Nghiên cứu biểu hiện kháng nguyên (m, GP5, GP5ectoM) của virus gây hội chứng rối loạn sinh sản và hô hấp ở lợn trong cây thuốc lá bằng phương pháp thẩm lọc nhờ agrobacterium

187 245 0
Nghiên cứu biểu hiện kháng nguyên (m, GP5, GP5ectoM) của virus gây hội chứng rối loạn sinh sản và hô hấp ở lợn trong cây thuốc lá bằng phương pháp thẩm lọc nhờ agrobacterium

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

i VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CÔNG NGHỆ SINH HỌC NGUYỄN THỊ MINH HẰNG NGHIÊN CỨU BIỂU HIỆN KHÁNG NGUYÊN (M, GP5, GP5ectoM) CỦA VIRUS GÂY HỘI CHỨNG RỐI LOẠN SINH SẢN VÀ HÔ HẤP Ở LỢN TRONG CÂY THUỐC LÁ BẰNG PHƯƠNG PHÁP THẨM LỌC NHỜ AGROBACTERIUM LUẬN ÁN TIẾN SĨ SINH HỌC HÀ NỘI – 2018 i ii VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CÔNG NGHỆ SINH HỌC NGUYỄN THỊ MINH HẰNG NGHIÊN CỨU BIỂU HIỆN KHÁNG NGUYÊN (M, GP5, GP5ectoM) CỦA VIRUS GÂY HỘI CHỨNG RỐI LOẠN SINH SẢN VÀ HÔ HẤP Ở LỢN TRONG CÂY THUỐC LÁ BẰNG PHƯƠNG PHÁP THẨM LỌC NHỜ AGROBACTERIUM Chuyên ngành: Hoá sinh học Mã số: 94 20 116 LUẬN ÁN TIẾN SĨ SINH HỌC Người hướng dẫn khoa học: TS Nguyễn Trung Nam Viện Công nghệ sinh học PGS TS Chu Hồng Hà Viện Cơng nghệ sinh học HÀ NỘI – 2018 ii iii LỜI CẢM ƠN Luận án thực Phòng thí nghiệm Trọng điểm Cơng nghệ gen, Phòng Cơng nghệ tế bào thực vật, Phòng thử nghiệm sinh học, Viện Cơng nghệ sinh học, Viện Hàn lâm Khoa học & Công nghệ Việt Nam Trung tâm Chẩn đoán Thú y Trung ương Với hỗ trợ kinh phí từ đề tài thuộc nhiệm vụ nghiên cứu thường xun Phòng thí nghiệm Trọng điểm Công nghệ gen, Viện Công nghệ sinh học Trong suốt q trình học tập, nghiên cứu hồn thành luận án, nhận giúp đỡ tập thể cán hướng dẫn, thầy cô giáo, nhà khoa học, anh chị em đồng nghiệp q quan, phòng ban Tơi xin chân thành cảm ơn Ban Lãnh đạo, Bộ phận đào tạo sau đại học, phòng chức Viện Cơng nghệ sinh học tạo điều kiện cho học tập hồn thành luận án Tơi xin bày tỏ lòng biết ơn sâu sắc tới hai thầy, PGS.TS Chu Hoàng Hà TS Nguyễn Trung Nam định hướng nghiên cứu, tận tình hướng dẫn, tạo điều kiện thuận lợi, giúp đỡ suốt thời gian thực hồn thành luận án Tơi xin chân thành cảm ơn GS.TS Lê Trần Bình, PGS.TS Phạm Bích Ngọc, PGS.TS Đinh Duy Kháng, PGS.TS Tô Long Thành, TS Nguyễn Tường Vân, ThS Hồ Thị Thương tập thể cán Phòng Cơng nghệ tế bào thực vật, Phòng Thí nghiệm trọng điểm Công nghệ gen giúp đỡ, chia sẻ kiến thức quý báu tạo điều kiện tốt cho tơi suốt q trình thực luận án Tôi xin chân thành cảm ơn Ban Giám hiệu Trường Đại học Lâm nghiệp, Ban Lãnh đạo, tồn thể cán Viện Cơng nghệ sinh học Lâm nghiệp tạo điều kiện tốt yên tâm học tập thực luận án Cuối cùng, xin cảm ơn gia đình, bạn bè đồng nghiệp ln động viên, giúp đỡ tơi suốt q trình học tập thực luận án Hà Nội, ngày tháng năm 2018 Nghiên cứu sinh iii iv Nguyễn Thị Minh Hằng iv i LỜI CAM ĐOAN Tôi xin cam đoan: Đây cơng trình nghiên cứu tơi hướng dẫn khoa học PGS.TS Chu Hoàng Hà, TS Nguyễn Trung Nam số kết cộng tác với cộng khác Các số liệu kết trình bày luận án trung thực, phần cơng bố tạp chí khoa học chuyên ngành với đồng ý cho phép đồng tác giả Phần kết lại luận án chưa công bố cơng trình khác Hà Nội, ngày tháng năm 2018 Tác giả Nguyễn Thị Minh Hằng i ii MỤC LỤC LỜI CẢM ƠN LỜI CAM ĐOAN DANH MỤC CÁC CHỮ VIẾT TẮT DANH MỤC BẢNG DANH MỤC HÌNH MỞ ĐẦU Chương TỔNG QUAN TÀI LIỆU 1.1 Hội chứng rối loạn sinh sản hô hấp lợn 1.1.1 Sơ lược tình hình dịch bệnh 1.1.2 Bệnh tích PRRS 1.1.3 Virus PRRS 1.2 Vaccine phòng PRRS .20 1.2.1 Vaccine sống nhược độc 21 1.2.2 Vaccine vô hoạt 23 1.2.3 Các dạng vaccine thử nghiệm dựa vào kháng nguyên GP5 M chống PRRSV 24 1.3 Biểu tạm thời kháng nguyên PRRSV phương pháp thẩm lọc nhờ Agrobacterium 30 1.3.1 Lợi phương pháp biểu gen tạm thời nhờ Agrobacterium 30 ii iii 1.3.2 Quá trình thẩm lọc nhờ A tumefaciens 33 1.3.3 Một số giải pháp tăng cường biểu gen tạm thời thực vật 35 Chương VẬT LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 43 2.1 Vật liệu 43 2.1.1 Chủng vi khuẩn 43 2.1.2 Các vector vật liệu thực vật, động vật 43 2.1.3 Các cặp mồi sử dụng nghiên cứu 44 2.1.4 Hoá chất 45 2.1.5 Thiết bị 45 2.2 Phương pháp nghiên cứu 46 2.2.1 Nhân dòng gen mã hố protein GP5, M GP5ectoM virus PRRS 46 2.2.2 Thiết kế cấu trúc vector biểu mang gen m, gp5opt gp5ecto-m phục vụ chuyển gen 47 2.2.3 Biểu tạm thời gen mã hoá kháng nguyên tái tổ hợp thuốc N benthamiana iii iv 49 2.2.4 Đánh giá ảnh hưởng điều kiện biểu gen tạm thời đến mức độ biểu protein M-ELP, GP5-ELP GP5ectoM-ELP thuốc 50 2.2.5 Tách chiết xác định nồng độ protein tổng số 52 2.2.6 Điện di SDS-PAGE lai Western blot 52 2.2.7 Tinh protein M-ELP, GP5-ELP GP5ectoM-ELP 53 2.2.8 Phương pháp đánh giá tính sinh miễn dịch kháng nguyên GP5ELP, GP5ectoM-ELP, M-ELP động vật thí nghiệm 54 Chương KẾT QUẢ NGHIÊN CỨU 61 3.1 Thiết kế vector chuyển gen thực vật mang gen m, gp5, gp5ecto-m tạo chủng A tumefaciens mang vector tương ứng 61 3.1.1 Vector chuyển gen mang gen mã hoá kháng nguyên M dung hợp ELP (MELP) 61 3.1.2 Vector chuyển gen mang gen mã hoá kháng nguyên GP5 dung hợp ELP (GP5-ELP) 65 3.1.3 Vector chuyển gen mang gen mã hoá kháng nguyên GP5ectoM dung hợp ELP (GP5ectoM-ELP) iv v 69 3.2 Tối ưu điều kiện biểu tạm thời gen mã hoá kháng nguyên M -ELP, GP5-ELP, GP5ectoM-ELP thuốc N benthamiana 74 3.2.1 Ảnh hưởng vector hỗ trợ 75 3.2.2 Ảnh hưởng nồng độ AS 76 3.2.3 Ảnh hưởng mật độ vi khuẩn A tumefaciens 78 3.2.4 Ảnh hưởng tuổi 79 3.2.5 Ảnh hưởng tuổi 80 3.2.6 So sánh mức độ biểu gen mã hoá kháng nguyên M-ELP, GP5-ELP, GP5ectoM-ELP điều kiện tối ưu lai miễn dịch 81 3.3 Tinh kháng nguyên M-ELP, GP5-ELP GP5ectoM-ELP 82 3.3.1 Tối ưu nồng độ PEG 8000 cho trình tinh thu nhận kháng nguyên 83 3.3.2 Tinh kháng nguyên phương pháp mITC 86 3.4 Tính sinh miễn dịch dịch thể kháng nguyên tái tổ hợp động vật thí nghiệm 91 v vi 3.4.1 Đáp ứng kháng thể IgG đặc hiệu chuột 91 3.4.2 Đáp ứng kháng thể IgG đặc hiệu lợn 98 Chương BÀN LUẬN KẾT QUẢ NGHIÊN CỨU 108 4.1 Biểu tạm thời gen mã hoá kháng nguyên M-ELP, GP5-ELP GP5ectoM-ELP phương pháp thẩm lọc nhờ Agrobacterium 108 4.1.1 Lựa chọn kháng nguyên thiết kế vector biểu 108 4.1.2 Mức độ biểu tạm thời kháng nguyên tái tổ hợp 109 4.1.3 Cấu trúc vector biểu mức độ biểu gen tạm thời thực vật 110 4.2 Khả kích thích sản sinh kháng thể IgG đặc hiệu chuột 116 4.3 Tính sinh miễn dịch dịch thể lợn .120 KẾT LUẬN VÀ KIẾN NGHỊ 130 NHỮNG CƠNG TRÌNH CƠNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN 132 TÓM TẮT LUẬN ÁN BẰNG TIẾNG ANH 133 TÀI LIỆU THAM KHẢO .140 PHỤ LỤC I vi 149 porcine monocytic cell line supporting porcine reproductive and respiratory syndrome virus (PRRSV) replication and progeny virion production by using an improved DNA-launched PRRSV reverse genetics system Virus Res Oct 145(1): 1-8 89 Huang YW, Meng XJ (2010) Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) Virus Res 154: 141-149 90 Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G (2010) High level rapid production of full-size monoclonal antibodies in plants by a singlevector DNA replicon system Biotechnol Bioeng 106: 9-17 91 Jiang P, Jiang W, Li Y, Wu S, Xu J (2004) Humoral immune response induced by oral administration S typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus Vet Immunol Immunopathol (102): 321-28 92 Jiang W, Jiang P, Li Y, Tang J, Wang X, Ma S (2006) Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice Vet Immunol Immunopathol 113: 169–180 93 Jiang W, Jiang P, Li Y, Wang X, Du Y (2007) Analysis of immunogenicity of minor envelope protein GP3 of porcine reproductive and respiratory syndrome virus in mice Virus Genes 35: 695-704 94 Jiang W, Jiang P, Wang X, Li Y, Du Y, Wang X (2008) Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus Virus Research Vol.136: 50 - 57 95 Jiang Y, Shaobo Xiao, Liurong Fang, Xiaolan Yu, Yunfeng Song, Chuanshuang Niu, Huanchun Chen (2006) DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity Vaccine 24: 2869–2879 96 Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB and Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana Plant Physiol 152: 622-633 97 Kapila J, DeRycke R, Montagu VM, Angenon G (1997) An Agrobacterium– 150 mediated transient gene expression system for intact leaves Plant Sci 122: 101 – 108 98 Kappes MA, and Faaberg KS (2015) PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity Virology 479–480, 475–486 99 Karniychuk UU, Geldhof M, Vanhee M, Van Doorsselaere J, Saveleva TA, and Nauwynck HJ (2010) Pathogenesis and antigenic characterization of a new East European subtype porcine reproductive and respiratory syndrome virus isolate BMC Vet Res 6: 30 100 Kim H, Kim HK, Jung JH, Choi YJ, Kim J, Um CG, Hyun SB, Shin S, Lee B, Jang G, Kang BK, Moon HJ, Song DS (2011) The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods Virol J 8: 323 101 Kimman TG, Cornelissen LA, Moormann RJ, Rebel JM, Stockhofe-Zurwieden N (2009) Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology Vaccine 27: 3704-3718 102 Kuhn JH, Lauck M, Bailey AL, Shchetinin AM, Vishnevskaya TV, Bao Y et al., (2016) Reorganization and expansion of the nidoviral family Arteriviridae Arch Virol 161: 755–768 103 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227(5259): 680-685 104 Lalit B (2011) Role of porcine reproductive and respitory syndrome virus nonstructural protein in viral replication and pathogenesis Dissertations & theses in Veterinary and Biomedical Science p: 9-11 105 Lê Thanh Hòa, Lê Thị Kim Xuyến, Đồn Thị Thanh Hương,Trần Quang Vui, Phạm Cơng Hoạt, Nguyễn Bá Hiên (2009) Phân tích gen M mã hoá protein màng virus gây bệnh "tai xanh" Tạp chí Khoa học Phát triển, 7: 282 – 290 106 Li B., Xiao S, Wang Y, Xu S, Jiang Y, Chen H, et al (2009) Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by synthetic ORF5 gene Vaccine 27: 1957-1963 107 Li C, Zhuang J, Wang J, Han L, Sun Z, Xiao Y et al., (2016) Outbreak investigation of NADC30-Like PRRSV in South-East China Transbound Emerg 151 Dis 63: 474–479 108 Li G, Jiang P, Li Y, Wang X, Huang J, Bai J, Cao J, Wu B, Chen N, Zeshan B (2009) Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine Antiviral Res 82(3): 157-65 109 Linhares DCL, Cano JP, Wetzell T, Nerem J, Torremorell M and Dee SA (2012) Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs Vaccine 30(2): 407-413 110 Liu K (2015) Purification of recombinant proteins in plants using smallmolecule dependent inteins fused to ELP or HFBI Electronic thesis and Dissertation Repository Pp: 3048 111 Lomonossoff GP and D'Aoust MA (2016) Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment Science 353(6305): 1237- 1240 112 Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B et al (2016) Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system Annu Rev Anim Biosci 4: 129–154 113 Magnuson NS, Linzmaier PM, Gao JW, Reeves R, An G and Lee JM (1996) Enhanced recovery of a secreted mammalian protein from suspension culture of genetically modified tobacco cells.Protein Expr Purif 7(2): 220-228 114 Mark Mogler (2012) Evaluation of replicon particle vaccines for porcine reproductive and respiratory syndrome virus Graduate theses and Dissertations 12841 http://lib.dr.iastate.edu/etd/12841 115 Marsian J and Lomonossoff GP (2016) Molecular pharming - VLPs made in plants Curr Opin Biotechnol 37: 201-206 116 Mateu E and Diaz I (2007) The challenge of PRRS immunology Vet J Vet Sep;177(3): 345-351 117 Meng XJ (2000) Heterogenity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development Veterinary Microbiology, Vol.74: 309 - 329 118 Meng XJ, Paul PS, Halbur PG, and Lum MA (1996) Characterization of a high- 152 virulence US isolate of porcine reproductive and respiratory syndrome virus in a continuous cell line, ATCC CRL11171 J Vet Diagn Invest (8): 374–381 119 Mengeling WL, Lager KM, and Vorwald AC (1998) Clinical consequences of exposing pregnant gilts to strains of porcine reproductive and respiratory syndrome (PRRS) virus isolated from field cases of ”atypical” PRRS Am J Vet Res 59: 1540–1544 120 Mersereau M, Pazour GJ, Das A (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation J Gene 90 (1): 149-51 121 Mett V, Musiychuk KBiH, Farrance CE, Horsey A, Ugulava N, Shoji Y, Rosa P, Palmer GA, Rabindran S, Streatfield SJ, Boyers A, Russell M, Mann A, Lambkin R, Oxford JS, Schild GC, Yusibov V (2008) A plant-produced influenza subunit vaccine protects ferrets against virus challenge Influenza Other Respi Viruses 2: 33-40 122 Mett V, Farrance CE, Green BJ and Yusibov V (2008) Plants as biofactories Biologicals 36(6): 354-358 123 Metwally S, Mohamed F, Faaberg K, Burrage T, Prarat M, Moran K, Bracht A, Mayr G, Berninger M, Koster L, To TL, Nguyen VL, Reising M, Landgraf J, Cox L, Lubroth J, Carrillo C (2010) Pathogenicity and molecular characterization of emerging porcine reproductive and respiratory syndrome virus in Vietnam in 2007 Transbound Emerg Dis 57(5): 315-29 124 Meulenberg JJM, van Nieuwstadt AP, van Essen-Zandbergen A, et al., (1997) Posttranslational processing and identification of a neutralization domain of the GP4 protein encoded by ORF4 of Lelystad virus J Virol 71(8): 6061–6067 125 Meyer DE and Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides Nat Biotechnol 17(11): 11121115 126 Meyer DE and Chilkoti A (2002a) Genetically encoded synthesis of proteinbased polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system Biomacromolecules 3(2): 357–367 127 Meyer DE and Chilkoti A (2002b) 18: Protein purification by inverse transition cycling Golemis E and Adams PD (Eds.), Protein-protein interactions: 153 A molecular cloning manual Long Island: Cold Spring Harbor Laboratory Press pp: 329-344 128 Meyer DE, Trabbic-Carlson K and Chilkoti A (2001) Protein purification by fusion with an environmentally responsive elastin-like polypeptide: Effect of polypeptide length on the purification of thioredoxin Biotechnol Prog 17(4): 720–728 129 Moloney MM and Holbrook LA (1997) Subcellular targeting and purification of recombinant proteins in plant production systems Biotechnol Genet Eng Rev 14: 321-336 130 Morgan SB, Frossard JP, Pallares FJ, Gough J, Stadejek T, Graham SP et al., (2014) Pathology and virus distribution in the lung and lymphoid tissues of pigs experimentally inoculated with three distinct type PRRS virus isolates of varying pathogenicity Transbound Emerg Dis 63(3): 285–295 131 Music N, Gagnon CA (2010) The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis Anim Health Res Rev 11(2): 135-163 132 Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC and others (2013) Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus Arch Virol 158(6): 1275-1285 133 Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM (2017) Improved Vaccine against PRRSV: Current Progress and Future Perspective Front Microbiol 134 Nauwynck HJ et al., (2012) Micro-Dissecting the Pathogenesis and Immune Response of PRRSV Infection Paves the Way for More Efficient PRRSV Vaccines.Transbound Emerg Dis 59(1): 50-54 135 Nelson EA, Christopher-Hennings J and Benfield DA (1994) Serum immune responses to the proteins of porcine reproductive and respiratory syndrome (PRRS) virus J Vet Diagn Invest 6(4): 410 – 415 136 Neumann EJ et al., (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States.J Am Vet Med Assoc 227(3): 385-392 137 Nguyễn Thị Minh Hằng, Hồ Thị Thương, Nguyễn Thu Giang, Phạm Bích Ngọc, 154 Nguyễn Trung Nam, Chu Hoàng Hà (2016) Đánh giá biểu tạm thời kháng nguyên GP5 tái tổ hợp virus PRRS mô thuốc Nicotinana tabacum Hội nghị Công nghệ sinh học tồn quốc lần thứ IV, khu vực phía nam, 2016: “Ứng dụng Công nghệ sinh học vào thực tiễn”; P1-14:57 138 Nguyễn Thị Minh Hằng, Hồ Thị Thương, Phạm Bích Ngọc, Nguyễn Trung Nam, Chu Hồng Hà (2018) Xác định khả kích thích tạo kháng thể đặc hiệu kháng nguyên tái tổ hợp GP5-ELP virus PRRS gây hội chứng rối loạn sinh sản hô hấp lợn động vật thí nghiệm Tạp chí Khoa học kỹ thuật thú y 25(5): 35-42 139 Nielsen HS, Liu G, Nielsen J, Oleksiewicz, Botner A, Storgaard T, Faaberg KS (2003) Generation of an Infectious Clone of VR-2332, a Highly Virulent North American-Type Isolate of Porcine Reproductive and Respiratory Syndrome Virus J Virol 77(6): 3702–3711 140 Nilubol D, Platt KB, Halbur PG, Torremorell M, Harris DL (2004) The effect of a killed porcine reproductive and respiratory syndrome virus (PRRSV) vaccine treatment on virus shedding in previously PRRSV infected pigs Vet Microbiol 102(1-2): 11–18 141 Oleksiewicz MB, Bøtner A, Toft P, Normann P, and Storgaard T (2001) Epitope Mapping Porcine Reproductive and Respiratory Syndrome Virus by Phage Display: the nsp2 Fragment of the Replicase Polyprotein Contains a Cluster of B-Cell Epitopes Journal of Virology 75(7): 3277–3290 142 Oleksiewicz MB, Botner, Normann P (2002) Porcine B-cells recognize epitopes that are conserved between the structural proteins of American- and European-type porcine reproductive and respiratory syndrome virus J Gen Virol 83(6): 1407-1418 143 Opriessnig T, Halbur PG, Yoon KY, Pogranichniy RM, Harmon KM, Evans R et al., (2002) Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV J Virol 76(23): 11837-11844 144 Ostrowski M, Galeota JA, Jar AM, Platt KB, Osorio FA, Lopez OJ (2002) 155 Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain J Virol 76(9): 4241–4250 145 Park SI, Seo JY and Kim TJ (2016) Heterologous expression of porcine reproductive and respiratory syndrome virus glycoprotein in Bordetella bronchiseptica aroA mutant J Vet Med Sci 78(10): 1625-1629 146 Patel J, Zhu H, Menassa R, Gyenis L, Richman A and Brandle J (2007) Elastinlike polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves Transgenic Res 16(2): 239–249 147 Peyret H, Lomonossoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants Plant Mol Biol Volume 83(1-2): 51–58 148 Phan HT (2012) ELPylated avian flu vaccines from plants: Improvement of expression and development of a new purification strategy Ph.D Dissertation, IPK, Gatersleben, Germany 149 Phan HT, Pohl J, Floss DM et al., (2013) ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice Journal Article, Research Support, Non-U.S Gov't, Plant Biotechnol J 11(5): 582-593 150 Piron R, Koker SD, Paepe AD, Goossens J, Johan Grooten, Nauwynck Hans, Depicker Ann (2014) Boosting In Planta Production of Antigens Derived from the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Subsequent Evaluation of Their Immunogenicity A PRRSV Subunit Vaccine Produced In Planta Seeds 9(3): 1-16 151 Pirzadeh B, Dea S (1998) Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus J Gen Virol 79(5): 989-999 152 Plagemann PG (2004a) GP5 ectodomain epitope of porcine reproductive and respiratory syndrome virus, strain Lelystad virus Virus Res 102(2): 225230 153 Plagemann PG, Rowland RR, Faaberg KS (2002) The primary neutralization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 156 is located in the middle of the GP5 ectodomain Arch Virol 147(12): 2327-2347 154 Plagemann PG(2004b) The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus Vet Immunol Immunopathol 102(3): 263- 275 155 Plana Duran J, Climent I, Sarraseca J, Urniza A, Cortes E, Casal JL (1997) Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91 Involvement of ORF3 and ORF5 proteins in protection Virus Gene 14(1): 19-29 156 Potera C (2012) Vaccine manufacturing gets boost from tobacco plants: Canada-Based Medicago opens U.S facility to exploit its Influenza Vaccine production method Genetic Engineering and Biotechnology News 32(6): 8–10 157 Prieto C, Martínez-Lobo FJ, Díez-Fuertes F, Aguilar-Calvo P, Simarro I and Castro JM (2011) Immunisation of pigs with a major envelope protein sub-unit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) results in enhanced clinical disease following experimental challenge Vet J 189(3): 323-329 158 Provost C, Jia JJ, Music N,Levesque C, Lebel ME, del Castillo JR et al., (2012) Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line Research open access J Virology 9: 267 159 Qiang C (2011) Transgenic Horticultural Crops: Challenges, and Opportunities-Essays by Experts Boca Raton: Taylor & Francis, USA; Expression and manufacture of pharmaceutical proteins in genetically engineered horticultural plants 160 Qiu HJ, Tian ZJ, Tong GZ, Zhou YJ, Ni JQ, Luo YZ, Cai XH (2005) Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets Vet Immunol Immunopathol 106(3-4): 309–319 161 Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, and Lager KM (2015a) Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: current status and future direction Vaccine 33(27): 3065–3072 157 162 Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation Phys Life Rev 9(3): 308–345 163 Rossow KD (1998) Porcine Reproductive and Respiratory Syndrome J Vet Pathol 35(1): 1–20 164 Rowland RR (2010) The interaction between PRRSV and the late gestation pig fetus Virus Res 154(1-2): 114-122 165 Rybicki EP (2014) Plant-based vaccines against viruses J Virol 11(1): 205224 166 Salazar-Gonzalez JA, Banuelos-Hernandez B and Rosales-Mendoza S (2015) Current status of viral expression systems in plants and perspectives for oral vaccines development Plant Mol Biol 87(3): 203-217 167 Sambrook J, Green MR (2012) Molecular Cloning: A Laboratory Manual, 4th edition Cold Spring Harbor Laboratory Press New York Volume 168 Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, et al., (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles Vaccine 26(15): 1846-1854 169 Scheller J, Henggeler D, Viviani A and Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation Transgenic Res 13(1): 51–57 170 Scheller J, Leps M, and Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptids Plant Biotechnology Journal 4(2): 243-249 171 Seternes T, Tonheim TC, Myhr AI and Dalmo RA (2016) A plant 35S CaMV promoter induces long-term expression of luciferase in Atlantic salmon Sci Rep 6: 25096 172 Shen G, Jin N, Ma M, et al., (2007) Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of por-cine reproductive and respiratory syndrome virus and swine IL-18 Vaccine 25(21): 4193-4202 173 Shen WX, Au PCK, Shi BJ, Smith NA, Dennis ES, Guo HS, Zhou CY and WangMB (2015) Satellite RNAs interfere with the function of viral RNA silencing suppressors Front Plant Sci 6: 1-12 174 Shi M et al., (2013) The spread of type Porcine Reproductive and 158 Respiratory Syndrome Virus (PRRSV) in North America: a phylogeographic approach Virology 447 (1-2): 146-154 175 Shoji Y, Bi H, Musiychuk K, Rhee A, Horsey A, Roy G, Green B, Shamloul M, Farrance C E, and Taggart B (2009) Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza Vaccine 27(7): 1087-1092 176 Shoji Y, Chichester JA, Musiychuk H BiK, Rosa P, Goldschmidt L (2008) Plantexpressed HA as a seasonal influenza vaccine candidate Vaccine 26(23): 29302934 177 Shukla DD, Frenkel MJ, McKern NM, Ward CW, Jilka J, Tosic M, Ford RE (1992) Present status of the sugarcane mosaic subgroup of potyviruses Arch Virol, Suppl 5: 363-373 178 Sirisereewan C, Nedumpun T, Kesdangsakonwut S, Woonwong Y, Kedkovid R, Arunorat J et al (2017) Positive immunomodulatory effects of heterologous DNA vaccine-modified live vaccine, prime-boost immunization, against the highlypathogenic PRRSV infection Vet Immunol Immunopathol 183: 7–15 179 Snijder EJ, Meulenberg JM (1998) The molecular biology of arteriviruses J Gen Virol 79(5): 961–979 180 Spilman MS, Welbon C, Nelson E, et al., (2009) Cryo-electron tomography of porcine reproductive and respiratory syndrome virus: organization of the nucleocapsid J Gen Virol 90(3): 527–535 181 Sun L, Cai H, Xu W, Hu Y and Lin Z (2002) CaMV 35S promoter directs βglucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus Appl Biochem Biotechnol 20(3): 239-244 182 Tepfer M, Gaubert S, Leroux-Coyau M, Prince S and Houdebine LM (2004) Transient expression in mammalian cells of transgenes transcribed from the Cauliflower mosaic virus 35S promoter Environ Biosafety Res 3(2): 91-97 183 Thaa B, Sinhadri BC, Tielesch C, Krause E and Veit M (2013) Signal peptide cleavage from GP5 of PRRSV: A minor fraction of molecules retains the decoy epitope, a presumed molecular cause for viral persistence PLoS ONE 8(6): e65548 184 Thuy Thi-Dieu Nguyen, Thu Thi Nguyen, Ha Thi-Thu Le, Son Giang Nguyen, 159 Hung Khanh Vo, Nguyen Thao Nguyen, Khoa Vo-Anh Do (2013) Genetic Analysis of ORF5 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Isolated in Vietnam Microbiol Immunol 57: 518–526 185 Tian K et al., 2007 Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark PLoS One, 2(6): e526 186 Tiêu chuẩn quốc gia TCVN 8400-21:2014 Bệnh động vật - Quy trình chẩn đốn - Phần 21: Hội chứng rối loạn sinh sản hô hấp lợn (PRRS) 187 Tiêu chuẩn quốc gia TCVN 8685-12:2014 Quy trình kiểm nghiệm vắc xin Phần 12: Vắc xin nhược độc, đơng khơ phòng hội chứng rối loạn hơ hấp sinh sản lợn (PRRS) 188 Tiêu Quang An, Nguyễn Hữu Nam (2011), "Xác định số vi khuẩn kế phát gây chết lợn vùng dịch Tai xanh hyện Văn Lâm - Hưng Yên năm 2010", Tạp chí Khoa học Kỹ thuật Thú y, 3(XVIII): 53-60 189 Tô Long Thành (2007) Hội chứng rối loạn sinh sản hô hấp lợn, Khoa học kỹ thuật thú y, Tập 14(3): 81-88 190 Tong GZ et al., (2007) Highly pathogenic porcine reproductive and respiratory syndrome, China.Emerg Infect Dis 13(9): 1434-1436 191 Trabbic-Carlson K, Liu L, Kim B and Chilkoti A (2004) Expression and purification of recombinant proteins from Escherichia coli: comparison of an elastin-like polypeptide fusion with an oligohistidine fusion Protein Sci 13(12): 3274–3284 192 Tran Hong Hanh (2017) Developing a plant virus-based expression system for the expression of vaccines against Porcine Reproductive and Respiratory Syndrome Virus Electronic esis and Dissertation Repository 4726 193 Transient expression of CCL21 as recombinant protein in tomatoBeihaghia M, Marashia H, Bagheria A,Sankianb M (2018) Transient expression of CCL21as recombinant protein in tomato Biotechnology Reports 17: 10-15 194 Trible BR, Popescu LN, Monday N, Calvert JG, and Rowland RR (2015) A single amino Acid deletion in the matrix protein of porcine reproductive and respiratory syndrome virus confers resistance to a polyclonal Swine antibody with broadly neutralizing activity J Virol 89(12): 6515–6520 160 195 Trus I, Bonckaert C, Van Der Meulen K, and Nauwynck HJ (2014) Efficacy of an attenuated European subtype porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs upon challenge with the East European subtype PRRSV strain Lena Vaccine 32(25): 2995–3003 196 Twyman RM, Stoger E, Schillberg S, Christou P and Fischer R (2003) Molecular farming in plants: Host systems and expression technology Trends Biotechnol 21(12): 570-578 197 Uribe-Campero L, Nunez-Palenius HG and Gomez-Lim MA (2015) Expression of peptide nanoparticles containing a porcine reproductive and respiratory syndrome (PRRS) virus epitope in plants Afri J Microbiol Res 9(24): 1600-1607 198 Vaghchhipawala Z, Rojas CM, Senthil-Kumar M, Mysore KS (2011) Agroinoculation and agroinfiltration: simple tools for complex gene function analyses Methods Mol Biol 678: 65–76 199 Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A, and Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves Plant Physiology 109(4): 1199-1205 200 Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus J Plant 33(5): 949–956 201 Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O, and Breiteneder H (2004) Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana Methods 32(3): 227-234 202 Walmsley AM, Arntzen CJ (2003) Plant cell factories and mucosal vaccines Curr Opin Biotechnol 14(2): 145-150 203 Wang X, Wei R, Li Q, Liu H, Huang B, Gao J, et al., (2013) PK-15 cells transfected with porcine CD163 by PiggyBac transposon system are susceptible to porcine reproductive and respiratory syndrome virus J Virol Methods 193(2): 383-90 204 Wang A, Wang David J, Chowda-Reddy RV, Chen H, Ma S (2011) Development of a Plant-based Vaccineagainst Porcine reproductive and respiratory syndrome virus: Research Progress and Future Prospects J of Plant Science and Biotechnology 5(1): 127-131 161 205 Wang A, Wang DJ,Chowda-Reddy RV, Chen H, Ma S (2011) Development of a Plant-based Vaccine against Porcine reproductive and respiratory syndrome virus: Research Progress and Future Prospects The Americas Journal of Plant Science and Biotechnology 5(1): 127-131 206 Wang W, Chen X, Xue , Du Y, Lv L, Liu Q, Li X, Ma Y, Shen H and Cao Y (2012) Production and immunogenicity of chimeric virus-like particles containing porc ine reproductive and respiratory syndrome virus GP5 prote in Vaccine 30(49): 7072-7077 207 Wang Y,Guo J, Qiao S, Li Q, Yang J, Jin Q, Zhang G (2016) GP5 protein-based ELISA for the detection of PRRSV antibodies Journal of Veterinary Sciences Vol 19(3): 495–501 208 Welch SK, Jolie R, Pearce DS, Koertje WD, Fuog E, Shields SL, et al Constructionand evaluation of genetically engineered replication-defective porcine repro-ductive and respiratory syndrome virus vaccine candidates Vet Immunology and Immunopathology, 102(3): 277-290 209 Wieringa R, Antoine AF de Vries, Post SM, Rottier PJM (2003) Intra- and Intermolecular Disulfide Bonds of the GP2b Glycoprotein of Equine Arteritis Virus: Relevance for Virus Assembly and Infectivity J Virol 77(24): 12996– 13004 210 Wieringa R, De Vries A A, Van Der Meulen J, Godeke GJ, Onderwater JJ, Van Tol H et al., (2004) Structural protein requirements in equine arteritis virus assembly J Virol 78(23): 13019–13027 211 Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Bara L et al., (2004) Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems Mol Breed.13(1): 23–35 212 Wissink EH, Kroese MV, van Wijk HA, Rijsewijk FA, Meulenberg JJ, Rottier PJ (2005)Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus J Virol 79(19): 1249512506 213 Wu J, Li J, Tian F et al (2009) Genetic variation and pathogenicity of highly virulent porcine reproductive and respiratory syndrome virus emerging in 162 China Arch Virol 154:1597 214 Xiang C, Han P, Lutziger I, Wang K, and Oliver D (1999) A mini binary vector series for plant transformation Plant Mol Biol 40(4): 711-717 215 Xu C, Min J(2011) Structure and function of WD40 domain proteins Protein Cell 2(3): 202-214 216 Yang L, Frey ML, Yoon KJ, Zimmerman JJ, and Platt KB (2000) Categorization of North American porcine reproductive and respiratory syndrome viruses: epitopic profiles of the N, M, GP5 and GP3 proteins and susceptibility to neutralization Arch Virol 145(8):1 599–1619 217 Ye J, Qu J, Zhang J, Geng Y, Fang R (2009) A critical domain of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity FEBS Letters 583(1): 101–106 218 Zhang X, Du P, Lu L, Xiao Q, Wang Q, Cao X, Ren B, Wei C, Li Y (2008) Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovir us on the accumulation of siRNAs Virology 374(2): 351 – 360 219 Zhang X, Urry DW and Daniell H (1996) Expression of an environmentally friendly synthetic protein-based polymer gene in transgenic tobacco plants Plant Cell Rep 16(3-4): 174–179 220 Zhao H, Tan Z, Wen X and Wang Y (2017) An Improved Syringe Agroinfiltration Protocol to Enhance Transformation Efficiency by Combinative Use of 5-Azacytidine, Ascorbate Acid and Tween-20 Plants 6(1): 1-10 221 Zhao H, Wang Y, Ma Z, Wang Y and Feng WH (2014) Recombinant Kluyveromyces lactis expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP5 elicits mucosal and cell-mediated immune responses in mice J Vet Sci 15(2): 199-208 222 Zheng Q, Chen D, Li P, Bi Z, Cao R, Zhou B, Chen P (2007) Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV) Virus Genes 35(3): 585–595 223 Zhong Y, Guo A, Li C, Zhuang B, Lai M, Wei C, Luo J, Li Y (2005) Identification 163 of a naturally occurring recombinant isolate of Sugarcane mosaic virus causing maize dwarf mosaic disease Virus Genes 30 (1): 75-83 224 Zhong Y, Guo A, Li C, Zhuang B, Lai M, Wei C, Luo J, Li Y (2005) Identification of a naturally occurring recombinant isolate of Sugarcane mosaic virus causing maize dwarf mosaic disease Virus Genes 30(1): 75 –83 225 Zhou JX, Xue JD, Xu JD, Zhang JB, Liu Y, Jiang N et al., (2010) Immune responses in pigs induced by recombinant canine adenovirus expressing the glycoprotein of porcine reproductive and respiratory syndrome virus Vet Res Commun 34(4): 371-380 226 Zhou L et al., (2014) Genetic diversity analysis of genotype porcine reproductive and respiratory syndrome viruses emerging in recent years in China Biomed Res Int 3: 748068 227 Zhou L, Wang Z, Ding Y, Ge X, Guo X, and Yang H (2015) NADC30-like strain of porcine reproductive and respiratory syndrome virus, China Emerg Infect Dis 21(12): 2256–2257 228 Zhou YJ, Yu H, Tian ZJ, Li GX, Hao XF et al., (2009) Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in China from 2006 to 2008 Virus Res 144(1-2): 136-44 229 Zuckermann FA, Garcia EA, Luque ID, Christopher-Hennings J, Doster A, Brito M, Osorio F (2007) Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge Vet Microbiol 123(13): 69-85 ... HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CÔNG NGHỆ SINH HỌC NGUYỄN THỊ MINH HẰNG NGHIÊN CỨU BIỂU HIỆN KHÁNG NGUYÊN (M, GP5, GP5ectoM) CỦA VIRUS GÂY HỘI CHỨNG RỐI LOẠN SINH SẢN VÀ HÔ HẤP Ở LỢN TRONG CÂY THUỐC... rối loạn sinh sản hô hấp lợn thuốc phương pháp thẩm lọc nhờ Agrobacterium với mục đích tạo sở khoa học thực nghiệm để biểu gen mã hoá kháng nguyên chủng virus PRRS gây hội chứng rối loạn sinh sản. .. dựa vào kháng nguyên GP5 M chống PRRSV 24 1.3 Biểu tạm thời kháng nguyên PRRSV phương pháp thẩm lọc nhờ Agrobacterium 30 1.3.1 Lợi phương pháp biểu gen tạm thời nhờ Agrobacterium

Ngày đăng: 14/02/2019, 15:08

Từ khóa liên quan

Mục lục

  • MỞ ĐẦU

  • Chương 1

  • TỔNG QUAN TÀI LIỆU

    • 1.1. Hội chứng rối loạn sinh sản và hô hấp ở lợn

      • 1.1.1. Sơ lược tình hình dịch bệnh

      • Bảng 1.1: Tình hình dịch PRRS giai đoạn 2015 – 2016

        • 1.1.2. Bệnh tích của PRRS

        • 1.1.3. Virus PRRS

          • 1.1.3.1. Đăc điểm hình thái, cấu trúc và phân loại PRRSV

          • Hình 1.1. Đặc điểm hình thái của virus PRRS

          • Hình 1.2. Ảnh hiển vi điện tử của các hạt Arterivirus

            • 1.1.3.2. Hệ gen và protein cấu trúc của virus PRRS

            • Hệ gen của PRRSV đã được giải mã thành công và được ghi nhận vào năm 1993. Dựa vào kiểu gen (genotype), PRRSV được chia làm hai loại: kiểu gen Châu Âu (type I), đại diện tương ứng là chủng Lelystad (LV) và kiểu gen Bắc Mỹ (type II), đại diện tương ứng là chủng VR2332. Genome của chủng virus VR2332 phân lập tại Mỹ (số đăng ký: AY150564) thuộc type II, đại diện dòng Bắc Mỹ có độ dài là 15451 bp (Nielsen et al., 2003). Genome của virus PRRS chủng GD (Quảng Đông, Trung Quốc) (số đăng ký: EU109503) đại diện cho nhóm độc lực cao phân lập ở Trung Quốc cũng thuộc type II, có độ dài là 15353 bp (Zhou et al., 2009).

            • Trong các tế bào bị nhiễm virus PRRS, có tất cả 6 RNA thông tin (mRNA) được tổng hợp. Tất cả 6 mRNA đều chứa trình tự sắp xếp chung nhận được từ đầu 5' của hệ gen RNA và tất cả chúng đều có gắn thêm đuôi 3' polyA. Độ dài các gen hoàn toàn khác nhau giữa PRRSV dòng châu Âu và Bắc Mỹ phản ánh sai khác di truyền và mức độ tương đồng kháng nguyên giữa các chủng thuộc 2 dòng này. Trong cùng một dòng Bắc Mỹ, các gen mã hoá cho các protein chức năng (ORF 2-7) có độ dài gần như nhau, nhưng có độ khác nhau về kích thước và thành phần gen mã hoá cho RNA-polymerase (ORF1a và ORF1b). Đặc điểm gen và hệ gen này là yếu tố ảnh hưởng đến độc lực của virus PRRS mới xuất hiện gần đây ở Trung Quốc từ cuối năm 2006 (Tian, 2007) và có lẽ xâm nhập vào Việt Nam đầu năm 2007 với đặc tính hoàn toàn đồng nhất về đặc điểm di truyền và tính gây bệnh (Lê Thanh Hòa et al., 2009). Sự xuất hiện và lây lan của PRRSV độc lực cao ở Trung Quốc, Việt Nam và Nam Á, sự đa nhiễm trộn lẫn các dòng PRRSV trên thế giới sẽ làm phức tạp hoá dịch tễ học và vaccine phòng chống PRRSV.

            • Hình 1.3. Mô hình cấu trúc hạt PRRSV và các khung đọc mở trên hệ gen của PRRSV (Nguồn: http://viralzone.expasy.org)

            • Hình 1.4. Đặc điểm GP5

            • (Nguồn: Thaa et al., 2013)

              • 1.1.3.3. Sự biến chủng của PRRSV và các chủng PRRSV lưu hành tại Việt Nam

              • Gần đây, trong hệ thống phân loại mới, PRRSV type I và type II được phân loại thành thành hai loại trong chi Porartevirus: PRRSV type I và PRRSV type II (Adams et al., 2016; Kuhn et al., 2016). Biểu hiện bệnh và dấu hiệu lâm sàng tổng thể, tổ chức hệ gen và thời gian xuất hiện đều giống nhau giữa hai dòng. Các dòng PRRSV type I và PRRSV type II có khoảng 60% trình tự nucleotide tương đồng (Forsberg, 2005). Tuy nhiên, kể từ khi PRRSV type I và PRRSV type II được phát hiện và mô tả, các biến thể mới của PRRSV liên tục phát triển và xuất hiện trong các đợt bùng phát mới với đặc điểm và tính độc ngày càng khác biệt (Kappes và Faaberg et al., 2015). Ngoài các chủng PRRSV không gây bệnh đang lưu hành ở đợt bùng phát đầu tiên, chủng PRRSV type II độc lực (VR-2385) đã được phân lập từ đàn lợn bị nhiễm PRRSV type II chủng VR-2332 (ATCC VR-2332) vào giữa những năm 1990, khác biệt so với VR-2332 khoảng 8% nucleotide (Meng et al., 1996). Năm 1998, xuất hiện một chủng PRRSV không điển hình đã gây ra tỷ lệ thai chết lưu và sảy thai cao ở đàn lợn được tiêm chủng tại Hoa Kỳ (Mengeling et al., 1998). Sau đó, kể từ năm 2001, nhiều chủng độc lập thuộc cùng một nhóm virus đã được xác định, trong đó đã phát hiện chủng MN184 có độc tính cao (sai khác > 14.5 % nucleotide) từ các chủng type II (Han et al., 2006).

              • Ở Việt nam, dịch bệnh nặng xuất hiện từ năm 2007 đến nay. Các kết quả nghiên cứu phân lập, phân tích giải mã hệ gen của PRRSV cho thấy các chủng PRRSV lưu hành tại Việt Nam thuộc dòng Bắc Mỹ type II, tương đồng với chủng virus gây bệnh thể độc lực cao ở Trung Quốc là 99% trình tự nucleotide, 99 - 99,7% trình tự axit amin và đều bị mất 30 axit amin trong protein phi cấu trúc NSP2 (Feng et al., 2007). Trình tự amino acid vùng NSP2 có độ tương đồng 95,7 - 99,4% so với chủng Trung Quốc HUN4, 68 - 69% so với chủng VR-2332 và 58 - 59% so với chủng MN184. Các tác giả đã tìm thấy sự mất đoạn thuộc gen nsp2, tuy nhiên sự mất đoạn này không làm thay đổi độc lực của virus. Lợn được gây nhiễm chủng PRRSV cao có triệu chứng sốt, 2 trong số 5 lợn xuất hiện triệu chứng ho, triệu chứng thần kinh và sưng khớp. Mổ khám thấy xuất hiện viêm phế quản nhẹ, sưng hạch, viêm màng ngoài tim và viêm đa khớp. PRRSV được phân lập lại từ máu, mô của lợn đã được gây nhiễm. Lợn được gây nhiễm với chất nghiền từ mô phổi hoặc mô lách của lợn Việt Nam nhiễm trùng sẽ xuất hiện triệu chứng rất nặng như sốt, nhiễm virus huyết và chết cấp tính trong vòng 72 giờ. Trong khi đó, lợn tiếp xúc không thấy xuất hiện triệu chứng trong suốt thời gian thí nghiệm (Metwally et al., 2010).

              • PRRSV lưu hành ở Việt Nam hiện nay vẫn tồn tại hai dạng là thể cổ điển và thể độc lực cao. Dạng cổ điển: Có độc lực thấp, bệnh đôi khi biểu hiện không rõ rang, chỉ là các dấu hiệu rối loạn sinh sản và hô hấp, ở dạng này khi lợn mắc bệnh thì có tỷ lệ chết thấp, chỉ từ 1 – 5% trong tổng đàn. Trong 1 số trường hợp, phát hiện dương tính với PRRSV trong huyết thanh lợn nhưng không có biếu hiện bệnh. Thể độc lực cao: Các biểu hiện bệnh trầm trọng, rõ rệt hơn so với thể độc lực thấp. Virus gây nhiễm và chết nhiều lợn bệnh với tỷ lệ gây chết cao (20 -100%). Bệnh có tốc độ lây lan nhanh, chỉ sau 3 - 5 ngày bệnh có thể lây ra toàn đàn.

              • Phân tích đoạn gen mã hóa protein vỏ (ORF 5) của 32 chủng PRRSV phân lập từ các vùng khác nhau của Việt Nam trong giai đoạn 2008 - 2012 và so sánh đoạn trình tự giải mã với trình tự công bố trên Ngân hàng gen quốc tế cho thấy sự đồng nhất về nucleotide đạt 94,8 - 100%, độ tương đồng axit amin đạt 94 - 100%. Kết quả phân tích phả hệ nguồn gốc của cả 32 chủng cho thấy, tất cả các chủng nghiên cứu đều thuộc dòng Bắc Mỹ và thuộc cùng phân nhánh với các chủng PRRSV độc lực cao lưu hành ở Trung Quốc trong những năm gần đây (Nguyen et al., 2013).

              • Những nghiên cứu gần đây còn cho thấy có sự khác biệt về tính di truyền giữa các chủng virus phân lập được từ các vùng địa lý khác nhau. Bản thân các virus trong cùng một nhóm cũng có sự thay đổi về chuỗi nucleotide khá cao, đến 20%, đặc biệt là các chủng virus thuộc dòng Bắc Mỹ. Chính sự khác biệt và sự đa dạng về tính kháng nguyên, khả năng biến đổi cấu trúc kháng nguyên của virus đã làm tăng thêm những khó khăn trong việc sản xuất vaccine phòng chống PRRSV (Cục Thú y, 2008; Lê Thanh Hòa et al., 2009).

                • 1.1.3.4. Đáp ứng miễn dịch của vật chủ với PRRSV

                • 1.2. Vaccine phòng PRRS

                  • 1.2.1. Vaccine sống - nhược độc

                  • 1.2.2. Vaccine vô hoạt

                  • Các vaccine vô hoạt PRRSV hiện được cấp phép sử dụng ở châu Âu và nhiều nước trên thế giới ngoại trừ Mỹ. Các vaccine vô hoạt có thể được chế từ hai chủng châu Âu và Bắc Mỹ. Một số vaccine thương mại phổ biến như Ingelvac® PRRS KV (chủng P120; Boehringer Ingelheim), Suipravac-PRRS (chủng 5710; Hipra), Progressis® (từ chủng độc quyền; Merial), Suivac PRRS-ine (chủng VD-E1 và VD-E2; Dyntec) và Suivac PRRS-IN (chủng VD-E1, VD-E2 và VD-A1; Dyntec). Trái ngược với vaccine nhược độc PRRSV, vaccine vô hoạt sau khi tiêm chủng không nhận thấy sự sản sinh kháng thể bằng phương pháp ELISA và virus trong huyết thanh của lợn trong các khảo nghiệm. Vaccine vô hoạt cũng không cho thấy đáp ứng miễn dịch qua trung gian tế bào qua sự tăng sinh tế bào lympho hay sản sinh IFNγ (Kim et al., 2011). Vaccine vô hoạt được ứng dụng như là một vaccine trị liệu trong các trại lợn dương tính với virus PRRS (Bassaganya - Riera et al., 2004). Vacine vô hoạt PRRSV có hiệu quả bảo vệ kém hơn vaccine nhược độc. Ở lợn dương tính với PRRSV, vaccine giúp cải thiện năng suất sinh sản như tăng tỷ lệ đẻ, khả năng sống của lợn con sau cai sữa và sức khỏe lợn con sinh ra từ lợn nái được tiêm phòng. Vaccine vô hoạt được đánh giá là an toàn. Tính đến nay chưa có báo cáo nào về tác động tiêu cực của việc sử dụng vaccine với sức khỏe của lợn (Zuckermann et al., 2007).

Tài liệu cùng người dùng

Tài liệu liên quan