SKKN hướng dẫn học sinh xây dựng, mở rộng bài toán hình học giải tích từ bài toán hình học phẳng image marked

20 5 0
  • Loading ...
1/20 trang

Thông tin tài liệu

Ngày đăng: 02/08/2019, 19:47

1 MỞ ĐẦU 1.1 Lí chọn đề tài Trong kỳ thi Tốt nghiệp THPT, kỳ thi tuyển sinh Đại học năm gần kỳ thi THPT quốc gia, tốn hình học giải tích mặt phẳng dạng tốn thường xun có mặt gây khó khăn cho học sinh Đây phần tiếp nối hình học phẳng cấp THCS nhìn quan điểm đại số giải tích Như tốn hình học giải tích mặt phẳng mang chất tốn hình học phẳng Tuy nhiên nhiều học sinh có tâm lý “bỏ ln, khơng đọc đề” với toán Một số khác quan tâm tới việc tìm lời giải tốn mà khơng tìm hiểu chất hình học Chính em khơng phân loại dạng tốn chất nên nhiều toán tương tự xuất nhiều đề thi cách cho khác mà học sinh không nhận dạng làm Trước thực trạng đó, tơi xin trình bày kinh nghiệm “Hướng dẫn học sinh xây dựng, mở rộng tốn Hình học giải tích từ tốn Hình học phẳng’' 1.2 Mục đích nghiên cứu Sáng kiến kinh nghiệm nhằm giúp cho học sinh hiểu chất hình học phẳng tốn hình giải tích, qua biết cách phân loại giải tốn hình giải tích 1.3 Đối tượng nghiên cứu Học sinh lớp 10A4, 10A7, 10A8 trường THPT Lê Hoàn 1.4 Phương pháp nghiên cứu - Phương pháp nghiên cứu lý luận: Nghiên cứu tài liệu, sách báo - Phương pháp điều tra thực tiễn: Dự giờ, quan sát việc dạy giáo viên việc học học sinh trình khai thác tập SGK -Phương pháp thực nghiệm sư phạm NỘI DUNG 2.1 Cơ sở lí luận Xuất phát từ mục tiêu đào tạo “Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài”, nhiệm vụ trung tâm trường học THPT hoạt động dạy thầy hoạt động học trò,qua giúp học sinh củng cố kiến thức phổ thơng đặc biệt mơn tốn học Mơn Tốn mơn học tự nhiên quan trọng khó với kiến thức rộng, đa phần em u thích ngại học mơn Muốn học tốt mơn tốn em phải nắm vững tri thức khoa học mơn tốn cách có hệ thống, biết vận dụng lý thuyết linh hoạt vào dạng tập Điều thể việc học đơi với hành, đòi hỏi học sinh phải có tư logic cách biến đổi Giáo viên cần định hướng cho học sinh học nghiên cứu mơn tốn học cách có hệ thống chương trình học phổ thông, vận dụng lý thuyết vào làm tập, phân dạng tập tổng hợp cách giải Do vậy, mạnh dạn đưa sáng kiến kinh nghiệm với mục đính giúp cho học sinh THPT vận dụng tìm phương pháp giải gặp tốn hình giải tích mặt phẳng 2.2 Thực trạng vấn đề Sau thời gian dạy học mơn Tốn phần hình học giải tích mặt phẳng trường tôi, nhận thấy số vấn đề sau: Vấn đề thứ nhất: Khi gặp tốn Hình học, em thường lúng túng việc định hướng tìm lời giải đa số lựa chọn "con đường" mò mẫm, thử nghiệm Có thử nghiệm đến kết quả, nhiên nhiều thời gian không nhận chất toán Hơn kết sử dụng Hình học phẳng em lại học từ cấp THCS nên để “lắp ghép” phần lại với nhau, sau kỳ nghỉ hè tâm lý “sợ” phần Hình học, điều không dễ thực Vấn đề thứ hai: Bài tập phần Hình học giải tích mặt phẳng đa dạng khó nên học sinh thường lúng túng làm tập phần Vấn đề thứ ba: Trường THPT Hồn trường đóng địa bàn trung du, học sinh đại đa số em nơng dân có đời sống khó khăn Điểm chuẩn đầu vào trường thấp, học sinh có học lực trung bình chiếm 60% nên tư em nhiều hạn chế Nhiều em lúng túng việc vẽ hình, việc xác định yếu tố liên quan, thường dẫn đến kết sai -Hệ thực trạng Học sinh lớp dạy ban đầu thường sợ lúng túng làm tốn hình giải tích mặt phẳng Năm học 2014-2015, sau học xong phần Hình học giải tích mặt phẳng, tơi tiến hành khảo sát lớp 10A4, 10A7, 10A8 thu kết sau: Điểm Điểm Điểm Điểm Điểm 9-10 7-8.5 5-6.5 3.5-4.5 0-3 46 15 21 10A7 41 12 18 10A8 43 10 16 12 Lớp Sĩ số 10A4 Từ thực tế trên, với kinh nghiệm đúc rút từ thực tế giảng dạy thân, viết sáng kiến kinh nghiệm nhằm giúp em phân loại nắm vững phương pháp giải dạng tốn tính thể tích khối chóp, có tư tốt để tìm lời giải cho tốn, qua thêm u phân mơn Hình học khơng gian nói riêng mơn Tốn nói chung 2.3 Giải vấn đề Bài tốn gốc 1: Cho ABC nội tiếp đường tròn tâm I Gọi M , N chân đường cao kẻ từ B C Chứng minh IA  MN A M N I B C Chứng minh: - Kẻ tiếp tuyến Ax  xAC  ABC  sdAC - Mà ABC  AHK ( tứ giác KHCB nội tiếp)  xAC  AHK Hai góc vị trí so le nên Ax // HK Lại có Ax  AO nên AO  HK Xây dựng tốn giải tích: Chọn ABC có A(1;-2), B(1;2), C(-2;1) ta tính AC: x+y+1=0; đường tròn ngoại tiếp ABC có tâm O(0;0), bán kính R  , chân đường cao kẻ từ B C M(-1;0), N(1;1), trực tâm H(;) Ta xây dựng thành tốn giải tích sau: Bài tốn 1.1: Cho ABC nội tiếp đường tròn (C): x  y  Biết chân đường cao kẻ từ B C ABC M(-1;0), N(1;1) Xác định tọa độ đỉnh A,B,C biết hoành độ A dương Giải: A M N I B C Lập phương trình OA( qua O vng góc MN)  OA : x  y    A  OA  (C ) Giải hệ x A  nên A(1;-2) Lập phương trình AB (qua A N)  AB: x-1=0 Lập phương trình AC ( qua A M)  AC: x+y+1=0 Lập phương trình BM ( qua M vng góc AM)  BM: x-y+1=0  B  AB  BM  B(1;2) Lập phương trình CN( qua N vng góc AN)  CN:y-1=0  C  AC  CN  C (2;1) Bài toán 1.2: Cho ABC nội tiếp đường tròn (C): x  y  , đường thẳng AC qua K(2;-3) Gọi M, N chân đường cao kẻ từ B C ABC Xác định tọa độ đỉnh A,B,C biết MN có phương trình x  y   hồnh độ A dương Bài tốn 1.3: Cho ABC nội tiếp đường tròn O(0;0) Gọi M(-1;0), N(1;1) chân đường cao kẻ từ B C ABC Xác định tọa độ đỉnh A,B,C biết A nằm đường thẳng 3x+y-1=0 Giải: Giả sử A(a;1-3a) Ta có AO  MN  AO.MN   A(1;2) Lập phương trình AC ( qua A M)  AC: x+y+1=0 Lập phương trình AB ( qua A N)  AB: x-1=0 Lập phương trình BM ( qua M vng góc AM)  BM: x-y+1=0  B  AB  BM  B(1;2) Lập phương trình CN( qua N vng góc AN)  CN: y-1=0  C  AC  CN  C (2;1) Mở rộng: Hướng : Cho ABC nội tiếp đường tròn tâm I , trực tâm H Đường thẳng AH cắt đường tròn D cắt BC M Ta có M trung điểm HD Bài toán 1.4: Cho ABC trực tâm H(0;1).đường thẳng BC có phương trình x - 3y   Biết đường tròn ngoại tiếp ABC qua E(2;-1), F(-1;-2) Tìm tọa độ điểm A,B,C Giải: A I N H B M C D Lập phương trình AH (qua H vng góc BC)  AH: 3x+y-1=0 Gọi M  AH  BC  M ( 1 ; ) 5 Gọi D  AH  (C )  M trung điểm HD  D(  11 ; ) 5 Lập phương trình đường tròn ngoại tiếp ABC ( qua điểm D,E,F)  (C): x  y   A  AH  (C )  A(1;2) Đường thẳng BC cắt (C) B C  B(1;2) C (2;1) Hướng Cho ABC nội tiếp đường tròn tâm I , trực tâm H, đường kính AA'.Gọi M trung điểm BC ta có tứ giác BHCA' hình bình hành AH  IM Bài tốn 1.5 Cho ABC nội tiếp đường tròn đường kính AD, M(3;-1) trung điểm BC Đường cao kẻ từ B ABC qua E(-1;-3), điểm F(1;3) nằm đường thẳng AC Tìm tọa độ đỉnh A viết phương trình cạnh BC biết D(4;-2) Giải: Gọi H trực tâm ABC Ta có tứ giác BHCD hình bình hành nên M trung điểm HD  H (2;0) A F I H E B C M D Lập phương trình BH (qua H E)  BH : x  y   Lập phương trình DC (qua D song song với BH)  DC : x  y   Lập phương trình AC (qua F vng góc với BH)  AC : x  y   Tọa độ C  AC  DC  C (5;1) Lập phương trình BC (qua M C)  BC : y   Lập phương trình AH (qua H vng góc với BC)  AH : x   Tọa độ A  AH  AC  A(2;2) Bài toán 1.6 Cho ABC nội tiếp đường tròn tâm I (2;1) bán kính R=5, trực tâm H (1;1) , độ dài BC=8 Viết phương trình BC Giải: A I N H B M C D Kẻ đường kính AD ta tứ giác BHCD hình bình hành  MI đường trung bình AHD  AH  2MI 2  Gọi A(x;y) Ta có:  AH  IM  CI  BM   A(1;5)  D(5;3)  M (2;2)  AI  Lập đường phương trình BC ( qua M vng góc với AH) BC : y   Bài tốn 1.7 Cho ABC nội tiếp đường tròn tâm I (2;0) , trực tâm H (3;1) , A(3;7) Xác định tọa độ C biết C có hồnh độ dương Giải: Tương tự ta có AH  2MI nên M(-2;3) Đường thẳng BC qua M vuông góc với AH  BC : y   Đường tròn (C) tâm I bán kính IA có phương trình ( x  2)  y  74 Tọa độ B,C giao BC đường tròn (C) , ta C (2  65 ;3) ( xC  ) Bài toán 1.8 Cho hình chữ nhật ABCD Qua B vẽ đường thẳng vng góc với AC H Gọi E,F,G trung điểm đoạn thẳng CH, BH AD Biết E( 17 29 17 ; ) ; F ( ; ) ; G (1;5) Tìm tọa độ tâm đường tròn ngoại tiếp ABE 5 5 Giải B A F G H E D C ABE có F trực tâm, gọi I tâm đường tròn ngoại tiếp ABE , M trung điểm AB ta có EF  IM EF đường trung bình HCB  AG  FE  A(1;1) Đường thẳng AE: 2x-y-1=0 Đường thẳng AB ( qua A vng góc với EF) AB: y-1=0 Đường thẳng BH ( qua F vng góc với AE) BH: x+2y-7=0  B  BH  AB  B(5;1)  M (3;1) Giải EF  IM I(3;3) Bài tốn gốc Cho hình vng ABCD Gọi M,N trung điểm cạnh BC CD Chứng minh AM  BN Xây dựng tốn giải tích: Chọn hình vng ABCD có tọa độ đỉnh A(-4;0) ; B(0;4) ; C (4;0) ; D(0;4) Ta tính trung điểm cạnh BC CD M (2;2) ; N (2;2) Phương trình đường thẳng AM: x-3y+4=0; BN: 3x+y-4=0, 5 tọa độ giao điểm H AM BN H ( ; ) Ta xây dựng thành tốn giải tích sau: Bài tốn 2.1 Cho hình vng ABCD có đỉnh B0;4 Gọi M, N trung 5 điểm cạnh BC CD Gọi H ( ; ) giao điểm AM BN Xác định tọa độ đỉnh lại hình vng ABCD, biết điểm A nằm đường thẳng  : x  2y   Giải B A H D N M C A   : x  y    A(2a  4; a ) AH  BH  a   A(4;0) Lập phương trình đường thẳng AM (đi qua A H)  AM : x  y   Gọi M(3m-4; m)  AM MB  AB  m   M (2;2) M trung điểm BC  C (4;0) Gọi I  AC  BD Ta có I trung điểm AC BD  I (0;0)  D(0;4) Vậy A(-4;0) ; B(0;4) ; C (4;0) ; D(0;4) Bài toán 2.2 Cho hình vng ABCD có đỉnh A 4;0 Gọi M, N trung 5 điểm cạnh BC CD; Điểm H ( ; ) giao điểm AM BN Xác định tọa độ đỉnh lại hình vng ABCD, biết điểm A nằm đường thẳng  : x  2y   Giải N   : x  y    N (2a  4; a ) HN  AH  a  2  N (2;2)  AD.DN   AD  DN Gọi D( x D ; y D )   5 Giải hệ ta D(0;-4) D( ; ) Lập phương trình đường thẳng AN (qua A N)  AN : x  y   D H hai phía đường thẳng AN nên D(0;-4) N trung điểm CD nên C(4;0) Gọi I  AC  BD Ta có I trung điểm AC BD  I (0;0) Vậy A(-4;0) ; B(0;4) ; C (4;0) ; D(0;4) Mở rộng: Hướng : Cắt hình vng thành hình thang có cạnh AB=2CN : 10 Bài tốn 2.3 Cho hình thang vng ABCD (vng B C) có AB = BC=2CD 5 đỉnh A 4;0 Gọi M trung điểm cạnh BC; Điểm H ( ; ) giao điểm AM BD Xác định tọa độ đỉnh lại hình thang, biết điểm D nằm đường thẳng x  y   Giải A D H B M C D   : x  y    D(2a  2; a ) HD  AH  a  2  D(2;2) Ta có tan BAM  BM BH 1    BH  AH BA AH 2 Lập phương trình đường thẳng BH(đi qua H vng góc với AH)  BH : x  y   4 ) 5 Gọi B(b;4  3b)  BH Từ BH  AH  B(0;4) Hoặc B( ; Vì H nằm B D  B(0;4) Gọi C ( xC ; y C ) Ta có CD  BA  C (4;0) Vậy A(-4;0) ; B(0;4) ; C (4;0) ; D(2;2) Hướng : Dựng thêm điểm mới: Bài toán 2.4 Cho tam giác ABC vng B có BC = 2BA Điểm M 2;2 trung điểm cạnh AC Gọi N điểm cạnh BC cho BN  BC ; Điểm 11 H ( ; ) giao điểm AN BM Xác định tọa độ đỉnh tam giác 5 ABC, biết điểm N nằm đường thẳng x  y   Giải C M N H B A N   : x  y    N (2a  6; a ) HN  HM  a   N (2;2) Gọi C(m:n) Do M trung điểm AC nên A(4-m;-4-n) Có BN  BC  BN  NC  B( 8m 8n ; ) 3 Đường thẳng AN ( qua H N): x-3y+4=0 Đường thẳng BM ( qua H M): 3x+y-4=0  A  AN m    C (8;4)  A(4;0); B(0;4)  B  BM n  4 Ta có  Vậy A(4;0); B(0;4) ; C (8;4) Hướng 3: Cắt hình vng thành hình chữ nhật Bài tốn 2.5 Cho hình chữ nhật ABCD có BC = 2BA Gọi E 1;1 điểm 4 5 cạnh BC cho BE  BC ; Điểm H ( ; ) giao điểm BD AE Xác định 12 tọa độ đỉnh hình chữ nhật ABCD, biết điểm B nằm đường thẳng x  2y   Giải D C H A E B B   : x  y    B(2a  6; a ) BH  HE  a   B(2;2) BE  BC  EC  3BE  C (2;2) Đường thẳng AE (qua H E): 3x  y   Đường thẳng BD (qua B H): x  y   Gọi Ab;4  3b   AE Ta có AB  B  b   A(0;4) Ta có AD  BC  D(4;0) Vậy A(0;4); B(2;2) ; C (2;2) ; D(4;0) Hướng 4: Từ cos NBC  BC  Ta có: BN Bài tốn 2.6 Cho hình vng ABCD Gọi M, N trung điểm 5 cạnh BC CD; Điểm H ( ; ) giao điểm BN AM Xác định tọa độ đỉnh hình vng ABCD, biết phương trình đường thẳng BC : x  y   điểm C có hồnh độ dương Giải 13 B A H D Ta có cos   M C N 5 Gọi VTPT BH n BH  (a; b) Đường thẳng BH BC tạo với góc   cos   n BH n BC n BH n BC a  3b  a  b  TH1: Với a=3b phương trình BH: 3x+y-4=0 B  BH  BC  B(0;4) Gọi M(c;4-c)  BC ta có MH  BH  c   M (2;2) M trung điểm BC  C (4;0) Đường thẳng AM (đi qua H M): x  y   Gọi A(3d-4;d)  AM Ta có AB  BC  d   A(4;0)  D(0;4) TH2: Với a  b  phương trình BH: x  y  B  BH  BC  B( 28 0 16 ; ) 5 5 Gọi M(c;4-c)  BC ta có MH  BH  c   M ( ; ) M trung điểm BC  C (  24 ; ) (loại) 5 14 Vậy A(-4;0) ; B(0;4) ; C (4;0) ; D(0;4) Hướng 5: Từ BH  BN Ta Bài tốn 2.7 Cho hình vng ABCD có đỉnh B0;4 Gọi M, N trung điểm cạnh BC CD; đường thẳng AM qua điểm E 5;3 Xác định tọa độ đỉnh lại hình vng; biết N có tung độ âm nằm đường thẳng x  2y   Giải B A E H D N M C N  x  y    N (2a  6; a ) a  2 Ta có EH  BH   33 a  10   N (2;2); H ( ; ) 5 Đường thẳng AM (đi qua H E): x  y   Gọi M (3b  4; b)  AM M trung điểm BC  C (6b  8;2b  4) b  BC  NC   b   TH1: Với b=2  M (2;2)  C (4;0)  D(0;4)  A(4;0) 15 TH2: Với b   M ( 2  8 24 12 28 16 ; )  C( ; )  D( ; )  A( ; ) 5 5 5 5 Vậy A(4;0) ; B0;4 ; C (4;0); D(0;4)  A( 28 16  8 24 12 ; ); B(0;4); C ( ; ); D( ; ) 5 5 5 Bài tốn 2.8 Cho hình vng ABCD Gọi M, N trung điểm 5 cạnh BC CD; Điểm H ( ; ) giao điểm AM BN Xác định tọa độ đỉnh hình vng, biết điểm B thuộc đường thẳng x  y   , N thuộc đường thẳng x  y   Giải B A H D N M C B  x  y    B(8  2a; a ) N  x  y    N (2b  6; b) BH  a  BN    B(0;4); N (2;2) b  2 Đường thẳng AM (đi qua H vng góc với BN)  AM : x  y   Gọi M(3c-4;c)  AM M trung điểm BC  C (6c  8;2c  4) c  BC  NC   c   TH1: Với c=2  M (2;2)  C (4;0)  D(0;4)  A(4;0) 16 5 TH2: Với c   C ( ; )  D( 24 12 28 16 ; )  A( ; ) 5 5 Vậy A(4;0) ; B0;4 ; C (4;0); D(0;4)  A( 28 16  8 24 12 ; ); B(0;4); C ( ; ); D( ; ) 5 5 5 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Năm học 2015-2016, sau áp dụng kinh nghiệm vào việc dạy cho Học sinh, đẫ thu số kết khả quan: Lớp Sĩ số Điểm Điểm Điểm Điểm Điểm 9-10 7-8.5 5-6.5 3.5-4.5 0-3 10A5 45 18 18 10A7 43 13 20 Kết cho thấy hiệu việc thực sáng kiến vào dạy học, qua tạo niềm tin hứng thú Học sinh việc học phân mơn Hình học nói chung hình học giải tích mặt phẳng nói riêng Kết luận, kiến nghị -Kết luận: Hình học giải tích mặt phẳng nội dung quan trọng chương trình mơn tốn lớp 10 nói riêng bậc THPT nói chung Nhưng học sinh lại mảng tương đối khó, phần nhiều thầy giáo quan tâm Đề tài kiểm nghiệm năm học giảng dạy lớp 10 luyện thi vào Đại học cho học sinh lớp 12, học sinh đồng tình đạt kết quả, giúp HS hiểu nâng cao khả giải tốn hình học giải tích mặt phẳng -Kiến nghị: Đề nghị cấp lãnh đạo tạo điều kiện giúp đỡ học sinh giáo viên có nhiều tài liệu sách tham khảo đổi phòng thư viện để nghiên cứu học tập nâng cao kiến thức chuyên môn nghiệp vụ Nhà trường cần tổ chức bổi trao đổi phương pháp giảng dạy Có tủ sách lưu lại tài liệu chuyên đề bồi dưỡng ôn tập giáo viên hàng năm để làm cở sở nghiên cứu phát triển chuyên đề 17 Học sinh cần tăng cường trao đổi, học nhóm nâng cao chất lượng học tập XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 15 tháng 05 năm 2016 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác Trịnh Tấn Hưng 18 TÀI LIỆU THAM KHẢO - Sách giáo khoa Đại số 10 Nâng cao – NXB Giáo dục Các đề thi Đại học Bộ giáo dục đào tạo Các đề thi thử trường toàn quốc Một số trang Web toán học 19 MỤC LỤC Phần Nội dung Trang Mở đầu 1.1 Lí chọn đề tài 1 1.2 Mục đích ngiên cứu 1.3 Đối tượng nghiên cứu 1.4 phương pháp nghiên cứu Nội dung 2.1 Cơ sở lí luận 2.2 Thực trạng vấn đề 1 2 2.3 Giải vấn đề 2.4 Hiệu SKKN 17 Kết luận Tài liệu tham khảo 17 19 20 ... sáng kiến vào dạy học, qua tạo niềm tin hứng thú Học sinh việc học phân mơn Hình học nói chung hình học giải tích mặt phẳng nói riêng Kết luận, kiến nghị -Kết luận: Hình học giải tích mặt phẳng... tốn hình giải tích mặt phẳng Năm học 201 4-2 015, sau học xong phần Hình học giải tích mặt phẳng, tơi tiến hành khảo sát lớp 10A4, 10A7, 10A8 thu kết sau: Điểm Điểm Điểm Điểm Điểm 9-1 0 7-8 .5 5-6 .5... chất toán Hơn kết sử dụng Hình học phẳng em lại học từ cấp THCS nên để “lắp ghép” phần lại với nhau, sau kỳ nghỉ hè tâm lý “sợ” phần Hình học, điều khơng dễ thực Vấn đề thứ hai: Bài tập phần Hình
- Xem thêm -

Xem thêm: SKKN hướng dẫn học sinh xây dựng, mở rộng bài toán hình học giải tích từ bài toán hình học phẳng image marked , SKKN hướng dẫn học sinh xây dựng, mở rộng bài toán hình học giải tích từ bài toán hình học phẳng image marked

Gợi ý tài liệu liên quan cho bạn