de thi HSG toan 8

Laurene Powell Jobs
Laurene Powell Jobs(11691 tài liệu)
(13 người theo dõi)
Lượt xem 118
2
Tải xuống
(Lịch sử tải xuống)
Số trang: 6 | Loại file: DOC
0

Thông tin tài liệu

Ngày đăng: 28/08/2013, 12:10

Mô tả: Ôn tập T8 GV: Vũ Hoàng Sơn Bài 1: Nhân đơn thức với đa thức -Nhân đa thức với đa thức Ví dụ 1: cho đa thức p (x) = x x 2 2 3 Tính giá trị của đa thức khi x nhận các giá trị -3, -2, 0 , 1 2 , 1, 2, 3 Trong các giá trị trên của x giá trị nào là nghiệm của đa thức? Ví dụ 2: cho 2 đa thức A= x 2 - 2x 3 Và B = x+1 a) Tính A.B b) Tính B.B c) Tính A.A Ví dụ 3: Tìm x, biết a) 2x(x-2) x(2x -1) = 6 b) (2x+3)(x- 4) + (x-5) (x-2) = (3x-5)(x-4) c) (8x-3)(3x+2) (4x +7)(x+4) = (2x +1)(5x- 1) Bài tập 1) Tính a) 3x(x-1) x(3x+2) b) 5(3x 2 - 4y 3 ) - ( x y ) (x y ) 2 3 2 3 9 2 2 5 c) 3x 2 ( 2y -1) - x ( y ) x( x ) + 2 2 2 5 3 2 3 1 d) A = 3(2x-3)(3x+2) 2(x+4)(4x-3) + 9x(4-x) Tìm giá trị của x để A có giá trị bằng 0 2) Cho các đa thức A= 3x 2 -1 ; B = 2x+1 ; C = 4x 2 -2x +1 Tính : a) A.B b) B.C c) ABC. 3) Tìm x biết a) 2x 2 -2(x +3)x = 5 b) 2x 2 + 3(x-1)(x+1) = 5x(x+1) c) (8-5x)(x+2) + 4(x-2)(x+1) + (x-2)(x-2) =0 d) 4 (x-1)(x+5) (x+2)( +5) = 3(x-1)(x+2) 1 Ôn tập T8 GV: Vũ Hoàng Sơn Bài 2. Các hằng đẳng thức đáng nhớ Khái niệm luỹ thừa của một số hữu tỉ Định nghĩa trong đại số 7 đợc chuyển hoàn toàn sang tr- ờng hợp các đa thức . Ví dụ: (3x+1) 2 = (3x+1)(3x+1) (x+2y) 3 = (x+2y) (x+2y) (x+2y) Dới đâyta dùng các chữ A,B để chỉ các biểu thức đại số và có các hằng đẳng thc sau: 1)Bình phơng của một tổng (A+B) 2 = A 2 +2AB+B 2 2) Bình phơng của một hiệu (A+B) 2 = A 2 +2AB+B 2 3) Hiệu hai bình phơng A 2 B 2 = (A-B)(A+B) 4) Lập phơng của một tổng (A+B) 3 = A 3 +3A 2 B+3AB 2 +B 3 5) Lập phơng của một Hiệu (A-B) 3 = A 3 -3A 2 B+3AB 2 -B 3 6) Tổng hai lập phơng A 3 +B 3 = (A+B)(A 2 -AB+B 2 ) 7) Hiệu hai lập phơng A 3 -B 3 = (A-B)(A 2 +AB+B 2 ) Chú ý: * Hằng đẳng thức (2) có thể suy ra từ hđt (1) bằng cách thay hạnh tử B bởi B cũng tơng tự nh vậy ta suy từ (4) ra (5) và suy từ (6) ra (7) *Các hằng đẳng thức (4) và (5) nhiều khi còn đợc viết dới dạng sau: (A+B) 3 = A 3 +B 3 + 3AB (A+B) (4a) (A-B) 3 = A 3 B 3 3AB (A-B) (5a) Ví dụ 1: Tính nhanh A = 127 2 + 146.127 +73 2 B = 127 2 + 27 2 - 54.127 Ví dụ 2: Rút gọn A = (x+1) 2 (x-1) 2 B = (2x+1) 2 + (2x-1) 2 C = (x+2) 3 (x-2) 3 D = x 2 (x-4) (x+4) - (x 2 +1)(x 2 -1) Ví dụ 3: Giải các phơng trình a) x 2 - 4 = 0 b) (x +2) 2 x( x-2) = 3 c) (x-3) 3 (x-3)(x 2 +3x+9) + 6 (x+1) 2 = 15 d) x(x-5)(x+5) (x+2)(x 2 -2x +4) = 3 2 Ôn tập T8 GV: Vũ Hoàng Sơn Bài tập: 1)Tính a) (3x-1) 2 b) (2x 3 y + 1 4 y 4 ) 2 c) (3x-1) 2 (3x+1) 2 d)(y 2 +y +3) 2 e) (-5x 2 - 1 5 x) 2 g)(x-1) (x+3) 2 2)Dùng hằng đẳng thức biến đổi ra dạng bình hoặc đối của bình phơng a)x 2 - 6x + 9 b) - 4y 2 +4y -1 c)a 2 a + 1 4 d)4x 2n + 25 + 20x n e)16 8m 2 +m 4 g)49n 6 56n 3 a 2 + 16 a 4 h)(a+b) 2 4ab i)(a-b) 2 + 4ab k)25y 18 70y 9 x 3 + 49x 6 3)Tính: a) (m 2 n + n 2 m) (m 2 n n 2 m) b) (x m -b n ) (x m +b n ) c) (3xy 2 -5) 2 (3xy 2 +5) 2 d) (5x 3 -9) 2 + (5x 3 +3) 2 e) (ax 2 -1) (ax 2 +1) (ax 2 -1) 2 g) (11x+9y) 2 (11x+9y)(11x-9y) h) (x-y+z) (x-y-z) i) (a + b + c) 2 4)Tìm x: a) ( x+3) 2 (x-3) 2 = 5 b)(x+2)(x 2 -2x+4) x(x 2 -2) = 15 c)(x-1) 3 + (2-x)(4+2x+x 2 ) + 3x(x+2) = 17 5) Biến đổi tổng sau thành tích: a) m 2 -9 b) 36 y 2 c) a 6 b 6 d) 81-100n 8 e) 8x 3 27 3 Ôn tập T8 GV: Vũ Hoàng Sơn Bài 3. Phân tích đa thức thành nhân tử A.Các phơng pháp chính 1.Phơng pháp đặt nhân tử chung ( đặt thừa số chung) Ví dụ1: 10ax 2 -5x 3 +5x 2 = 5x 2 ( 2a x +1) 3x(x-2) +5(2-x) = 3x(x-2) -5(x-2) = (x-2)(3x-5) 2.Phơng pháp hằng đẳng thức Ví dụ 2: * x 2 +2x+1 = x 2 +2.x.1+1 2 = (x+1) 2 * 4x 2 -12x +9 = (2x) 2 -2.2x.3+3 2 = ( 2x -3) 2 * 9x 2 -4y 6 = (3x) 2 (2y) 2 = (3x-2y)(3x+2y) * 8x 3 -27 = (2x) 3 -3 3 = (2x-3)[(2x) 2 +2x.3+3 2 ] = (2x-3)(4x 2 +6x+9) * -x 3 -8 = -(x 3 +2 3 ) = -(x+2)(x 2 -2x+4) 3.Phơng pháp nhóm nhiều hạng tử để đặt thừa số chung oặc để xuất hiện hằng đẳng thức Ví dụ 3: * x 3 -3x 2 +3x-1y 3 = (x-1) 3 y 3 = [(x-1)-y][(x-1) 2 +(x-1)y+y 2 ] =(x-y-1)() * xy +x +y +1 = x(y+1) +(y+1) = (x+1)(y+1) * x 2 -2ax +a 2 b 2 = (x-a) 2 b 2 = (x-a-b)(x+a+b) 4.Phơng pháp thêm bớt Ví dụ 4: * P = x 4 + 4y 4 = (x 2 ) 2 +2.x 2 .(2y 2 ) +(2y 2 ) 2 - 4x 2 y 2 =(x 2 +2y 2 ) 2 (2xy) 2 = (x 2 +2y 2 -2xy)( x 2 +2y 2 +2xy) * Q = x 5 +x +1 = x 5 -x 2 +x 2 +x+1 = x 2 (x 3 -1) + (x 2 +x+1) =x 2 (x-1)( x 2 +x+1)+ 1.(x 2 +x+1) =( x 2 +x+1)[ x 2 (x-1) +1] 5.Phơng pháp tách các hạng tử Ví dụ 5: * P = x 2 - 4x +3 = x 2 -3x x +3 = x(x-3) 1(x-3) = (x-3)(x-1) * Q = a 3 -7a -6 = a 3 a -6a-6 = a(a 2 -1) -6(a+1) = a( a-1)(a+1) -6(a+1) = (a+1)[a(a-1) -6] = (a+1) (a 2 a-6) = (a+1)[a 2 -3a+2a-6] = (a+1)[a(a-3)+2(a-3)] =(a+1)(a-3)(a+2) 6.Phơng pháp dự đoán nghiệm của đa thức Định lí: Nếu a là nghiệm của đa thức f(x) thì f(x) có chứa thừa số x a Ví dụ 6: * Q = x 3 -2x 2 -5x +6 có nghiệm x = 1 Nên suy ra Q = x 3 -x 2 -x 2 +x-6x+6 = x 2 (x-1) x(x-1) -6(x-1) = * M = x 3 -2x 2 +5x +8 có nghiệm x = -1 nên suy ra M = = ( x +1)( ) 7.Phơng pháp đặt biến số phụ Ví dụ7 : N = ( x 2 +5x +4) ( x 2 +5x +6) +1 Đặt t = x 2 +5x +4 ta có : N = t(t+2)+1= t 2 +2t+1 = (t+1) 2 =( x 2 +5x +4) 2 =[(x+1)(x+2)] 2 8.Phơng pháp đồng nhất hai đa thức . 4 Ôn tập T8 GV: Vũ Hoàng Sơn Bài tập: 1.Phân tích đa thức thành nhân tử a) 2x 2 -6x b) x 4 +x 3 x-1 c) x 2 -7xy +10y 2 d) x 2 (a+b)xy +aby 2 e) a 5 ax 4 +a 4 x x 5 2. Phân tích đa thức thành nhân tử a) 2x 2 +8x -10 b) 4x 2 x-3 c) x 2 -6x +8 d) x 2 -3x +2 e) x 2 -5x -14 g) x 2 -9x +18 h) x 2 +6x +5 i) 15x 2 +7x -2 3. Phân tích đa thức thành nhân tử a) 5x 2 +6xy +y 2 b) a 2 +2ab -15b 2 c) (a+1)(a+2)(a+3)(a+4) +1 d) x 4 +64 e) x 3 -19x -30 g) x 3 -3x 2 -4x +12 h) a 3 +b 3 +c 3 -3abc 4.Tìm x a) (2x-1)(3x-2) = 0 b) 3x 2 -5x -2 = 0 c) 12x 2 +7x -12 = 0 d) x 3 -3x +2 = 0 e) x 3 -5x 2 +8x - 4 = 0. 5.Giải phơng trình a) 2x 2 +8x -10 = 0 b) 4x 2 x-3 = 0 c) x 2 -6x +8 = 0 d) x 2 -3x +2 = 0 e) x 2 -5x -14 = 0 g) x 2 -9x +18 = 0 h) x 2 +6x +5 = 0 i) 15x 2 +7x -2 = 0. k) x 3 x = 0. 5 Ôn tập T8 GV: Vũ Hoàng Sơn Bài 4 Phân thức đại số Ví dụ 1: với giá trị nào của x thì biểu thức có nghĩa a) x x x 2 3 7 b) x x 2 2 16 1 9 49 c) x x x + + 2 2 1 2 28 98 d) x (x ) + + 2 3 2 16 2 Ví dụ 2: Rút gọn x x A x : x x x + + = + ữ + + + 2 2 1 1 1 2 1 Ví dụ 3: Tìm x để mỗi phân thức sau đây bằng không. a) x x x x x + + 3 2 3 2 1 2 3 b) x x x + 2 2 2 2 5 Ví dụ 4. Chứng minh đẳng thức: y x y : x y y x x y x y x + + + = ữ ữ + 2 2 2 2 2 2 1 3 2 4 1 1 2 4 2 4 4 Bài tập: 1.Tìm tập xác định của biểu thức rồi giải phơng trình a) x x = 2 2 5 0 1 b) x (x )( x ) = + 2 4 25 0 1 2 3 2.Rút gọn biểu thức x x x y A . y y y x y = + + ữ ữ 2 2 2 3 3 1 1 ( ) ( ) x xy y B . x y x x y x y + + = + + + 2 2 2 2 2 2 1 2 1 4 4 4 16 2 2 x y C : x y x y x y x y + = + + + ữ + 3 3 2 2 2 2 1 1 2 1 1 3.Chứng minh a) x x x . xy y x x xy y x y + + = ữ + + 2 2 2 2 3 1 1 2 2 2 3 b) x y x y x y x : xy x y y x x x y = ữ + + 2 2 2 2 1 6 . đổi tổng sau thành tích: a) m 2 -9 b) 36 y 2 c) a 6 b 6 d) 81 -100n 8 e) 8x 3 27 3 Ôn tập T8 GV: Vũ Hoàng Sơn Bài 3. Phân tích đa thức thành nhân tử A.Các. 3 -5x 2 +8x - 4 = 0. 5.Giải phơng trình a) 2x 2 +8x -10 = 0 b) 4x 2 x-3 = 0 c) x 2 -6x +8 = 0 d) x 2 -3x +2 = 0 e) x 2 -5x -14 = 0 g) x 2 -9x + 18 = 0 h)

— Xem thêm —

Xem thêm: de thi HSG toan 8, de thi HSG toan 8, de thi HSG toan 8

Lên đầu trang

Bạn nên Đăng nhập để nhận thông báo khi có phản hồi

123doc

Bạn nên Đăng nhập để nhận thông báo khi có phản hồi

Bình luận về tài liệu de-thi-hsg-toan-8

Đăng ký

Generate time = 0.143876075745 s. Memory usage = 18.47 MB