SKKN toán sử dụng phương pháp tọa độ để tính khoảng cách trong bài toán hình học không gian image marked

13 7 0
  • Loading ...
1/13 trang

Thông tin tài liệu

Ngày đăng: 02/08/2019, 19:51

I MỞ ĐẦU Lí chọn đề tài Đứng trước tốn ,đặc biệt tốn khó người làm tốn ln đặt phương hướng giải Tuy nhiên người ham mê tốn tìm cách giải quyểt khác nhau, tìm cách giải hay ngắn gọn lạ lại kích thích tính tò mò khám phá lòng say mê học tốn Hiện đề thi THPT Quốc gia ,đề thi chọn học sinh giỏi thường xuất tốn hình học khơng gian tổng hợp (cổ điển) mà lời giải đòi hỏi vận dụng phức tạp kiến thức hình học không gian như: chứng minh quan hệ song song, quan hệ vng góc, dựng hình để tính góc khoảng cách, tính thể tích khối đa diện… Việc tiếp cận lời giải thực tế cho thấy thật khó khăn cho học sinh, học sinh có lực học trung bình, chẳng hạn tốn tính khoảng cách hai đường thẳng chéo Trong đó, bỏ qua yêu cầu bắt buộc phải dựng hình mà dừng mức độ tính tốn rõ ràng phương pháp tọa độ tỏ hiệu tất tính tốn cơng thức hóa Với lí trên, từ thực tế giảng dạy, với kinh nghiệm thu được, tiến hành thực đề tài sáng kiến cho năm 2016 với nội dung “Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học khơng gian” Mục đích nghiên cứu Với việc nghiên cứu đề tài “Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học không gian” giúp học sinh ,đặc biệt đối tượng học sinh học mức độ khá, kể trung bình tính tốn khoảng cách cách dễ dàng thông qua công thức có sẵn Đối tượng nghiên cứu Đối tượng nghiên cứu sáng kiến học sinh mức độ đại trà lớp 12THPT Trần Phú –Thanh Hóa Tất nhiên với đối tượng học sinh mà có ví dụ minh họa tốn áp dụng khác Phương pháp nghiên cứu Sáng kiến kinh nghiệm trình bầy theo hình thức tổng hợp lý thuyết sách giáo khoa , tốn minh họa điển hình theo thứ tự từ đơn giản đến phức tạp số tập áp dụng Qua mong muốn khai thác thêm hay đẹp tốn học đồng thời góp phần tăng thêm kỹ giải toán cho học sinh II NỘI DUNG SÁNG KIẾN KINH NGHIỆM Cơ sở lý luận sáng kiến kinh nghiệm Các kiến thức sử dụng sáng kiến thuộc phạm vi kiến thức trình bày Sách giáo khoa Hình học 12 chuẩn nâng cao (chương III), ví dụ tổng hợp từ tập Sách giáo khoa Sách tập, toán lấy từ đề thi thử THPT Quốc gia, thi học sinh giỏi cấp Các kí hiệu thường dùng sáng kiến: + VTPT: vectơ pháp tuyến, VTCP: vectơ phương + (XYZ): mặt phẳng qua điểm X, Y, Z + d(X,(P)): khoảng cách từ điểm X đến mặt phẳng (P) + d((P),(Q)): khoảng cách hai mặt phẳng song song (P) (Q) + d(a,b): khoảng cách hai đường thẳng chéo a b Các kiến thức cần nhớ a.Khoảng cách điểm :  Khoảng cách hai điểm A(xA;yA;zA) B(xB;yB;zB) là: AB  ( xB  xA )  ( yB  y A )  ( zB  z A ) b.Khoảng cách từ điểm đến đoạn thẳng:  Khoảng cách từ M đến đuờng thẳng (d)  u Đường thẳng  qua M có VTCP khoảng cách từ điểm M đến đường   [M M , u ]  thẳng  là: d ( M , )  u c Khoảng cách từ điểm đến mặt phẳng  Khoảng cách từ M0(x0;y0;z0) đến mặt phẳng (α): Ax+By+Cz+D=0 cho côngthức d (M , )  Ax  By0  Cz0  D A2  B  C d.Khoảng cách đường thẳng chéo nhau:  Đường thẳng (d) điqua M(x0;y0;z0);có VTCP a  (a1 ; a2 ; a3 )   Đường thẳng (d’)qua M’(x’0;y’0;z’0) có VTCP a '  (a '1 ; a '2 ; a '3 ) Khi khoảng cách giiữa hai đưởng thẳng (d) (d’) :    [a, a '].MM ' Vhop d (d , d ')     S day [a, a '] ĐẶC BIỆT: Tính khoảng cách hai đường thẳng AB, CD biết tọa độ     AB, CD  AC chúng d ( AB, CD)      AB, CD    Để “Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học khơng gian” ta có “Ba bước bản” sau đây: + Xây dựng hệ trục tọa độ thích hợp + Xác định tọa độ điểm liên quan + Chuyển tốn hình khơng gian tổng hợp tốn tương ứng khơng gian tọa độ vận dụng cơng thức thích hợp (chứng minh vng góc, song song, tính thể tích, góc, khoảng cách…) Thực trạng vấn đề trước áp dụng sáng kiến Trong trình giảng dạy nhiều năm trường THPT Trần Phú –Thanh hóa trường thành lập có nhiều học sinh hạn chế mặt tư đặc biệt tư hình học Khi dạy tốn tính khoảng cách hình học khơng gian nhiều học sinh không làm này.Khi chưa áp dụng sáng kiến có số em làm phải loay hoay với hỗ trợ Thầy.Qua kiểm tra khảo sát hai lớp 12B 12C trường THPT Trần Phú để đối chứng lớp 12B áp dụng sáng kiến lớp 12C không áp dụng sáng kiến kết thu sau : Thời gian kết thực nghiệm Sĩ số Số học sinh không giải toán Số học sinh giải tốn Thứ ngày Mơn/Lớp Thứ tư ngày 9/3/2016 Tốn – 12C 43 36 Thứ sáu ngày 11/3/2016 Toán – 12B 44 12 32 Qua thực tế áp dụng để so sánh ta thấy việc áp dụng sáng kiến vào giảng dạy mang đến rõ rệt, khơng việc áp dụng sáng kiến tạo hứng thú học tập cho học sinh đặc biệt tạo tư tìm tòi sáng tạo trình học tập em Sau năm trực tiếp giảng dạy ôn thi tốt nghiệp, đại học cao đẳng trước ôn thi THPT Quốc gia bồi dưỡng học sinh giỏi ,học sinh dự thi học sinh giỏi trường , giỏi tỉnh tơi tìm tòi cách giải phù hợp “Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học không gian” phương pháp mạnh dạn cải tiến phương pháp đồng thời áp dụng sáng kiến năm học từ 2005- 2006 đến trường THPT Trần Phú Thanh Hoá 3.Các giải pháp sử dụng để giải vấn đề 3.1 Các ví dụ minh Để làm sáng tỏ điều tơi xin đưa 10 ví dụ điển hình tập áp dụng cho sáng kiến sau Ví dụ Cho hình lập phương ABCD.A’B’C’D’ có cạnh I tâm ABCD Gọi P trung điểm A’D’.Tính theo a khoảng cách cặp đường thẳng A’B, B’D cặp đường thẳng PI, AC’ Giải Tương tự ví dụ 1, ta chọn hệ trục Oxyz cho: O  A, tia AB  tia Ox, tia AD  tia Oy, tia AA’  tia Oz Khi đó, ta có: A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1), C(1;1;0), B’(1;0;1), D’(0;1;1), C’(1;1;1) Vì P trung điểm A’D’ nên , 1 2    Ta có: A ' B  (1;0; 1), B ' D  ( 1;1; 1), A ' B '  (1;0;0) z P A’ C’ B’ P(0; ;1) I tâm ABCD  I ( ; ;0) D’ A D y I B C     A ' B, B ' D  A ' B '    d ( A ' B, B ' D )      A ' B, B ' D       x Mặt khác, PI  ( ;0; 1), AC '  (1;1;1), AP  (0; ;1)     PI , AC '  AP 14    d ( PI , AC ')     28  PI , AC '    Nhận xét: Việc sử dụng phương pháp tọa độ vào việc giải tốn ta có cách làm đơn giản dễ hiểu dùng cho đối tượng học sinh Ví dụ ta chuyển sang đối tượng hình khơng gian khác, hình chóp đặc biệt hình tứ diện có ba cạnh xuất phát từ đỉnh đơi vng góc (gọi tắt tam diện vng) phương án tọa độ hóa hiệu Ví dụ Cho hình chóp S.ABC có SC = CA = AB = a , SC  (ABC), tam giác ABC vuông A Các điểm M, N di động tia AS CB cho AM = CN = t (0 < t < 2a) a) Tính độ dài đoạn MN theo a t Tìm t cho MN ngắn nhất; b) Khi đoạn MN ngắn nhất, chứng minh MN đường vng góc chung BC SA Giải Nhận xét: Tại vị trí điểm A điểm C ta nhận thấy có cặp cạnh vng góc (AB  AC, CS  CA, CS  CB) chưa đạt đủ điều kiện cần thiết phải có ba cạnh đơi vng góc xuất phát từ đỉnh, ta dựng đường thẳng qua A vng góc với (ABC) (đường thẳng song song với SC) Khi đó, chọn hệ trục Oxyz hình vẽ, với z A  O(0;0;0), B( a ;0;0), S C(0; a ;0), S(0; a ; a ) a) Tính độ dài đoạn MN theo a t Tìm t cho MN ngắn M Theo giả thiết M thuộc tia AS AM = t  t  t t  AM  AS  M (0; ; ) 2a 2 C O A Tương tự, N thuộc tia CB CN = t  t  t t  CN  CB  N ( ;a  ;0) 2a 2 Vậy ta có MN  y N t t  ( a  t 2)   2a  4at  3t 2 B x 2a 2a a Hơn nữa, MN  2a  4at  3t  ( 3t  )2  , dấu đẳng thức xảy  3 t a 2a 2a t (thỏa < t < 2a) Vậy MN  3 b) Khi đoạn MN ngắn nhất, chứng minh MN đường vng góc chung BC SA Khi MN ngắn nhất, ta có t  a a a 2a 2a ; ), N ( ; ;0) nên M (0; 3 3  a a a  MN  ( ; ; ) 3   Mặt khác AS  (0; a 2; a 2), CB  (a 2; a 2;0)      MN AS  MN CB   MN  AS , MN  CB hay MN đường vng góc chung SA BC Nhận xét: Qua ví dụ trình bày, ta nhận thấy yếu tố thuận lợi cho việc tọa độ hóa điều kiện đơi vng góc ba cạnh xuất phát từ đỉnh đa diện, thông thường điều kiện ẩn chứa giả thiết cho trước Tuy vậy, lúc điều kiện thỏa mãn nên số trường hợp ta cần phải có cách xây dựng hệ trục tọa độ cách khéo léo Ta xét ví dụ sau   BAD   90 , BA = Ví dụ Cho hình chóp S.ABCD có đáy hình thang, ABC BC = a, AD = 2a Cạnh bên SA vng góc với đáy, SA = a Gọi H hình chiếu vng góc A lên SB Tính theo a khoảng cách từ H đến mặt phẳng (SCD) Giải Chọn hệ trục tọa độ Oxyz hình vẽ, với A  O(0;0;0), B(a;0;0), D(0;2a;0),   C(a;a;0), S(0;0; a ) Khi SC  (a; a; a 2), CD  ( a; a;0)   Do đó: (SCD) có VTPT  SC , CD   (a 2; a 2;2a )  ( SCD ) :1.( x  a )  1.( y  a )  2.( z  0)  hay (SCD): x  y  z  2a  Đường thẳng SB có phương trình tham số z S x  a  t  y    z   2t H  SB  H ( a  t;0;  2t )   a AH  SB  AH SB   t   2a a ) Vậy H ( ;0; 3 Từ suy khoảng cách từ H đến (SCD) 2a 2a   2a a 3 d ( H ,( SCD ))   11 H O A B D C x  Nhận xét: Nếu so với cách tổng hợp việc tính d(H,(SCD)) lời giải rõ ràng trực tiếp hơn, dễ hiểu kể với học sinh học mức độ trung bình y Ví dụ Cho hình chóp tứ giác S.ABCD có đáy hình vng cạnh a Gọi E điểm đối xứng D qua trung điểm SA, M trung điểm AE, N trung điểm BC Chứng minh MN vng góc với BD tính (theo a) khoảng cách hai đường thẳng MN AC z Giải E S Gọi O tâm đáy ABCD Vì hình chóp cho hình chóp nên SO  (ABCD) Ta chọn hệ trục Oxyz với O gốc tọa M độ, tia OC  tia Ox, tia OD  tia Oy, tia OS  tia Oz y A Khi ta có D a a ;0;0), C( ;0;0), 2 a a B(0;  ;0), D(0; ;0), 2 S  tia Oz  S (0;0; x ) (x > 0) O(0;0;0), A(  O B N C x E đối xứng với D qua trung điểm SA a a ; ; x) 2 a a x ; ; ) M trung điểm AE  M (   3a a a x ; ;0)  MN  ( ;0;  ) N trung điểm BC  N ( 4    Mặt khác BD  (0; a 2;0)  MN BD   MN  BD    ax ;0) Lại có AC  (a 2;0;0)   MN , AC   (0;    a2 x  MN , AC  AN  3a a a     ; ;0)  d ( MN , AC )  Mà AN  (   4 ax  MN , AC     ADSE hình bình hành  E (   Nhận xét: Bài toán tọa độ hóa với gốc tọa độ đỉnh đáy việc kẻ thêm đường thẳng qua đỉnh, song song với SO, tạo thành ba đường thẳng đơi vng góc đỉnh Cái hay việc tọa độ hóa lời giải việc chọn biến x chưa biết tọa độ điểm S, kết lại không phụ thuộc vào x Ví dụ Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Gọi M N trung điểm cạnh AB AD; H giao điểm CN DM Biết SH  (ABCD) SH = a Tính khoảng cách hai đường thẳng DM SC theo a Giải Để tính khoảng cách haiđường thẳng DM SC phương pháp tọa độ sau: Chọn hệ trục Oxyz hình vẽ, ta có C  O(0;0;0), B(a;0;0), D(0;a;0), A(a;a;0) a M trung điểm AB  M (a; ;0) S z a N trung điểm AD  N ( ; a;0) H  (Oxy )  H ( x; y;0) H  DM  CN      CH , CN phương DH , DM y phương N 2a 4a x y x ya x ,y   D a a a 5 a  H 2 2a 4a 2a 4a Vậy H( ; ;0 )  S ( ; ; a 3) 5 5  2a 4a  C O a Khi đó, CS  ( ; ; a 3), DM  (a;  ;0) 5 2   a  CS , DM   ( ; a 3; a )      CS  a3 2a 57 a  , DM  CM   Mặt khác CM  (a; ;0)  d ( SC , DM )    19 a 19 CS , DM    A  M B x Ví dụ Cho hình chóp S.ABC có đáy ABC tam giác vng B, AB = 3a, BC   30 = 4a, mặt phẳng (SBC) vng góc (ABC) Biết SB = 2a SBC Tính khoảng cách từ điểm B đến mặt phẳng (SAC) theo a Giải z   30 Ta có : SB = 2a SBC S Để ta tính khoảng cách từ điểm B đến mặt phẳng (SAC) phương pháp tọa độ Chọn hệ trục Oxyz với B gốc tọa độ, 30 tia BA tia Ox, tia BC tia Oy, tia Oz y H C O B tia Bz song song hướng với tia HS Khi đó: B(0;0;0), A(3a;0;0), C(0;4a;0), S(0;3a; a )     AS  ( 3a;3a; a 3), AC  ( 3a;4a;0)     AS , AC   4a 3; 3a 3; 3a   3a (4;3; 3)  mặt phẳng (SAC) có phương trình 4( x  3a )  3( y  0)  3( z  0)   x  y  3z  12a    A x Vậy khoảng cách từ điểm B đến mặt phẳng (SAC) d ( B,( SAC ))  12a 42  32  ( 3)  6a Nhận xét: Nếu so với cách tính khoảng cách từ điểm B đến (SAC) thơng qua khoảng cách từ điểm H cách trực tiếp, dễ định hướng dễ thực Ví dụ 7.Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, AB  a, AD  2a Hình chiếu vng góc điểm S mp(ABCD) trùng với trọng tâm tam giác BCD Đường thẳng SA tạo với mp(ABCD) góc 450 Tính khoảng từ điểm D đến mặt phẳng (ACM) theo a Giải: S M C D H O A B *Gọi H trọng tâm tam giác BCD Theo giả thiết ta có SH  ( ABCD) Chọn hệ tọa độ Oxyz, với A(0; 0; 0), B(a; 0; 0), D(0; 2a ; 0), C (a; 2a;0), S ( 2a 2a 5a 2a ; ; 2a ), M ( ; ; a ) Từ viết phương trình mp(ACM) 3 2 x  y  z  Vậy d ( D, ( ACM ))  | 2 2a | 22a  11 1 Ví dụ 8.Cho hình chóp S.ABC có đáy ABC tam giác vuông cân B, AB = BC = 2a; hai mặt phẳng (SAB) (SAC) vng góc với (ABC) Gọi M trung điểm AB; mặt phẳng qua SM song song với BC, cắt AC N Biết góc hai mặt phẳng (SBC) (ABC) 600 Tính khoảng cách hai đường thẳng AB SN theo a Giải Theo giả thiết (SAB), (SAC) vng góc với (ABC) nên SA  (ABC)   60  SA  AB tan 60  2a  Góc (SBC) (ABC) SBA Mặt phẳng qua SM, song song BC, cắt AC N  MN // BC  N trung điểm AC.Do tam giác AMN vng cân M.Chọn hệ trục Oxyz hình vẽ, với B gốc tọa độ, C (2a;0;0), A(0;2a;0), S (0;2a;2a 3)  N trung điểm AC  N (a; a;0)  SN  (a; a; 2a 3)    Mặt khác BA  (0;2a;0)   SN , BA  (4a 3;0;2a ) Lại có     SN , BA BN  4a 3 2a 39   BN  ( a; a;0)  d ( SN , AB )      13 2a 13  SN , BA   z S 60 M A B O y N C x * Tiếp theo ta đề cập số ví dụ hình lăng trụ: Ví dụ Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông, AB = BC = a, cạnh bên AA’ = a Gọi M trung điểm BC Tính theo a khoảng cách hai đường thẳng AM, B’C z Giải B’ A’ Từ giả thiết ta có tam giác đáy ABC vuông cân B, kết hợp với tính chất lăng trụ đứng, ta chọn hệ trục Oxyz hình vẽ, với B  O(0;0;0), C(a;0;0), A(0;a;0), B’(0;0; a ) C’ Bây ta tính khoảng cách AM B’C M trung điểm BC  a a O B  M ( ;0;0)  AM  ( ; a;0) 2    a2 2 M   ;a ) Mặt khác, B ' C  (a;0; a 2)   AM , B ' C   (a 2; C    a  AM , B ' C  AC  a   22  Lại có AC  (a; a;0)  d ( AM , B ' C )      a  AM , B ' C    A y x  Nhận xét: Theo phương pháp tổng hợp việc tính khoảng cách hai đường thẳng AM B’C tốn hồn tồn khơng dễ, đòi hỏi dựng mặt phẳng chứa AM song song với B’C, qui việc tính khoảng cách hai đường thẳng khoảng cách từ C, lại từ B đến mặt phẳng dựng Lời giải tọa độ rõ ràng ngắn gọn trực tiếp Ví dụ 10.Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD hình chữ nhật, AB = a, AD = a Hình chiếu vng góc A’ (ABCD) trùng với giao điểm AC BD Góc hai mặt phẳng (ADD’A’) (ABCD) 600 Tính khoảng cách từ B’ đến mặt phẳng (A’BD) theo a Giải Gọi I = AC  BD Ta có A ' I  ( ABCD ) Chọn hệ trục Oxyz với B gốc tọa độ, tia BA tia Ox, tia BC tia Oy, tia Oz tia Bz song song hướng với tia IA’ Khi B(0;0;0), A(a;0;0), C(0; a ;0), z B’ a a ;0 ) D(a; a ;0), I( ; 2 A’ có hình chiếu lên (Oxy) I nên C’ D’ A’ a a ; z ) ( z  0) 2 A’( ; Ta tìm z: + Mặt phẳng (ABCD) mặt phẳng (Oxy) nên có VTPT k  (0;0;1)   a a ; z) 2 ) + AD  (0; a 3;0), AA '  (  ; B O   a2   AD, AA '  (az 3;0; A a  (2 z;0; a ) x  mặt phẳng (ADD’A’) có VTPT n  (2 z;0; a ) C y I D + Góc hai mặt phẳng (ADD’A’) (ABCD) 600 nên ta có  k n a a  z    cos 60   2 k.n 4z2  a2 (z > 0) a a a ; ) 2 Vậy A’( ;   3a a a2 ; ;0)   (3;  3;0) Do mặt phẳng (A’BD) có VTPT  BA ', BD   (  2  ( A ' BD ) : 3x  y   3x  y    a a a ; ) Mặt khác BB '  AA '  B '(  ; 2 Vậy khoảng cách từ B’ đến (A’BD) 10 d ( B ',( A ' BD ))  a a  3 2  a 3.2 Các tập áp dụng Bài Cho hình chóp S.ABC có tam giác ABC vng B, AB = a , AC = a , cạnh bên SA vng góc với mặt phẳng đáy SB = a Tính khoảng cách từ A đến mặt phẳng (SBC) Bài Cho hình chóp tứ giác S.ABCD có cạnh a Tính khoảng cách từ điểm A đến mặt phẳng (SCD) Bài 3.Cho lăng trụ đứng tam giác ABC.A’B’C’ có đáy tam giác ABC cân với AB = AC = a góc BAC = 1200 , cạnh bên BB’= a Gọi I trung điểm CC’ Tính khoảng cách hai đường thẳng AB’ BC’ Bài Cho hình chóp S ABC có đáy ABC tam giác vuông A, mặt bên SAB tam giác nằm mặt phẳng vuông góc với mặt phẳng (ABC), gọi M trung điểm SC Biết AB  a , BC  a Tính khoảng cách hai đường thẳng AC BM Bài 5.Cho hình chóp S.ABC có ABC, SBC tam giác cạnh a Góc mặt phẳng (SBC) (ABC) 60 độ Hình chiếu vng góc S xuống (ABC) nằm tam giác ABC Tính khoảng cách từ B đến (SAC) theo Bài 6.Cho hình chóp S.ABC có đáy tam giác ABC vuông A, AB= 2a , AC  2a Hình chiếu vng góc S (ABC) H, H trung điểm AB Góc mặt phẳng (SBC) (ABC) 30 độ Tính theo a khoảng cách từ điểm M trung điểm cạnh BC đến (SAC) Bài 7.Cho hình chóp S.ABCD có đáy hình chữ nhật, tam giác SAB cân S nằm tring mặt phẳng vng góc với đáy Hình chiếu S lên ABCD trung điểm H cạnh AB Góc đường thẳng SC (ABCD) 45 độ Gọi M trung điểm SD Tính theo a khoảng cách từ M đến mặt phẳng (SAC) Bài Cho hình chóp S.ABCD có đáy hình vng cạnh a, SD = a 17 Hình chiếu vng góc H S (ABCD) trung điểm AB Gọi K trung điểm AD Tính khoảng cách HK SD theo a Hiệu sáng kiến hoạt động dạy học Nội dung sáng kiến trình bày cho em học sinh khối 12 ơn thi THPT Quốc gia , em học sinh đội tuyển học sinh giỏi Tốn máy tính cầm tay khối 11, 12 Sự hứng thú tự tin học sinh việc học Toán, đặc biệt hình học khơng gian, thật cải thiện góp phần vào thành tích chung kì thi nhà trường năm học qua 11 Sau mười năm phân công trực tiếp giảng dạy đội tuyển học sinh giỏi trường THPT Trần Phú , áp dụng sáng kiến việc giảng dạy đại trà lớp , bồi dưỡng học sinh giỏi , ôn luyện đội tuyển rút kết luận sau : * Kết kiểm nghiệm cuối năm trình giảng dạy cho học sinh đại trà lớp: ( Lớp 12B ,12C,12G trường THPT Trần Phú -Thanh Hoá) Lớp Sĩ số 12B 12C 12G 44 43 43 Số học sinh làm dạng Số học sinh làm dạng chưa dạy phương dạy phương pháp pháp Số lượng Phần trăm Số lưọng Phần trăm 18 % 36 82 % 21 % 34 79 % 11 26 % 32 74 % * Kết kiểm nghiệm tính hiệu cho học sinh dạy sử dụng phương pháp: - Giúp học sinh rèn luyện kỹ phân tích tốn để tìm mối liên hệ với kiến thức học ,từ áp dụng để giải tốn tương tự ,có liên quan - Làm cho học sinh u thích gây thích thú tò mò khám phá mơn học - Có cách giải hợp lí ,hay ,ngắn gọn dễ hiểu dành cho đối tượng học sinh - Sau sử dụng phương pháp vào việc giảng dạy nhận thấy số học sinh giỏi ngày tăng lên năm học sinh khơng ‘‘ e ngại’’ gặp toán dạng * Bài học kinh nghiệm rút Sau thời gian đưa vào sử dụng , bồi dưỡng học sinh rút số kinh nghiệm sau: - Giáo viên phải nghiên cứu kỹ kiến thức sách giáo khoa , tài liệu tham khảo - Lựa chọn phương pháp giảng dạy môn phù hợp với đối tượng học sinh - Để áp dụng làm tốt tập cần cho học sinh nắm vững sở lý thuyết vấn đề tránh thiếu sót khơng chặt chẽ q trình giải tập học sinh - Khi cho tập cần nâng cao dần mức độ khó - Sau tập cần chốt lại vấn đề nhận xét nhằm lơi học sinh có lòng say mê học toán III KẾT LUẬN,KIẾN NGHỊ 1.Kết luận Trên sáng kiến tơi q trình trực tiếp giảng dạy bồi dưỡng học sinh giỏi Sau nhiều năm hệ thống thành chuyên đề : “Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học khơng gian” Đây phương pháp hữu ích giúp học sinh biết chuyển từ toán phức tạp thành toán đơn giản để giải đặc biệt làm cho học sinh khơng 12 “ngại” học loại tốn hình học khơng gian Dạng tốn chun đề quan trọng giúp cho giáo viên bồi dưỡng kỳ thi học sinh giỏi hàng năm Thông qua ví dụ minh họa trường hợp đơn giản lời giải 10 ví dụ minh họa toán áp dụng ta nhận thấy phương pháp tọa độ hóa thật cơng cụ hiệu để giải tốn hình học khơng gian tổng hợp Các lời giải hoàn toàn tự nhiên, trực tiếp dễ định hướng Yêu cầu xác việc xác định tọa độ điểm thực phép tính cơng thức có sẵn Hiển nhiên khơng nên cách làm Để có óc tư trừu tượng tốt giáo viên cần phải tạo cho học sinh tảng quan hệ hình học khơng gian, hiểu bước dựng hình biết phối hợp kiến thức để có lời giải tốt, hiệu ln mong muốn người viết sáng kiến Đề xuất Mặc dù thân dành thời gian nghiên cứu, thời gian nghiên cứu hạn chế , thân kinh nghiệm chưa nhiều nên viết khơng tránh khỏi thiếu sót Các phép tính sáng kiến nhiều, hình vẽ phức tạp nên khơng tránh khỏi thiếu sót, mong nhận đóng góp ý kiến bạn đồng nghiệp em học sinh Hi vọng đề tài nho nhỏ góp phần cho cơng tác giảng dạy, nghiên cứu học tập người Đề tài phương pháp vectơ tọa độ phong phú, mong nhận trao đổi thêm góp ý chân thành quý Thầy Cô giáo Tôi xin chân thành cảm ơn ! XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh hóa,ngày 14 tháng năm 2016 Tôi xin cam đoan sáng kiến kinh nghiệm thân mà trình giảng dạy tơi tích lũy Tơi khơng sao chép Trịnh Văn Hoan 13 ... : Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học khơng gian Đây phương pháp hữu ích giúp học sinh biết chuyển từ toán phức tạp thành toán đơn giản để giải đặc biệt làm cho học. .. sinh dự thi học sinh giỏi trường , giỏi tỉnh tơi tìm tòi cách giải phù hợp Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học khơng gian phương pháp mạnh dạn cải tiến phương pháp đồng...  Để Sử dụng phương pháp tọa độ để tính khoảng cách tốn hình học khơng gian ta có “Ba bước bản” sau đây: + Xây dựng hệ trục tọa độ thích hợp + Xác định tọa độ điểm liên quan + Chuyển tốn hình
- Xem thêm -

Xem thêm: SKKN toán sử dụng phương pháp tọa độ để tính khoảng cách trong bài toán hình học không gian image marked , SKKN toán sử dụng phương pháp tọa độ để tính khoảng cách trong bài toán hình học không gian image marked

Gợi ý tài liệu liên quan cho bạn