Đề cương chi tiết Toán 9

40 270 2
Đề cương chi tiết Toán 9

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

GV : Nguyễn hung minh Bài tập rút gọn B ài 1 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thì Q Z B ài 2 : Cho biểu thức P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : P = x x + 1 1 . b) Với x = 1 2 thì P = - 3 2 2 . B ài 3 : Cho biểu thức : A = 1 1 1 1 + + x x x xx a) Rút gọn biểu thức sau A. b) Tính giá trị của biểu thức A khi x = 4 1 c) Tìm x để A < 0. d) Tìm x để A = A. H ớng dẫn : a) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : A = 1 x x . b) Với x = 4 1 thì A = - 1. c) Với 0 x < 1 thì A < 0. d) Với x > 1 thì A = A. 1 GV : Nguyễn hung minh B ài 4 : Cho biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rút gọn biểu thức sau A. b) Xác định a để biểu thức A > 2 1 . H ớng dẫn : a) ĐKXĐ : a > 0 và a 9. Biểu thức rút gọn : A = 3 2 + a . b) Với 0 < a < 1 thì biểu thức A > 2 1 . B ài 5 : Cho biểu thức: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biểu thức rút gọn : A = x x 2003 + với x 0 ; x 1. c) x = - 2003 ; 2003 thì A Z . B ài 6 : Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rút gọn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 1 + x x . b) Với 0 < x < 1 thì A < 0. c) x = { } 9;4 thì A Z. B ài 7 : Cho biểu thức: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 2 ++ xx b) Ta xét hai trờng hợp : +) A > 0 1 2 ++ xx > 0 luôn đúng với x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1 ++ xx ) > 2 xx + > 0 đúng vì theo gt thì x > 0. (2) 2 GV : Nguyễn hung minh Từ (1) và (2) suy ra 0 < A < 2(đpcm). B ài 8 : Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a = 9 ĐKXĐ . Suy ra P = 4 B ài 9 : Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. H ớng dẫn : a) ĐKXĐ : a 0, a 1. Biểu thức rút gọn : N = 1 a . b) Ta thấy a = - 2004 ĐKXĐ . Suy ra N = 2005. B ài 10 : Cho biểu thức 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rút gọn P. b. Tính giá trị của P khi 347x = c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó. H ớng dẫn : a ) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347x = ĐKXĐ . Suy ra 22 33103 P + = c) P min =4 khi x=4. B ài 11 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn : a. ) ĐKXĐ : x 0, x 9. Biểu thức rút gọn : 3x 3 P + = b. Với 9x0 < thì 2 1 P < c. P min = -1 khi x = 0 3 GV : NguyÔn hung minh Bµi 12: Cho A= 1 1 1 4 . 1 1 a a a a a a a   + −   − + +  ÷  ÷  ÷ − +     víi x>0 ,x ≠ 1 a. Rót gän A b. TÝnh A víi a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ − − ( KQ : A= 4a ) Bµi 13: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x     − − − − − + −  ÷  ÷  ÷  ÷ − + − − +     víi x≥ 0 , x ≠ 9, x ≠ 4 . a. Rót gän A. b. x= ? Th× A < 1. c. T×m x Z∈ ®Ó A Z∈ (KQ : A= 3 2x − ) Bµi 14: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x − − + + − + − − + víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m GTLN cña A. c. T×m x ®Ó A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bµi 15: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. T×m GTLN cña A . ( KQ : A = 1 x x x+ + ) Bµi 16: Cho A = 1 3 2 1 1 1x x x x x − + + + − + víi x≥ 0 , x ≠ 1. a . Rót gän A. b. CMR : 0 1A ≤ ≤ ( KQ : A = 1 x x x− + ) Bµi 17: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x     − − + − − − +  ÷  ÷  ÷  ÷ − + − + −     a. Rót gän A. b. T×m x Z∈ ®Ó A Z∈ ( KQ : A = 5 3x + ) 4 GV : NguyÔn hung minh Bµi 18: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − víi a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rót gän A. b. T×m a ®Ó A < 1 c. T×m a Z ∈ ®Ó A Z∈ ( KQ : A = 1 3 a a + − ) Bµi 19: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x     − + + − + − −  ÷  ÷  ÷  ÷ − − − − +     víi x > 0 , x ≠ 4. a. Rót gän A. b. So s¸nh A víi 1 A ( KQ : A = 9 6 x x + ) Bµi20: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y   − + − −  ÷ +  ÷ − − +   víi x≥ 0 , y≥ 0, x y ≠ a. Rót gän A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) Bµi 21 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x   − + + −   − + − +  ÷  ÷  ÷ − + − +     Víi x > 0 , x ≠ 1. a. Rót gän A. b. T×m x ®Ó A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bµi 22 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x     − +  ÷ + −  ÷  ÷  ÷ − − −     víi x > 0 , x ≠ 4. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 1 x− ) Bµi 23 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x     + − +  ÷  ÷ − + − +     víi x > 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 3 2 x ) Bµi 24 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x   + +   − −  ÷  ÷  ÷ − + +   −   víi x≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z∈ ®Ó A Z∈ (KQ: A = 3 x x − ) 5 GV : NguyÔn hung minh Bµi 25: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x   −   − −  ÷  ÷  ÷ − + − + − −     víi x≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ c. T×m x ®Ó A ®¹t GTNN . (KQ: A = 1 1 x x − + ) Bµi 26 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x     + − + − −  ÷  ÷  ÷  ÷ − + − −     víi x≥ 0 , x ≠ 9 . a. Rót gän A. b. T×m x ®Ó A < - 1 2 ( KQ : A = 3 3a − + ) Bµi 27 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x     + − − − − − −  ÷  ÷  ÷  ÷ − − − + −     víi x ≥ 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 4 4 x x + ) c . CMR : A 1≤ Bµi 28 : Cho A = 1 1 1 : 1 2 1 x x x x x x +   +  ÷ − − − +   víi x > 0 , x ≠ 1. a. Rót gän A (KQ: A = 1x x − ) b.So s¸nh A víi 1 Bµi 29 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x     − − − + −  ÷  ÷  ÷  ÷ − − + +     Víi 1 0, 9 x x≥ ≠ a. Rót gän A. b. T×m x ®Ó A = 6 5 c. T×m x ®Ó A < 1. ( KQ : A = 3 1 x x x + − ) Bµi30 : Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x   − + − + −  ÷  ÷ − + +   víi x≥ 0 , x ≠ 1. a. Rót gän A. b. CMR nÕu 0 < x < 1 th× A > 0 c. TÝnh A khi x =3+2 2 d. T×m GTLN cña A (KQ: A = (1 )x x− ) 6 GV : Nguyễn hung minh Bài 31 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x + + + ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. CMR nếu x 0 , x 1 thì A > 0 , (KQ: A = 2 1x x+ + ) Bài 32 : Cho A = 4 1 2 1 : 1 1 1 x x x x x + ữ + với x > 0 , x 1, x 4. a. Rút gọn b. Tìm x để A = 1 2 Bài 33 : Cho A = 1 2 3 3 2 : 1 1 1 1 x x x x x x x x + + + ữ ữ ữ + với x 0 , x 1. a. Rút gọn A. b. Tính A khi x= 0,36 c. Tìm x Z để A Z Bài 34 : Cho A= 3 2 2 1 : 1 2 3 5 6 x x x x x x x x x + + + + + ữ ữ ữ ữ + + với x 0 , x 9 , x 4. a. Rút gọn A. b. Tìm x Z để A Z c. Tìm x để A < 0 (KQ: A = 2 1 x x + ) Bài tập về hàm số bậc nhất B ài 1 : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. H ớng dẫn : 1) Gọi pt đờng thẳng cần tìm có dạng : y = ax + b. 7 GV : Nguyễn hung minh Do đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt : += += ba ba 4 2 = = 1 3 b a Vậy pt đờng thẳng cần tìm là y = 3x 1 2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng 3 1 . B ài 2 : Cho hàm số y = (m 2)x + m + 3. 1) Tìm điều kiện của m để hàm số luôn nghịch biến. 2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. 3) Tìm m để đồ thị của hàm số trên và các đồ thị của các hàm số y = -x + 2 ; y = 2x 1 đồng quy. H ớng dẫn : 1) Hàm số y = (m 2)x + m + 3 m 2 < 0 m < 2. 2) Do đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Suy ra : x= 3 ; y = 0 Thay x= 3 ; y = 0 vào hàm số y = (m 2)x + m + 3, ta đợc m = 4 3 . 3) Giao điểm của hai đồ thị y = -x + 2 ; y = 2x 1 là nghiệm của hệ pt : = += 12 2 xy xy (x;y) = (1;1). Để 3 đồ thị y = (m 2)x + m + 3, y = -x + 2 và y = 2x 1 đồng quy cần : (x;y) = (1;1) là nghiệm của pt : y = (m 2)x + m + 3. Với (x;y) = (1;1) m = 2 1 B ài 3 : Cho hàm số y = (m 1)x + m + 3. 1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1 ; -4). 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m. H ớng dẫn : 1) Để hai đồ thị của hàm số song song với nhau cần : m 1 = - 2 m = -1. Vậy với m = -1 đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Thay (x;y) = (1 ; -4) vào pt : y = (m 1)x + m + 3. Ta đợc : m = -3. Vậy với m = -3 thì đồ thị của hàm số đi qua điểm (1 ; -4). 3) Gọi điểm cố định mà đồ thị luôn đi qua là M(x 0 ;y 0 ). Ta có y 0 = (m 1)x 0 + m + 3 (x 0 1)m - x 0 - y 0 + 3 = 0 = = 2 1 0 0 y x Vậy với mọi m thì đồ thị luôn đi qua điểm cố định (1;2). B ài 4 : Cho hai điểm A(1 ; 1), B(2 ; -1). 1) Viết phơng trình đờng thẳng AB. 8 GV : Nguyễn hung minh 2) Tìm các giá trị của m để đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2). H ớng dẫn : 1) Gọi pt đờng thẳng AB có dạng : y = ax + b. Do đờng thẳng đi qua hai điểm (1 ; 1) và (2 ;-1) ta có hệ pt : += += ba ba 21 1 = = 3 2 b a Vậy pt đờng thẳng cần tìm là y = - 2x + 3. 2) Để đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2) ta cần : =+ = 222 23 2 2 mm mm m = 2. Vậy m = 2 thì đờng thẳng y = (m 2 3m)x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C(0 ; 2) B ài 5 : Cho hàm số y = (2m 1)x + m 3. 1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5) 2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy. 3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 1 . H ớng dẫn : 1) m = 2. 2) Gọi điểm cố định mà đồ thị luôn đi qua là M(x 0 ;y 0 ). Ta có y 0 = (2m 1)x 0 + m - 3 (2x 0 + 1)m - x 0 - y 0 - 3 = 0 = = 2 5 2 1 0 0 y x Vậy với mọi m thì đồ thị luôn đi qua điểm cố định ( 2 5 ; 2 1 ). Baứi 6 : Tìm giá trị của k để các đờng thẳng sau : y = 6 x 4 ; y = 4x 5 3 và y = kx + k + 1 cắt nhau tại một điểm. B ài 7 : Giả sử đờng thẳng (d) có phơng trình y = ax + b. Xác định a, b để (d) đi qua hai điểm A(1; 3) và B(-3; -1). B ài 8 : Cho hàm số : y = x + m (D). Tìm các giá trị của m để đờng thẳng (D) : 1) Đi qua điểm A(1; 2003). 2) Song song với đờng thẳng x y + 3 = 0. 9 GV : Nguyễn hung minh Chủ đề : Phơng trình bất phơng trình bậc nhất một ần Hệ phơng trình bậc nhất 2 ẩn . A. kiến thức cần nhớ : 1. Phơng trình bậc nhất : ax + b = 0. Ph ơng pháp giải : + Nếu a 0 phơng trình có nghiệm duy nhất : x = b a . + Nếu a = 0 và b 0 phơng trình vô nghiệm. + Nếu a = 0 và b = 0 phơng trình có vô số nghiệm. 2. Hệ phơng trình bậc nhất hai ẩn : =+ =+ c'y b' x a' c by ax Ph ơng pháp giải : Sử dụng một trong các cách sau : +) Phơng pháp thế : Từ một trong hai phơng trình rút ra một ẩn theo ẩn kia , thế vào phơng trình thứ 2 ta đợc phơng trình bậc nhất 1 ẩn. +) Phơng pháp cộng đại số : - Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau). - Trừ hoặc cộng vế với vế để khử ẩn đó. - Giải ra một ẩn, suy ra ẩn thứ hai. B. Ví dụ minh họa : Ví dụ 1 : Giải các phơng trình sau đây : a) 2 2 x x 1 -x x = + + ĐS : ĐKXĐ : x 1 ; x - 2. S = { } 4 . b) 1 x x 1 - 2x 3 3 ++ = 2 Giải : ĐKXĐ : 1 x x 3 ++ 0. (*) Khi đó : 1 x x 1 - 2x 3 3 ++ = 2 2x = - 3 x = 2 3 Với x = 2 3 thay vào (* ) ta có ( 2 3 ) 3 + 2 3 + 1 0 Vậy x = 2 3 là nghiệm. Ví dụ 2 : Giải và biện luận phơng trình theo m : (m 2)x + m 2 4 = 0 (1) + Nếu m 2 thì (1) x = - (m + 2). + Nếu m = 2 thì (1) vô nghiệm. Ví dụ 3 : Tìm m Z để phơng trình sau đây có nghiệm nguyên . (2m 3)x + 2m 2 + m - 2 = 0. 10 [...]... C¸ch 1: Thay m = - 9 7 vµo ph¬ng tr×nh ®· cho råi gi¶i ph¬ng tr×nh ®Ĩ t×m ®ỵc x2 = (Nh 4 9 phÇn trªn ®· lµm) C¸ch 2: Thay m = - 9 vµo c«ng thøc tÝnh tỉng 2 nghiƯm: 4 21 GV : Ngun hung minh 9 − 2) 34 4 = 9 9 4 2(− x1 + x2 = 2( m − 2) = m  34 34 7 - x1 = -3= 9 9 9 x2 = C¸ch 3: Thay m = - 9 vµo c«ng trøc tÝnh tÝch hai nghiƯm 4 9 −3 m−3 21 21 21 7 4 = = x1x2 = => x2 = : x1 = :3= 9 9 9 9 m 9 − 4 Bµi 10: Cho... ph¬ng tr×nh (1) ta cã : 9m – 6(m – 2) + m -3 = 0 ⇔ 4m = -9 ⇔ m = - §èi chi u víi ®iỊu kiƯn (*), gi¸ trÞ m = - 9 4 9 tho¶ m·n 4 / *) C¸ch 2: Kh«ng cÇn lËp ®iỊu kiƯn ∆ ≥ 0 mµ thay x = 3 vµo (1) ®Ĩ t×m ®ỵc m = - 9 vµo ph¬ng tr×nh (1) : 4 9 9 9 - x2 – 2(- 2)x -3=0 4 4 4 9 Sau 4 ®ã thay m = - ⇔ -9x2 +34x – 21 = 0 x1 = 3 / cã ∆ = 2 89 – 1 89 = 100 > 0 =>  x 2 = 7   VËy víi m = - 9 9 th× ph¬ng tr×nh (1)... ®Çu cã bao nhiªu «t«, bao nhiªu h/s Mçi xe chë kh«ng qu¸ 32 h/s Bµi 19 : Mét nhµ m¸y dù ®Þnh s¶n xt chi tiÕt m¸y trong thêi gian ®· ®Þnh vµ dù ®Þnh sÏ s¶n xt 300 chi tiÕt m¸y trong mét ngµy Nhng thùc tÕ mçi ngµy ®· lµm thªm ®ỵc 100 chi tiÕt, nªn ®· s¶n xt thªm ®ỵc tÊt c¶ lµ 600 chi tiÕt vµ hoµn thµnh kÕ ho¹ch tríc 1 ngµy TÝnh sè chi tiÕt m¸y dù ®Þnh s¶n xt Bµi 20: Mét ca n« xu«i dßng 42km råi ngỵc... 2p = 9 – 2(-7) = 23 + (x1 – x2)2 = S2 – 4p => B = x1 −x 2 = S 2 − 4 p = 37 17 GV : Ngun hung minh +C= ( x1 + x 2 ) − 2 1 1 S −2 1 + = =− = x1 −1 x 2 −1 ( x1 − 1)( x 2 − 1) p − S + 1 9 + D = (3x1 + x2)(3x2 + x1) = 9x1x2 + 3(x12 + x22) + x1x2 = 10x1x2 + 3 (x12 + x22) = 10p + 3(S2 – 2p) = 3S2 + 4p = - 1 b)Ta cã : 1 1 1 + = − (theo c©u a) x1 − 1 x 2 − 1 9 1 1 1 = =− p= ( x1 −1)( x 2 − 1) p − S +1 9 1 1... 8x – 9 = 0 vµ cã 2 nghiƯm lµ x1 = 1 , x2 = - 9 / 2 Cã ∆ = (m + 1)2 – (m – 4) = m2 + 2m + 1 – m + 4 = m2 + m + 5 = m2 + 2.m 1 1 19 1 2 19 + + = (m + ) + > 0 víi mäi m 2 4 4 2 4 VËy ph¬ng tr×nh (1) lu«n cã 2 nghiƯm ph©n biƯt x1 , x2 3 V× ph¬ng tr×nh cã nghiƯm víi mäi m ,theo hƯ thøc ViÐt ta cã: x1 + x2 = 2( m + 1) vµ x1x2 = m – 4 Ta cã (x1 – x2)2 = (x1 + x2)2 – 4x1x2 = 4( m + 1)2 – 4 (m – 4) 1 2 19 )... = (x1 + x2)2 – 4x1x2 = 4( m + 1)2 – 4 (m – 4) 1 2 19 ) + ] 2 4 1 1 1 19 19 => x1 −x 2 = 2 (m + ) 2 + ≥2 = 19 khi m + =0 ⇔m=2 2 2 4 4 1 VËy x1 −x 2 ®¹t gi¸ trÞ nhá nhÊt b»ng 19 khi m = 2 = 4m2 + 4m + 20 = 4(m2 + m + 5) = 4[(m + Bµi 8 : Cho ph¬ng tr×nh (m + 2) x2 + (1 – 2m)x + m – 3 = 0 (m lµ tham sè) 1) Gi¶i ph¬ng tr×nh khi m = - 9 2 2) Chøng minh r»ng ph¬ng tr×nh ®· cho cã nghiƯm víi mäi m 3) T×m tÊt... Trêng hỵp 1 : 3x1 = x2 ⇔ 3 = m −3 9 gi¶i ra ta ®ỵc m = (®· gi¶i ë c©u 1) m +2 2 19 GV : Ngun hung minh Trêng hỵp 2: x1 = 3x2 ⇔ 1= 3 kiƯn m ≠ - 2) KiĨm tra l¹i: Thay m = m −3 11 ⇔ m + 2 = 3m – 9 ⇔ m = (tho¶ m·n ®iỊu m +2 2 11 vµo ph¬ng tr×nh ®· cho ta ®ỵc ph¬ng tr×nh : 2 15x2 – 20x + 5 = 0 ph¬ng tr×nh nµy cã hai nghiƯm x1 = 1 , x2 = 5 1 = (tho¶ m·n ®Çu bµi) 15 3 Bµi 9: Cho ph¬ng tr×nh : mx2 – 2(m-2)x... nghiƯm thø 2 B Bµi tËp ¸p dơng Bµi 1: Gi¶i vµ biƯn ln ph¬ng tr×nh : x2 – 2(m + 1) +2m+10 = 0 Gi¶i / Ta cã ∆ = (m + 1)2 – 2m + 10 = m2 – 9 / + NÕu ∆ > 0 ⇔ m2 – 9 > 0 ⇔ m < - 3 hc m > 3 Ph¬ng tr×nh ®· cho cã 2 nghiƯm ph©n biƯt: x1 = m + 1 - m 2 − 9 x2 = m + 1 + m 2 − 9 / + NÕu ∆ = 0 ⇔ m = ± 3 15 GV : Ngun hung minh - Víi m =3 th× ph¬ng tr×nh cã nghiƯm lµ x1.2 = 4 - Víi m = -3 th× ph¬ng tr×nh cã nghiƯm... ph©n biƯt • x1 = m + 1 - m 2 − 9 x2 = m + 1 + Víi -3< m < 3 th× ph¬ng tr×nh v« nghiƯm m 2 9 Bµi 2: Gi¶i vµ biƯn ln ph¬ng tr×nh: (m- 3) x2 – 2mx + m – 6 = 0 Híng dÉn • NÕu m – 3 = 0 ⇔ m = 3 th× ph¬ng tr×nh ®· cho cã d¹ng - 6x – 3 = 0 ⇔ x=- 1 2 / * NÕu m – 3 ≠ 0 ⇔ m ≠ 3 Ph¬ng tr×nh ®· cho lµ ph¬ng tr×nh bËc hai cã biƯt sè ∆ = m2 – (m – 3)(m – 6) = 9m – 18 / - NÕu ∆ = 0 ⇔ 9m – 18 = 0 ⇔ m = 2 ph¬ng tr×nh... vµ x1x2 = 2 – 5k a VËy (-2k)2 – 2(2 – 5k) = 10 ⇔ 2k2 + 5k – 7 = 0 (Cã a + b + c = 2+ 5 – 7 = 0 ) => k1 = 1 , k2 = - 7 2 / §Ĩ ®èi chi u víi ®iỊu kiƯn (*) ta thay lÇn lỵt k1 , k2 vµo ∆ = k2 + 5k – 2 / + k1 = 1 => ∆ = 1 + 5 – 2 = 4 > 0 ; tho¶ m·n + k2 = - 7 49 35 49 − 70 − 8 29 / − −2 = =− => ∆= kh«ng tho¶ m·n 2 4 2 4 8 VËy k = 1 lµ gi¸ trÞ cÇn t×m / C¸ch 2 : Kh«ng cÇn lËp ®iỊu kiƯn ∆ ≥ 0 C¸ch gi¶i lµ: . 4[(m + 2 1 ) 2 + 4 19 ] => 21 xx = 2 4 19 ) 2 1 ( 2 ++ m 4 19 2 = 19 khi m + 2 1 = 0 m = - 2 1 Vậy 21 xx đạt giá trị nhỏ nhất bằng 19 khi m = - 2 1. (theo câu a) p = 9 1 1 1 )1)(1( 1 21 = + = Spxx Vậy 1 1 1 x và 1 1 2 x là nghiệm của hơng trình : X 2 SX + p = 0 X 2 + 9 1 X - 9 1 = 0 9X 2 + X - 1 =

Ngày đăng: 19/09/2013, 08:10

Hình ảnh liên quan

ôn tập hình học 9 - Đề cương chi tiết Toán 9

n.

tập hình học 9 Xem tại trang 26 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan