0 9 -7x2 + 6x = - 6 10 2x2 - x - 21 = 0 10 x2 - 12x + 32 = 0 11 6x2 + 13x - 5 = 0 11 x2 - 6x + 8 = 0 12 56x2 + 9x - 2 = 0 12 9x2 - 38x - 35 = 0 13 10x2 + 17x + 3 = 0 13 x2 - 2 3 x + 2 = 0 14 7x2 + 5x - 3 = 0 14 4 2 x2 - 6x - 2 = 0 15 x2 + 17x + 3 = 0 15 2x2 - 2 2 x + 1 = 0 Bài tập 2: Biến đổi các phơng trình sau thành phơng trình bậc hai rồi giải a) 10x2... bằng cách lập hệ phơng trình I, Mục tiêu: * Kiến thức: HS giải đợc các bài toán thực tế bằng cách lập HPT * Kĩ năng: - HS đợc củng cố kĩ năng phân tích tìm lời giải, trình bày lời giải bài toán bằng cách lập HPT * Thái độ: Rèn tính cẩn thận, chính xác, lô gíc chặt chẽ, rõ ràng II, Lí thuyết cần nhớ: * Bớc 1: + Lập HPT - Chọn ẩn, tìm đơn vị và ĐK cho ẩn - Biểu diễn mối quan hệ còn lại qua ẩn và các đại... = Chú ý 3: c a * Nếu a - b + c = 0 thì phơng trình có hai nghiệm phân biệt: x1 = -1 và x2 = c a Chú ý 4: * Hệ thức viét trong trờng hợp phơng trình có nghiệm -b x1 + x 2 = a x x = c 1 2 a Bài tập 1: 13 Giải các phơng trình bậc hai sau TT Các phơng trình cần giải theo TT Các phơng trình cần giải theo ' 1 6 x2 - 25x - 25 = 0 1 x2 - 4x + 2 = 0 2 6x2 - 5x + 1 = 0 2 9x2 - 6x + 1 = 0 3 7x2 - 13x... trình với m lần lợt bằng các giá trị: m = 2; m = - 2; m = 5; m = -5; m = 3; m = 7; m=-4 b) Tìm các giá trị của m để phơng trình có một nghiệm x lần lợt bằng x = 3; x = -3; x = 2; x = 5; x = 6; x = -1 c) Tìm các giá trị của m để phơng trình trên có nghiệm kép Bài tập 4: Cho phơng trình: x2 - 2(m - 2)x + m2 - 3m + 5 = 0 14 m = -2; x = 1; a) Giải phơng trình với m lần lợt bằng các giá trị: m = 3; m = 7;... m = - 4; m = 2; m = -7; m=-8 b) Tìm các giá trị của m để phơng trình có một nghiệm x lần lợt bằng x = - 4; x = -2; x = 6; x = -7; x = -3 c) Tìm các giá trị của m để phơng trình trên có nghiệm kép Bài tập 5: Cho phơng trình: x2 - 2(m - 2)x + 2m2 + 3m = 0 a) Giải phơng trình với m lần lợt bằng các giá trị: m = -2; m = 3; m = 7; m = - 4; m = 2; m = -7; m=-8 b) Tìm các giá trị của m để phơng trình có một... để trả lời III, Bài tập và hớng dẫn: Bài 1 Hai ô tô cùng khởi hành một lúc từ hai tỉnh A và B cách nhau 160 km, đi ngợc chiều nhau và gặp nhau sau 2 giờ Tìm vận tốc của mỗi ô tô biết rằng nếu ô tô đi từ A tăng vận tốc thêm 10 km/h sẽ bằng hai lần vận tốc ôtô đi từ B 11 Bài 2 Một ngời đi xe máy đi từ A đến B trong một thời gian dự định Nếu vận tốc tăng14 km/h thì đến B sớm hơn 2 giờ nếu vận tốc giảm 2... bao nhiêu hàng ghế và mỗi hàng có bao nhiêu ghế DạngIV Phơng trình bậc hai+hệ thức vi-ét Tóm tắt lí thuyết: Cách giải phơng trình bậc hai: ax2 + bx + c = 0 ( a 0) = b2 - 4ac * Nếu > 0 phơng trình có hai nghiệm phân biệt x1 = -b - -b + ; x2 = 2a 2a * Nếu = 0 phơng trình có nghiệm kép: x1 = x2 = -b 2a * Nếu < 0 thì phơng trình vô nghiệm Chú ý 1: Trong trờng hợp hệ số b là số chẵn thì giải phơng... và thời gian dự định Bài 3 Hai ca nô cùng khởi hành từ hai bến A, B cách nhau 85 km , đi ngợc chiều nhau và gặp nhau sau 1 giờ 40 phút.Tính vận tốc riêng của mỗi ca nô biết rằng vận tốc của ca nô xuôi dòng lớn hơn vận tốc của ca nô ngợc dòng là 9 km/h (có cả vận tốc dòng nớc) và vận tốc dòng nớc là 3 km/h Bài 4 Một ca nô xuôi dòng 108 km và ngợc dòng 63 km hết 7 giờ Một lần khác ca nô xuôi dòng 81 . 2.2 3 5 4= − + + + = Suy ra A = 2 vậy 3 5 3 5 4− + + = 10) 4 10 2 5 4 10 2 5+ + + − + = 4 10 2 5 4 10 2 5= + + + − + 1 11); 12); 13) ( ) ( ) 5 2 6 49 20. cho (P) y=x 2 . lập phơng trình d song song với đờng thẳng y=2x và tiếp xúc với (P). e. viết phơng trình đờng thẳng song song với đờng thẳng y=-x+2 và cắt

Ngày đăng: 26/09/2013, 02:10

Tài liệu cùng người dùng

Tài liệu liên quan