Nghiên cứu ảnh hưởng của lớp chức năng nano zno đến hoạt động của pin mặt trời màng mỏng glassTCOnanoZnOCdSCuInS2Me lắng đọng bằng phương pháp USPD ILGAR

137 349 0
Nghiên cứu ảnh hưởng của lớp chức năng nano zno đến hoạt động của pin mặt trời màng mỏng glassTCOnanoZnOCdSCuInS2Me lắng đọng bằng phương pháp USPD ILGAR

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO TRNG I HC BCH KHOA H NI LU TH LAN ANH NGHIấN CU NH HNG CA LP CHC NNG NANO ZnO N HOT NG CA PIN MT TRI MNG MNG GLASS/TCO/NANO ZnO/CdS/CuInS2/Me Chuyờn ngnh: Vt lý k thut Mó s: 62520401 LUN N TIN S VT Lí K THUT H Ni - 2014 B GIO DC V O TO TRNG I HC BCH KHOA H NI LU TH LAN ANH NGHIấN CU NH HNG CA LP CHC NNG NANO ZnO N HOT NG CA PIN MT TRI MNG MNG GLASS/TCO/NANO ZnO/CdS/CuInS2/Me Chuyờn ngnh: Vt lý k thut Mó s: 62520401 LUN N TIN S VT Lí K THUT NGI HNG DN KHOA HC: GS.TS Vừ Thch Sn H Ni - 2014 Li cam oan Tụi xin cam oan õy l cụng trỡnh ca riờng tụi di s hng dn ca GS.TS Vừ Thch Sn Cỏc kt qu nờu lun ỏn l trung thc v cha tng cụng b bt k mt cụng trỡnh no Tỏc gi lun ỏn Lu Th Lan Anh Li cm n u tiờn, tụi xin by t lũng bit n sõu sc n Trng i Hc Bỏch khoa H Ni v Vin Vt lý K thut ó to iu kin cho tụi quỏ trỡnh hc v nghiờn cu Tụi xin by t li cỏm n chõn thnh v s kớnh trng i vi GS.TS Vừ Thch Sn ngi ó hng dn tụi thc hin bn Lun ỏn ny Thy ó tn tỡnh ch bo c v lnh vc khoa hc cng nh cuc sng Tụi ó hc c rt nhiu t nhng iu ch dn tn tỡnh v t nhõn cỏch nh giỏo ca Thy Tụi cm phc nhng hiu bit sõu sc v chuyờn mụn, kh nng s phm cng nh s tn tỡnh ca Thy Nhng kin thc m tụi tip nhn c t Thy khụng ch l bn Lun ỏn m trờn ht l cỏch nhỡn nhn, ỏnh giỏ cng nh phng thc gii quyt cỏc khoa hc v s tri nghim ca cuc sng Tụi xin by t s kớnh trng v bit n to ln i vi Thy Tụi xin trõn trng cm n PGS.TS Dng Ngc Huyn, PGS.TS Nguyn Ngc Trung, TS.Nguyn Tuyt Nga, TS.Nguyn Hong Thoan, TS.Lng Hu Bc, ThS Lờ Ngc Minh, ThS.Phm Vn Thng, ThS Phm Phi Hựng Vin Vt lý k thut, Trng i hc Bỏch khoa H Ni, TS Trn Thanh Thỏi- i hc Quy Nhn ó giỳp tụi rt nhiu sut quỏ trỡnh thc hin cỏc thc nghim ca Lun ỏn, ng thi cú nhng úng gúp gi m quý bỏu quỏ trỡnh tụi hon thin Lun ỏn Tụi xin trõn trng cm n ThS Cao Xuõn Quõn, Phũng o lng Quang hc, Vin o lng Vit Nam vỡ nhng giỳp vic o c cỏc thụng s c trng quang Tụi xin trõn trng cm n GS TS M Jouan, Phũng thớ nghim SPMS (Lab de Structures Propriộtộs et Modelisation des Solides), Trng ECP (Ecole Centrale Paris, France) ó giỳp tụi kho sỏt hỡnh thỏi b mt cỏc mu nano ZnO Tụi cng trõn trng cm n TS Nguyn Xuõn Sỏng, Trung tõm SMART (Singapore - MIT Alliance for Research and Technology), Trng i hc Quc gia Singapo vỡ nhng giỳp vic chp v phõn tớch hỡnh thỏi b mt v tớnh cht in cỏc mu nanoZnO,CdS v mng CuInS2 Tụi xin trõn trng cm n cỏc ng nghip ó ng h v to mi iu kin thun li giỳp tụi hon thnh lun ỏn Cui cựng, tụi mun ginh li cm n cho nhng ngi thõn yờu nht ca tụi Bn Lun ỏn ny l mún qu quý giỏ tụi xin c tng cho cha m thõn yờu ca tụi H Ni, ngy 06 thỏng 05 nm 2014 Tỏc gi lun ỏn Lu Th Lan Anh Danh mc ký hiu v ch vit tt Danh mc cỏc ký hiu Ký hiu Tờn ting Anh Tờn ting Vit A Quality factor H s phm cht D Average crystallite size Kớch thc tinh th trung bỡnh E Energy Nng lng e Electron in t EA Ionization energy Nng lng ion húa EC Conduction band energy Nng lng vựng dn EF Fermi energy Nng lng Fermi Eg Optical band gap energy rng vựng cm quang EV Valence band energy Nng lng nh vựng hoỏ tr ff fill factor H s lp y h Hole L trng J Current density Mt dũng Jmax Current density at maximum power output Mt dũng cụng sut cc i JSC Short circuit current density Mt dũng ngn mch R Resistance between the contacts in tr tip xỳc RS Serial resistance in tr ni tip Rsh Shunt resistance in tr ngn mch Rsheet Sheet resistance in tr b mt t Time Thi gian T Transmitance truyn qua TA Absolute temperature Nhit tuyt i TC Calcined temperature Nhit Te Enviromental temperature Nhit lm vic, nhit mụi trng TS Substrate temperature Nhit V Voltage in ỏp Vmax Voltage at maximum power output in ỏp cụng sut cc i VOC Open circuit voltage in ỏp h mch Absorption coefficient H s hp th Thickness Chiu dy Conversion efficiency of the solar cell Hiu sut chuyn i ca pin mt tri Wavelength Bc súng ex Excitation wavelength Bc súng kớch thớch e Electron mobility linh ng in t p Hole mobility linh ng l trng Resistivity in tr sut Danh mc cỏc ch vit tt Ký hiu Tờn ting Anh Tờn ting Vit AFM Atomic Force Microscope Hin vi lc nguyờn t CBD Chemical Bath Deposition Lng ng b húa hc CH Chacopyrite structure Cu trỳc Chacopyrite CIS Complex Impedance Spectroscopy Ph tr khỏng phc CVD Chemical vapour deposition Lng ng t pha hi húa hc EDX Energy Dispersive X-ray Tỏn sc nng lng tia X ETA Extremely thin absorber Cht hp th chiu dy rt mng FESEM FTO Field Emission Scanning Electron Hin vi in t quột phỏt x trng Microscope Tin oxide doped Fluorine ễxit thic pha Flo FWHM Full width at half maximum rng bỏn cc i ILGAR Ion Layer Gas Reaction Phn ng pha khớ lp ion ITO Tin oxide doped Indium ễxit thic pha Indi IZO Zinc oxide doped Indium ễxit km pha Indi PV Photovoltaic Effect Hiu ng quang in Solar cells T bo mt tri PMT SCAPS1D Solar Cell CAPacitance Simulator in CAP-mụ phng mt chiu pin mt Dimension tri SEM Scanning Electron Microscope Hin vi in t quột SPD Spray Pyolysis Deposition Phun ph nhit phõn TCO Transparent conducting oxide ễxớt dn in sut USPD Ultrasonic Spray Pyolysis Deposition Phun ph nhit phõn h tr siờu õm UV-VIS XRD UV-VIS Spectrophotometer Mỏy quang ph hp th UV-VIS X-ray diffraction Nhiu x tia X Danh mc cỏc bng Bng 1.1 D bỏo cụng sut nng lng tỏi to nm 2030-2035 v nm 2050 [143] 15 Bng 1.2 Cỏc thụng s c trng ca PMT CuInS2 lý tng v PMT CuInS2 thc t hiu sut cao nht hin [71],[153] 29 Bng 1.3 Mt s tớnh cht vt lý ca vt liu ZnO 36 Bng 2.1 Bng túm tt cỏc phng phỏp s dng kho sỏt cỏc lp chc nng 44 Bng 2.2 Danh mc cỏc húa cht s dng 45 Bng 2.3 Tr s ng kớnh aerosol ph thuc loi dung mụi 46 Bng 2.4 Cỏc kiu dao ng ca mng nano ZnO 49 Bng 2.5 Cỏc thụng s kớch thc mng ZnO ph thuc nhit lng ng 57 Bng 2.6 Danh mc húa cht s dng 67 Bng 2.7 Cỏc thụng s cu trỳc v kớch thc tinh th ca cỏc mu CuInS2 69 Bng 2.8 Thnh phn cỏc nguyờn t cỏc mu CIS-06, CIS-08, CIS-12, CIS-21, CIS-26 69 Bng 2.9 Cỏc thụng s in ca mu lng ng vi chiu dy khỏc 72 Bng 2.10 Danh mc húa cht s dng 73 Bng 2.11 Cỏc thụng s in ca cỏc mu CdS lng ng 76 Bng 3.1 S liu mụ phng theo s tng ng ca h vt liu Glass/ITO/nanoZnO/CdS/CuInS2/Ag 85 Bng 4.1 Cỏc thụng s u vo mụ phng nh hng ca nhit Te 100 Bng 4.2 Kt qu mụ phng theo nhit Te 101 Bng 4.3 Thụng s c bn u vo mụ phng 103 Bng 4.4 Cỏc thụng s ca PMT mụ phng bng SCAPS-1D chiu dy lp hp th thay i 105 Bng 4.5 Cỏc thụng s quang in ca pin mt tri mụ phng bng SCAPS-1D 106 Bng 4.6 Cỏc thụng s quang in ca pin mt tri vi chiu dy lp hp th khỏc 110 Bng 4.7 Cỏc thụng s u vo mụ phng s dng trng hp so sỏnh vi mu thc nghim 110 Bng 4.8 So sỏnh thụng s ca mu thc nghim PMT -10 v mu mụ phng M05 112 Bng 4.9 Cỏc thụng s quang in ca pin mt tri vi nng mui km acetat khỏc 113 Danh mc cỏc hỡnh v, th Hỡnh 1.1 Xu hng tiờu th nng lng ton cu t 1990 n 2040 [2] 13 Hỡnh 1.2 Cụng sut cỏc ngun nng lng tỏi to nhng nm gn õy (1) Nng lng tỏi to hydro, (2) nng lng giú, (3) nng lng sinh khi, (4) nng lng mt tri, (5) nng lng a nhit [6] 14 Hỡnh 1.3 S phỏt trin ca cỏc th h pin mt tri [10] 17 Hỡnh 1.4 S minh nguyờn lý hot ng ca pin mt tri 18 Hỡnh 1.5 Cu trỳc mt chiu ca PMT chuyn tip PN ng cht 19 Hỡnh 1.6 th mt dũng ngn mch Jsc ph thuc vo rng vựng cm Eg [14], [18] 21 Hỡnh 1.7 th in ỏp h mch Voc ph thuc vo rng vựng cm Eg [18] 22 Hỡnh 1.8 th hiu sut quang in ph thuc vo rng vựng cm Eg [18] 23 Hỡnh 1.9 c trng J-V ca PMT iu kin ti v chiu sỏng [22] 23 Hỡnh 1.10 S tng ng ca PMT thc [23], [24] 24 Hỡnh1.11 th ph thuc nh hng ca cỏc in tr lờn c trng J-V sỏng [24],[23],[22] a)nh hng ca RS b) nh hng ca Rsh 24 Hỡnh 1.12 Cu trỳc PMT mng mng chalcopyrite [11] 27 Hỡnh 1.13 Trng thỏi in t ca bỏn dn khi(a), tinh th nh(b) v phõn t(c) 31 Hỡnh 1.14 Gin nng lng ca cỏc bỏn dn 31 Hỡnh 1.15 Gin nng lng hai trng hp (gi thit rng nng lng vựng cm ca bỏn dn A ln hn bỏn dn B v cỏc photon c hp th B) 33 Hỡnh 1.16 Gin nng lng ca pin mt tri cu trỳc nano 34 Hỡnh 1.17 S cỏc dng cu trỳc ca pin mt tri cu trỳc nano 34 Hỡnh 1.18 Cu trỳc tinh th Wurtzite ca vt liu ZnO 36 Hỡnh 1.19 Cu trỳc vựng nng lng ca hp cht AIIBVI (a) v ca ZnO (b) 38 Hỡnh 1.20 S nguyờn lý ca phng phỏp phun ph nhit phõn [69], [70] 39 Hỡnh 1.21 S h phun ph nhit phõn h tr siờu õm 40 Hỡnh 1.22 H thit b USPD kt hp ILGAR 42 Hỡnh 2.1 Cu trỳc pin mt tri mng mng cu trỳc nano 44 Hỡnh 2.2 nh FESEM ca cỏc mu mng nano ZnO lng ng TS=420oC vi cỏc t l th tớch ca C3H7OH v nc (nh trỏi l phúng i 100k, nh phi l phúng i 25k 47 Hỡnh 2.3 S va chm ca cỏc aerosol lờn trờn b mt núng [77] 48 Hỡnh Ph tỏn x Raman ca cỏc mu mng nano ZnO lng ng TS=420oC 50 Hỡnh 2.5 Kt qu tỏch ph Raman thu c di s súng 300 ữ 500 cm-1 bng k thut tỏch ph trờn c s phõn b Lorenzt 51 Hỡnh 2.6 nh FESEM ca cỏc mu mng nano ZnO lng ng vi cỏc ngun mui km (nh trỏi l phúng i 100k, nh phi l phúng i 25k) 52 Hỡnh 2.7 Ph tỏn x Raman ca cỏc mu mng nano ZnO lng ng vi cỏc ngun mui km52 Hỡnh 2.8 Kt qu tỏch ph Raman di s súng 300 ữ 500 cm- ca cỏc mu mng nanoZnO 53 Hỡnh 2.9 Ph truyn qua ca cỏc mu nano ZnO lng ng vi cỏc ngun mui km (a) Z-A (b) Z-N v (c) Z-C 54 Hỡnh 2.10 th quan h gia (h)2 v h ca mu mng nano ZnO lng ng vi cỏc ngun mui (a) Z-A (b) Z-N v (c) Z-C 55 Hỡnh 2.11 nh FESEM ca cỏc mu mng nano ZnO lng ng nhit TS = 400ữ500oC (a) Z-400, (b) Z-420, (c) Z-450 v (d) Z-500 56 Hỡnh 2.12 Gin nhiu x tia X ca cỏc mu mng nano ZnO lng ng nhit TS = 400ữ500oC 56 Hỡnh 2.13 Ph tỏn x Raman ca cỏc mu mng nano ZnO lng ng nhit TS = 400ữ500oC 58 Hỡnh 2.14 Kt qu tỏch ph Raman di s súng 300 ữ 500 cm-1 cỏc mu mng nano ZnO (a) Z-400 (b) Z-420 (c) Z-450 v (d) Z-5058 Hỡnh2.15 Ph truyn qua ca mu mng nano ZnO lng ng nhit TS = 400ữ500oC 59 Hỡnh 2.16 th quan h gia (h)2 vi h ca mu lng ng nhit TS = 400ữ500oC 60 Hỡnh 2.17 nh FESEM ca cỏc mu mng nano ZnO lng ng trờn cỏc (a) Z-G (b) Z-I v (c) Z-F 61 Hỡnh 2.18 Gin nhiu x tia X ca cỏc mu mng nano ZnO lng ng trờn cỏc (a) Z-G, (b) Z-I v (c) Z-F 62 Hỡnh 2.19 Ph truyn qua cỏc mu mng nano ZnO lng ng trờn cỏc (a) Z-G, (b) Z-I v (c) Z-F 62 Hỡnh 2.20 th quan h gia (h)2 vi h ca cỏc mu mng nano ZnO lng ng trờn cỏc (a) Z-G, (b) Z-I v (c) Z-F 63 Hỡnh 2.21 Gin nhiu x tia X ca cỏc mu mng nano ZnO lng ng cỏc tc lng ng (a) Z-05, (b) Z-1 v (c) Z-4 63 Hỡnh 2.22 nh FESEM ca cỏc mu mng nano ZnO lng ng cỏc tc lng ng (a) Z-05, (b) Z-1 v (c) Z-4 64 Hỡnh 2.23 Ph truyn qua ca mu mng nano ZnO lng ng cỏc tc lng ng (a) Z-05, (b) Z-1 v (c) Z-4 65 Hỡnh 2.24 th quan h (h)2 v h ca mu mng nano ZnO lng ng cỏc tc lng ng (a) Z-05, (b) Z-1 v (c) Z-4 65 Hỡnh 2.25 nh FESEM ca cỏc mu mng nano ZnO lng ng cỏc nng mui km (a) Z-005 (b) Z-01 (c) Z-02 v (d) Z-04 66 Hỡnh 2.26 Ph truyn qua ca mu mng nano ZnO lng ng cỏc nng mui km (a) Z-001 (b) Z-005 (c) Z-01 (d) Z-02 v (e) Z-04 67 Hỡnh 2.27 Gin nhiu x tia X ca cỏc mu CuInS2 68 Hỡnh 2.28 nh AFM ca cỏc mu CuInS2 (a) CIS-12, (b) CIS-21 v (c) CIS-26 70 119 [51] Y Chen, X He, X Zhao, M Song, and X Gu, Preparation and characterization of copper indium disulfide films by facile chemical method, Mater Sci Eng B, vol 139, no 1, pp 8894, Apr 2007 [52] A Katerski, A Mere, V Kazlauskiene, J Miskinis, A Saar, L Matisen, A Kikas, and M Krunks, Surface analysis of spray deposited copper indium disulfide films, Thin Solid Films, vol 516, no 20, pp 71107115, Aug 2008 [53] C Mahendran and N Suriyanarayanan, Effect of temperature on structural, optical and photoluminescence properties of polycrystalline CuInS2 thin films prepared by spray pyrolysis, Phys B Condens Matter, vol 405, no 8, pp 20092013, 2010 [54] M Kruszynska, H Borchert, J Parisi, and J Kolny-Olesiak, Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals, J Nanoparticle Res., vol 13, no 11, pp 58155824, 2011 [55] K M a Hussain, J Podder, and D K Saha, Synthesis of CuInS2 thin films by spray pyrolysis deposition system, Indian J Phys., vol 87, no 2, pp 141146, 2012 [56] O Amiri, M Salavati-Niasari, M Sabet, and D Ghanbari, Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells, Mater Sci Semicond Process., vol 16, no 6, pp 14851494, Dec 2013 [57] N D Sankir, E Aydin, H Unver, E Uluer, and M Parlak, Preparation and characterization of cost effective spray pyrolyzed absorber layer for thin film solar cells, Sol Energy, vol 95, pp 2129, Sep 2013 [58] M Sabet, M Salavati-Niasari, D Ghanbari, O Amiri, and M Yousefi, Synthesis of CuInS2 nanoparticles via simple microwave approach and investigation of their behavior in solar cell, Mater Sci Semicond Process., vol 16, no 3, pp 696704, 2013 [59] F Guo, J He, J Li, W Wu, Y Hang, and J Hua, Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material., J Colloid Interface Sci., vol 408, pp 5965, 2013 [60] L Brus, Zero-dimensional excitons in semiconductor clusters, IEEE J Quantum Electron., vol 22, no 9, pp 19091914, Sep 1986 [61] Z Abdin, M A Alim, R Saidur, M R Islam, W Rashmi, S Mekhilef, and A Wadi, Solar energy harvesting with the application of nanotechnology, Renew Sustain Energy Rev., vol 26, pp 837852, 2013 [62] C Burda, X Chen, R Narayanan, and M a El-Sayed, Chemistry and properties of nanocrystals of different shapes., Chem Rev., vol 105, no 4, pp 1025102, Apr 2005 [63] N Yeh and P Yeh, Organic solar cells: Their developments and potentials, Renew Sustain Energy Rev., vol 21, pp 421431, May 2013 [64] Z Fan and J G Lu, Zinc oxide nanostructures: synthesis and properties., J Nanosci Nanotechnol., vol 5, no 10, pp 156173, Oct 2005 [65] M B Assouar, O Elmazria, R Jimộnez Riobúo, F Sarry, and P Alnot, Modelling of SAW filter based on ZnO/diamond/Si layered structure including velocity dispersion, Appl Surf Sci., vol 164, no 14, pp 200204, Sep 2000 [66] I.-T Tang, H.-J Chen, W Hwang, Y Wang, M.-P Houng, and Y.-H Wang, Applications of piezoelectric ZnO film deposited on diamond-like carbon coated 120 onto Si substrate under fabricated diamond SAW filter, J Cryst Growth, vol 262, no 14, pp 461466, Feb 2004 [67] V Bhasker Raj, a T Nimal, Y Parmar, M U Sharma, and V Gupta, Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor, Sensors Actuators B Chem., vol 166167, pp 576585, May 2012 [68] M Sima, E Vasile, and M Sima, Preparation of nanostructured ZnO nanorods in a hydrothermalelectrochemical process, Thin Solid Films, vol 520, no 14, pp 46324636, May 2012 [69] S Kaneko, R G A Kumara, S Kawasaki, I Kaneda, S Pyrolysis, and D Spd, Spray Pyrolysis Deposition for Thin-Film Formation and Its Application to DSC Study Photovoltaic properties of DSCs, 24 th EU PVS EC, p 8003, 2009 [70] K Seshan, Handbook of thin film deposition processes and techniques Noyes Publications -William Andrew Publishing Norwich, New York, U.S.A, 2002 [71] J D Harris, K K Banger, D a Scheiman, M a Smith, M H.-C Jin, and A F Hepp, Characterization of CuInS2 films prepared by atmospheric pressure spray chemical vapor deposition, Mater Sci Eng B, vol 98, no 2, pp 150155, 2003 [72] X L Zhu, Y M Wang, Z Zhou, a M Li, L Zhang, and F Q Huang, 13.6%efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and CuSe targets, Sol Energy Mater Sol Cells, vol 113, pp 140 143, Jun 2013 [73] M Mathew, M Gopinath, C S Kartha, K P Vijayakumar, Y Kashiwaba, and T Abe, Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications, Sol Energy, vol 84, no 6, pp 888897, 2010 [74] J H Bang and K S Suslick, Applications of ultrasound to the synthesis of nanostructured materials., Adv Mater., vol 22, no 10, pp 103959, Mar 2010 [75] A Jaworek and a T Sobczyk, Electrospraying route to nanotechnology: An overview, J Electrostat., vol 66, no 34, pp 197219, Mar 2008 [76] T Dittrich, A Belaidi, and A Ennaoui, Concepts of inorganic solid-state nanostructured solar cells, Sol Energy Mater Sol Cells, vol 95, no 6, pp 1527 1536, 2011 [77] D Perednis and L J Gauckler, Thin Film Deposition Using Spray Pyrolysis, J Electroceramics, vol 14, pp 103111, 2005 [78] C Fischer, N A Allsop, S E Gledhill, K Tristan, M Kr, Y Fu, R Schwieger, J Richter, P Wohlfart, R Sa, P Bartsch, N Lichtenberg, and M C Lux-steiner, The spray-ILGAR s ( ion layer gas reaction ) method for the deposition of thin semiconductor layers: Process and applications for thin film solar cells, Sol Energy Mater Sol Cells, vol 95, pp 15181526, 2011 [79] C Fischer, M Ba, T Kropp, S Fiechter, G Barbar, M C Lux-steiner, H Berlin, A Se, and G Str, Spray-Ion Layer Gas Reaction ( ILGAR ) sa Novel Low-Cost Process for the Deposition of Chalcopyrite Layers up to the Micrometer Range for Photovoltaic Applications , J Phys Chem B, vol 107, pp 75167521, 2003 [80] C.-H Fischer, H.-J Muffler, M Bọr, S Fiechter, B Leupolt, and M C Lux-Steiner, Ion layer gas reaction (ILGAR)conversion, thermodynamic considerations and related FTIR analyses, J Cryst Growth, vol 241, no 12, pp 151158, 2002 121 [81] M M.-Y F.PraguayD., W.Estrada L, D.R.Acosta N., E.Andrade, Growth , structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, vol 350, pp 192202, 1999 [82] L L Kerr, X Li, M Canepa, and A J Sommer, Raman analysis of nitrogen doped ZnO, Thin Solid Films, vol 515, no 13, pp 52825286, May 2007 [83] G Shan, S Zheng, S Chen, Y Chen, and Y Liu, Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection., Colloids Surf B Biointerfaces, vol 94, pp 15762, Jun 2012 [84] W.-W Zhong, F.-M Liu, and W.-P Chen, Effect of ammonia/zinc nitrate molar ratio on structural and optical properties of Al and Sb codoped ZnO nanorod ordered array thin films, J Alloys Compd., vol 531, pp 5963, Aug 2012 [85] N Ekthammathat, T Thongtem, A Phuruangrat, and S Thongtem, Growth of hexagonal prism ZnO nanorods on Zn substrates by hydrothermal method and their photoluminescence, Ceram Int., vol 39, pp S501S505, May 2013 [86] L Lin, H Watanabe, M Fuji, and M Takahashi, Morphological control of ZnO particles synthesized via a new and facile aqueous solution route, Adv Powder Technol., vol 20, no 2, pp 185189, Mar 2009 [87] H Khallaf, G Chai, O Lupan, H Heinrich, S Park, A Schulte, and L Chow, Investigation of chemical bath deposition of ZnO thin films using six different complexing agents, J Phys D Appl Phys., vol 42, no 13, p 135304, Jul 2009 [88] S S Shinde, C H Bhosale, and K Y Rajpure, Structural , optical , electrical and thermal properties of zinc oxide thin films by chemical spray pyrolysis, J Mol Struct., vol 1021, pp 123129, 2012 [89] M Rajalakshmi, A K Arora, B S Bendre, and S Mahamuni, Optical phonon confinement in zinc oxide nanoparticles, J Appl Phys., vol 87, no 5, p 2445, 2000 [90] A Escobedo-Morales and U Pal, Effect of In, Sb and Ga doping on the structure and vibrational modes of hydrothermally grown ZnO nanostructures, Curr Appl Phys., vol 11, no 3, pp 525531, May 2011 [91] J Zhao, X Yan, Y Yang, Y Huang, and Y Zhang, Raman spectra and photoluminescence properties of In-doped ZnO nanostructures, Mater Lett., vol 64, no 5, pp 569572, Mar 2010 [92] A Chrissanthopoulos, S Baskoutas, N Bouropoulos, V Dracopoulos, P Poulopoulos, and S N Yannopoulos, Synthesis and characterization of ZnO/NiO pn heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation, Photonics Nanostructures - Fundam Appl., vol 9, no 2, pp 132139, Apr 2011 [93] H W Kim, M A Kebede, and H S Kim, Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers, Curr Appl Phys., vol 10, no 1, pp 6063, Jan 2010 [94] J Iqbal, T Jan, M Shafiq, A Arshad, N Ahmad, S Badshah, and R Yu, Synthesis as well as Raman and optical properties of Cu-doped ZnO nanorods prepared at low temperature, Ceram Int., vol 40, no 1, pp 20912095, Jan 2014 [95] D Fan, R Zhang, and X Wang, Effect of phosphorus incorporation on morphology and optical properties of ZnO nanorods, Mater Res Bull., vol 46, no 4, pp 596600, Apr 2011 122 [96] A Moulahi and F Sediri, ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties, Ceram Int., vol 40, no 1, pp 943950, 2014 [97] X Chong, L Li, X Yan, D Hu, H Li, and Y Wang, Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods, Phys E, vol 44, no 78, pp 13991405, Apr 2012 [98] R Shi, P Yang, X Dong, Q Ma, and A Zhang, Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis, Appl Surf Sci., vol 264, pp 162170, Jan 2013 [99] A.B Djurii, a M C Ng, and X Y Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog Quantum Electron., vol 34, no 4, pp 191259, Jul 2010 [100] Y Li, Z Liu, Y Wang, Z Liu, J Han, and J Ya, ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting, Int J Hydrogen Energy, vol 37, no 20, pp 1502915037, Oct 2012 [101] T Dedova, M Krunks, M Grossberg, O Volobujeva, and I Oja Acik, A novel deposition method to grow ZnO nanorods: Spray pyrolysis, Superlattices Microstruct., vol 42, no 16, pp 444450, Jul 2007 [102] T Dedova, I O Acik, M Krunks, V Mikli, O Volobujeva, and A Mere, Effect of substrate morphology on the nucleation and growth of ZnO nanorods prepared by spray pyrolysis, Thin Solid Films, vol 520, no 14, pp 46504653, 2012 [103] M Krunks, a Katerski, T Dedova, I Oja Acik, and a Mere, Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array, Sol Energy Mater Sol Cells, vol 92, no 9, pp 10161019, Sep 2008 [104] T Dedova, J Klauson, C Badre, T Pauportộ, R Nisumaa, A Mere, O Volobujeva, and M Krunks, Chemical spray deposition of zinc oxide nanostructured layers from zinc acetate solutions, Phys status solidi, vol 205, no 10, pp 23552359, 2008 [105] U Alver, T Klnỗ, E Bacaksz, T Kỹỗỹkửmerolu, S Nezir, H Mutlu, and F Aslan, Synthesis and characterization of spray pyrolysis Zinc Oxide microrods, Thin Solid Films, vol 515, no 78, pp 34483451, Feb 2007 [106] T Dedova, O Volobujeva, J Klauson, A Mere, and M Krunks, ZnO Nanorods via Spray Deposition of Solutions Containing Zinc Chloride and Thiocarbamide., Nanoscale Res Lett., vol 2, no 8, pp 3916, Jan 2007 [107] G Shan, X Xiao, X Wang, X Kong, and Y Liu, Growth mechanism of ZnO nanocrystals with Zn-rich from dots to rods., J Colloid Interface Sci., vol 298, no 1, pp 1726, Jun 2006 [108] H A Wahab, A A Salama, A A El-saeid, O Nur, M Willander, and I K Battisha, Optical , structural and morphological studies of ( ZnO ) nano-rod thin films for biosensor applications using sol gel technique, RESULTS Phys., vol 3, pp 4651, 2013 [109] S Ilican, Effect of Na doping on the microstructures and optical properties of ZnO nanorods, J Alloys Compd., vol 553, pp 225232, Mar 2013 [110] X Chen, A M C Ng, A B Djurii, C C Ling, and W K Chan, Hydrothermal treatment of ZnO nanostructures, Thin Solid Films, vol 520, no 7, pp 26562662, Jan 2012 123 [111] R Swapna and M C Santhosh Kumar, Growth and characterization of molybdenum doped ZnO thin films by spray pyrolysis, J Phys Chem Solids, vol 74, no 3, pp 418425, Mar 2013 [112] R R Thankalekshmi, S Dixit, and A C Rastogi, Doping sensitive optical scattering in zinc oxide nanostructured films for solar cells, Res Artic Adv Mat Lett, vol 4, no 1, pp 914, 2013 [113] T Prasada Rao and M C Santhosh Kumar, Physical properties of Ga-doped ZnO thin films by spray pyrolysis, J Alloys Compd., vol 506, no 2, pp 788793, 2010 [114] R Ayouchi, F Martin, D Leinen, and J Ramos-Barrado, Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon, J Cryst Growth, vol 247, no 34, pp 497504, Jan 2003 [115] S Gao, D Li, Y Li, X Lv, J Wang, H Li, Q Yu, F Guo, and L Zhao, Growth and characterization of ZnO nanorod arrays on boron-doped diamond films by low temperature hydrothermal reaction, J Alloys Compd., vol 539, pp 200204, 2012 [116] C.-H Hsu and D.-H Chen, Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films., Nanotechnology, vol 21, no 28, p 285603, 2010 [117] X P Yang, J G Lu, H H Zhang, Y Chen, B T Kan, J Zhang, J Huang, B Lu, Y Z Zhang, and Z Z Ye, Preparation and XRD analyses of Na-doped ZnO nanorod arrays based on experiment and theory, Chem Phys Lett., vol 528, pp 1620, Mar 2012 [118] S D Shinde, G E Patil, D D Kajale, V B Gaikwad, and G H Jain, Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor, J Alloys Compd., vol 528, pp 109114, Jul 2012 [119] T P Rao, M C S Kumar, S A Angayarkanni, and M Ashok, Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis, J Alloys Compd., vol 485, pp 413417, 2009 [120] J Alarcún, S Ponce, F Paraguay-Delgado, and J Rodrớguez, Effect of irradiation on the growth of ZnO nanorod films for photocatalytic disinfection of contaminated water., J Colloid Interface Sci., vol 364, no 1, pp 4955, 2011 [121] M.-S Kim, J.-H Han, D.-H Lee, B.-H O, S.-G Lee, E.-H Lee, and S.-G Park, Laterally grown ZnO nanorod arrays on an obliquely deposited seed layer and its UV photocurrent response, Microelectron Eng., vol 97, no 3, pp 130133, 2012 [122] R Nandi, D Singh, P Joshi, R S Srinivasa, and S S Major, Effect of Ga-doped ZnO Seed Layer Thickness on the Morphology and Optical Properties of ZnO Nanorods, Solid State Phys Symp 2012, vol 410, pp 410412, 2013 [123] R Shabannia and H Abu-Hassan, Vertically aligned ZnO nanorods synthesized using chemical bath deposition method on seed-layer ZnO/polyethylene naphthalate (PEN) substrates, Mater Lett., vol 90, pp 156158, Jan 2013 [124] G J Lee, S S.-K S.-K S Min, C Oh, Y Lee, H Lim, H Cheong, H J Nam, C K Hwangbo, and S Han, Effects of Seed Layers on Structural, Morphological, and Optical Properties of ZnO Nanorods, J Nanosci Nanotechnol., vol 11, no 1, pp 511517, Jan 2011 [125] M Krunks, E Kọrber, a Katerski, K Otto, I Oja Acik, T Dedova, and a Mere, Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray, Sol Energy Mater Sol Cells, vol 94, no 7, pp 11911195, Jul 2010 124 [126] T T Thỏi, Nghiờn cu vt lý v cụng ngh pin mt tri mng mng cu trỳc o Glass/ ZnO:In/CdS/CuInS2 /Metal ch to bng phng phỏp phun ph nhit phõn ton phn (FSPD), LATS, 2011 [127] O Kijatkina, M Krunks, a Mere, B Mahrov, and L Dloczik, CuInS2 sprayed films on different metal oxide underlayers, Thin Solid Films, vol 431432, pp 105109, May 2003 [128] M a M Khan, S Kumar, M Ahamed, and M S AlSalhi, Structural and electrical properties of spray deposited thin films of CuInS2 nanocrystals, Mater Lett., vol 68, pp 497500, Feb 2012 [129] H Khallaf, I O Oladeji, and L Chow, Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent, Thin Solid Films, vol 516, pp 59675973, 2008 [130] J Deng, M Wang, X Song, Y Shi, and X Zhang, CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays., J Colloid Interface Sci., vol 388, no 1, pp 11822, Dec 2012 [131] M a Islam, M S Hossain, M M Aliyu, P Chelvanathan, Q Huda, M R Karim, K Sopian, and N Amin, Comparison of Structural and Optical Properties of CdS Thin Films Grown by CSVT, CBD and Sputtering Techniques, Energy Procedia, vol 33, pp 203213, Jan 2013 [132] L Wan, Z Bai, Z Hou, D Wang, H Sun, and L Xiong, Effect of CdCl annealing treatment on thin CdS films prepared by chemical bath deposition, Thin Solid Films, vol 518, pp 68586865, 2010 [133] T M Razykov, C S Ferekides, D Morel, E Stefanakos, H S Ullal, and H M Upadhyaya, Solar photovoltaic electricity: Current status and future prospects, Sol Energy, vol 85, no 8, pp 15801608, Aug 2011 [134] B Ma, R Gao, L Wang, F Luo, C Zhan, J Li, and Y Qiu, Alternating assembly structure of the same dye and modification material in quasi-solid state dyesensitized solar cell, J Photochem Photobiol A Chem., vol 202, pp 3338, 2009 [135] J Hiie, T Dedova, V Valdna, and K Muska, Comparative study of nanostructured CdS thin films prepared by CBD and spray pyrolysis: Annealing effect, Thin Solid Films, vol 512, pp 443447, 2006 [136] A I Oliva and P Quintana, Formation of the band gap energy on CdS thin films growth by two different techniques, Thin Solid Films, vol 391, pp 2835, 2001 [137] F Liu, Y Lai, J Liu, B Wang, S Kuang, Z Zhang, J Li, and Y Liu, Characterization of chemical bath deposited CdS thin films at different deposition temperature, J Alloys Compd., vol 493, no 12, pp 305308, 2010 [138] T Nakabayashi, T Miyazawa, Y Hashimoto, and K Ito, Over 10% efficient CuInS2 solar cell by sulfurization, Sol Energy Mater Sol Cells, vol 49, no 14, pp 375381, Dec 1997 [139] M Nanu, J Schoonman, and A Goossens, Nanocomposite three-dimensional solar cells obtained by chemical spray deposition., Nano Lett., vol 5, no 9, pp 17169, 2005 [140] A S Cherian, K B Jinesh, Y Kashiwaba, T Abe, a K Balamurugan, S Dash, a K Tyagi, C Sudha Kartha, and K P Vijayakumar, Double layer CuInS2 absorber using spray pyrolysis: A better candidate for CuInS2/In2S3 thin film solar cells, Sol Energy, vol 86, no 6, pp 18721879, Jun 2012 125 [141] R Klenk, J Klaer, R Scheer, M C Lux-Steiner, I Luck, N Meyer, and U Rỹhle, Solar cells based on CuInS2:an overview, Thin Solid Films, vol 480481, pp 509514, Jun 2005 [142] P B Bini, CulnS2 thin films using chemical methods for the fabrication of CulnS2/CdS solar cells, Dissertation, 2003 [143] H Bayhan and a Sertap Kavasolu, Study of CdS/Cu(In,Ga)Se2 heterojunction interface using admittance and impedance spectroscopy, Sol Energy, vol 80, no 9, pp 11601164, Sep 2006 [144] Q Li, M Xu, H Fan, H Wang, B Peng, C Long, and Y Zhai, Electrical charge conductivity behavior of electrodeposited Cu2O/ZnO heterojunction thin films on PET flexible substrates by impedance spectroscopy analysis, J Mater Sci., vol 48, no 9, pp 33343340, Feb 2013 [145] I S Yahia, M Fadel, G B Sakr, S S Shenouda, and F Yakuphanoglu, Effect of the frequency and temperature on the complex impedance spectroscopy (CV and GV) of p-ZnGa2Se4/n-Si nanostructure heterojunction diode, J Mater Sci., vol 47, no 4, pp 17191728, Oct 2011 [146] N Kavasoglu, a Sertap Kavasoglu, O Birgi, and S Oktik, Intensity modulated short circuit current spectroscopy for solar cells, Sol Energy Mater Sol Cells, vol 95, no 2, pp 727730, Feb 2011 [147] S Kumar, V Sareen, N Batra, and P K Singh, Study of CV characteristics in thin n+-p-p+ silicon solar cells and induced junction n-p-p+ cell structures, Sol Energy Mater Sol Cells, vol 94, no 9, pp 14691472, Sep 2010 [148] S Kumar, V Sareen, N Batra, and P K Singh, Study of CV characteristics in thin n+-p-p+ silicon solar cells and induced junction n-p-p+ cell structures, Sol Energy Mater Sol Cells, vol 94, no 9, pp 14691472, Sep 2010 [149] R Dhanasekaran, Growth of Semiconductor Single Crystals Growth from vapor phase, pp 897935 [150] D Abou-ras, J Dietrich, J Kavalakkatt, M Nichterwitz, S S Schmidt, C T Koch, R Caballero, J Klaer, and T Rissom, Analysis of Cu ( In , Ga )( S , Se ) thinfilm solar cells by means of electron microscopy, Sol Energy Mater Sol Cells, vol 95, no 6, pp 14521462, 2011 [151] A Darga, D Mencaraglia, Z Djebbour, a M Dubois, R Chouffot, J Serhan, F Couziniộ-Devy, N Barreau, and J Kessler, Comparative study of Cu(In,Ga)Se2/(PVD)In2S3 and Cu(In,Ga)Se2/(CBD)CdS heterojunction based solar cells by admittance spectroscopy, currentvoltage and spectral response measurements, Thin Solid Films, vol 517, no 7, pp 24232426, Feb 2009 [152] M Bouroushian, Electrochemistry of Metal Chalcogenides, Monographs in Electrochemistry Springer Berlin Heidelberg, 2010., 2010 [153] V S Saji, I.-H Choi, and C.-W Lee, Progress in electrodeposited absorber layer for CuIn(1x)GaxSe2 solar cells, Sol Energy, vol 85, no 11, pp 26662678, 2011 [154] M Bouroushian, Electrochemistry of Metal Chalcogenides, Monographs in Electrochemistry Springer Berlin Heidelberg, 2010., 2010 [155] Z Djebbour, a Darga, a Migan Dubois, D Mencaraglia, N Naghavi, J.-F Guillemoles, and D Lincot, Admittance spectroscopy of cadmium free CIGS solar cells heterointerfaces, Thin Solid Films, vol 511512, pp 320324, Jul 2006 126 [156] X Lu, Y Zheng, J Zhao, J Chen, and X Tao, Electrochimica Acta Aqueous chemical synthesis of large-scale ZnO aggregates with high-efficient light-scattering and application in dye-sensitized solar cells, Electrochim Acta, vol 90, pp 649 655, 2013 [157] G Guerguerian, F Elhordoy, C J Pereyra, R E Marotti, F Martớn, D Leinen, J R Ramos-Barrado, and E a Dalchiele, ZnO nanorod/CdS nanocrystal core/shelltype heterostructures for solar cell applications., Nanotechnology, vol 22, no 50, p 505401, Dec 2011 [158] M Burgelman and P Nollet, Admittance spectroscopy of thin film solar cells, Solid State Ionics, vol 176, pp 21712175, 2005 [159] F Liu, S M Arifuzzaman, A N Nordin, D Spray, I Voiculescu, S Hall, and N York, Characterization of Endothelial Cells Using Electrochemical Impedance Spectroscopy, pp 252255, 2010 [160] J Bisquert and S Gods, Impedance Spectroscopy applied on solar cells, Nord Work Sol Electr., no April, pp 2729, 2004 [161] I S Yahia, H S Hafez, F Yakuphanoglu, B F Senkal, and M S a A Mottaleb, Photovoltaic and impedance spectroscopy analysis of pn like junction for dye sensitized solar cell, Synth Met., vol 161, no 1314, pp 12991305, Jul 2011 [162] H Seo, M Son, J Kim, I Shin, K Prabakar, and H Kim, Solar Energy Materials & Solar Cells Method for fabricating the compact layer in dye-sensitized solar cells by titanium sputter deposition and acid-treatments, Sol Energy Mater Sol Cells, pp 15, 2010 [163] D Rana Bekci, A Karsli, a Cagatay Cakir, H Sarica, A Guloglu, S Gunes, and S Erten-Ela, Comparison of ZnO interlayers in inverted bulk heterojunction solar cells, Appl Energy, vol 96, pp 417421, Aug 2012 [164] A Simimol, P Chowdhury, S K Ghosh, and H C Barshilia, Optimization of parameters for the growth of defect free ZnO nanorod arrays with intense UV emission capacity by electrochemcial route, Electrochim Acta, vol 90, pp 514 523, Feb 2013 [165] H Y Ueng and H L Hwang, THE DEFECT STRUCTURE OF CuInS , PART III: EXTRINSIC IMPURITIES, TJournal Phys Chem Solids, vol 51, no I, pp 1118, 1990 [166] T Cuins, THE DEFECT STRUCTURE OF CuInS, PART I: INTRINSIC DEFECTS, J Phys Chem Solids, no 12, pp 12971305, 1989 [167] K Decock, S Khelifi, and M Burgelman, Modelling and measurement of the metastable defect distribution in chalcopyrite-based thin film solar cells, Thin Solid Films, vol 535, pp 362365, May 2013 [168] T Maeda and T Wada, First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2, J Phys Chem Solids, vol 66, no 11, pp 19241927, Nov 2005 [169] K Decock, S Khelifi, and M Burgelman, Modelling multivalent defects in thin film solar cells, Thin Solid Films, vol 519, no 21, pp 74817484, Aug 2011 [170] M Sugiyama, M Hayashi, C Yamazaki, N B Hamidon, Y Hirose, and M Itagaki, Application of impedance spectroscopy to investigate the electrical properties 127 around the pn interface of Cu(In,Ga)Se2 solar cells, Thin Solid Films, vol 535, pp 287290, May 2013 [171] A Kanevce, ANTICIPATED PERFORMANCE OF Cu(In,Ga)Se2 SOLAR CELLS IN THE THIN-FILM LIMIT, Dissertation, 2007 [172] N Amin, P Chelvanathan, M I Hossain, and K Sopian, Numerical Modelling of Ultra Thin Cu(In,Ga)Se2 Solar Cells, Energy Procedia, vol 15, no 2011, pp 291 298, Jan 2012 [173] Z Jehl and L Kao, Elaboration of ultrathin Copper Indium Gallium Di-Selenide based Solar Cells, Dissertation, p 71, 2012 [174] A N Tiwari, D K Pandya, and K L Chopra, AND ANALYSIS OF ALLSPRAYED CuInS2/ZnO S O L A R CELLS, Sol cells, vol 22, pp 263273, 1987 [175] D K P and K L C A.N TIWARI, Analysis of the photovoltaic properties of sprayed CIS/SnOx:F solar cells, Sol Energy Mater., vol 15, pp 121133, 1987 [176] X Hou and K.-L Choy, Synthesis and characteristics of CuInS2 films for photovoltaic application, Thin Solid Films, vol 480481, pp 1318, Jun 2005 [177] M Krunks, A Katerski, T Dedova, I O Acik, and A Mere, Cells Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array, Sol Energy Mater Sol Cells, vol 92, pp 10161019, 2008 [178] N Jebbari, B Ouertani, M Ramonda, C Guasch, and N K Turki, Energy Procedia Structural and Morphological studies of CuIn ( 1-x ) Al x S deposited by spray on various substrates, Energy Procedia, vol 2, no 1, pp 7989, 2010 [179] A Goossens and J Hofhuis, Spray-deposited Nanotechnology, vol 19, no 42, p 424018, Oct 2008 CuInS(2) solar cells., [180] D.-C Nguyen, K Takehara, T Ryo, and S Ito, Back Contact Materials for Superstrate CuInS2 Solar Cells, Energy Procedia, vol 10, pp 4954, Jan 2011 [181] T Ryo, D.-C Nguyen, M Nakagiri, N Toyoda, H Matsuyoshi, and S Ito, Characterization of superstrate type CuInS2 solar cells deposited by spray pyrolysis method, Thin Solid Films, vol 519, no 21, pp 71847188, Aug 2011 [182] C Yao, B Wei, L Meng, H Li, Q Gong, H Sun, H Ma, and X Hu, Controllable electrochemical synthesis and photovoltaic performance of ZnO / CdS core shell nanorod arrays on fluorine-doped tin oxide, J Power Sources, vol 207, pp 222 228, 2012 128 Danh mc cỏc cụng trỡnh ó cụng b ca Lun ỏn 1) Nguyen Duc Hieu, Tran Thanh Thai, Luu Thi Lan Anh, Vu Thi Bich and Vo Thach Son, The role of the CdS buffer layer in full sprayed ZnO/CdS/Cu(In,Al)S2 solar cells, The 6th Vietnam-Korea International Joint Symposium on Advanced Materials and Their Processing- Hanoi, Vietnam - November 04-05, 2011 2) Hung P.P, Anh L.T.L, Thai T T, Hieu N D, Mateus M.N, Son V T and Nga N.T, Structural, morphological and optical properties of ultrasonic spray pyrolysed Cu2ZnSnS4 thin films, The 6th Vietnam-Korea International Joint Symposium on Advanced Materials and Their Processing - Hanoi, Vietnam - November 04-05, 2011 3) Thanh Thai Tran, Thi Lan Anh Luu, Ngoc Trung Nguyen, Thi Bich Vu, Thach Son Vo, Formation of crystal quality of CuInS2 thin films for photovoltaic applications, 9- , , 13-16 2011, - , pp 338-341, 2011 4) Thai T.T, P.P Hung , Anh L.T.L, Hieu N.D, Tuyen V.T.T, Bich V.T, Trung N.N, and Son V.T (2011), Changes in the physical characteristics of CuInS2 thin films absorber by Na incorporation, Proceedings of The 5th South East Asian Technical University Consortium (SEATUC) Synmposium 2011, Hanoi, Vietnam, p 488-493, ISSN 1882-5796, 2011 5) Tran Thanh Thai, Pham Phi Hung, Luu Thi Lan Anh, Nguyen Duc Hieu, Vo Thi Thanh Tuyen, Nguyen Ngoc Trung, Nguyen Thi Tuyet Nga, Vu Thi Bich and Vo Thach Son, Structural, optical and electrical characterizations of Al-doped CuInS2 thin films grown by spray pyrolysis method, Advances in Optics, Photonics, Spectroscopy and Applications VI, pp 365-370, ISSN 1859 - 4271, 2011 6) Tran Thanh Thai, Nguyen Duc Hieu, Luu Thi Lan Anh, Pham Phi Hung and Vo Thach Son, Fabrication and characteristics of full sprayed ZnO/CdS/CuInS2 solar cells Journal of Korean Physical Society, 2012, Vol 61 No 9, pp 1494 ~ 1499 7) Tran Thanh Thai , Nguyen Duc Hieu , Luu Thi Lan Anh , Vu Thi Bich and Vo Thach Son, Effect of substrate temperature on the physical properties of CuInS2 absorber films prepared by repeated ultrasonic spray pysolysis method , Journal of Science and Technology, 2012, No90, pp.125-130 8) Lan Anh Luu Thi, Ngoc Minh Le, Duc Hieu Nguyen, Thanh Thai Tran, Phi Hung Pham, Mateus Neto, Ngoc Trung Nguyen and Thach Son Vo, Effect of seed layer deposited by spray pyrolysis technique on the nanorods structural ZnO film, Proc of the 2012 International Conference on Green Technology and Sustainable Development (P.367-372) 9) Nguyen Duc Hieu , Tran Thanh Thai, Doan Minh Thuy, Vo Thi Thanh Tuyen, Huynh Duc Hoan, Luu Thi Lan Anh, Vu Thi Bich and Vo Thach Son,Ultrasonic repeated spray pyrolysis of CuInS2 films: Absorber layers for solar cells Hụ i nghi quang ho c quang phụ toan quụ c lõ n th VII, 2012 10) Lan Anh Luu Thi, Hong Viet Nguyen, Ngoc Minh Le, Mateus Manuel Neto, Ngoc Trung Nguyen and Thach Son Vo Effect of zinc precursor solutions on nucleation and growth of ZnO nanorod films deposited by spray pyrolysis technique - ô ằ, 2013, pp.223-227 129 11) Lu Th Lan Anh, Phm Phi Hựng, Nguyn c Hiu, Trn Thanh Thỏi, Nguyn Ngc Trung v Vừ Thch Sn, nh hng ca s pha nhụm lờn vi cu trỳc v tớnh cht quang ca mng ZnO nano Hi ngh Vt lý cht rn v Khoa hc vt liu ton quc ln th 8, Thỏi Nguyờn 4-6/11/2013 12) Luu Thi Lan Anh, Luong Huu Bac, Pham Phi Hung, Nguyen uc Hieu, Tran Thanh Thai, Mateus Manuel Neto and Vo Thach Son, Influence of spray rate on structural and optical properties of sprayed ZnO films International Symposium on Frontiers in Materials Science 17-19 Nov 2013, Hanoi, Vietnam 130 Ph lc Cỏc thụng s pin mt tri trờn c s lp hp th CuInS2 ch to bng phng phỏp phun ph nhit phõn ca mt s nghiờn cu ó cụng b Thụng s Cu trỳc Nm TL VOC mV JSC mA/cm2 ff % % S cm2 cụng b trớch dn CuInS2/Cd(Zn)S 440 2,34 43 2,66 0,38 1985 [142] Glass/SnO2:F/CuInS2/Al 330 16,1 38 3,0 0,03 1987 [3] Glass/ZnO:In/CuInS2/Al 280 13,1 38 2,0 0,03 1987 [174] Glass/ITO/CuIn(S0,5Se0,5)/ CdZnS:In/Al 325 10,3 33 1,1 0,2 1994 [156] Glass/ZnO/InS(CBD)/CuInS2 456 14,6 43 2,9 - Glass/ZnO/CdS/CuInS2 443 6,7 37 1,0 - 2004 [102] Glass/ITO/CdS/CuInS2 205 10,4 30 0,65 - 2005 [176] Glass/ITO/TiO2/In2S3/CIS Glass/ITO/ZnOrod/TiO2/In2S3/CIS 425 445 5,5 12 41 43 2,2 - 2008 [177] Glass/ITO/CuInS2/In2S3/Ag (b gi húa sau 12h) 550 55,9 26,4 16,5 0,01 2009 [149] ZnO/In2S3/CuInS2/CuInS2:Al 300 0,52.10-3 - - - 2010 [178] Glass/TCO/ZnOrod/In2S3/CuInS2 441 15,7 60,4 4,17 0,015 2010 [179] Glass/FTO/TiO2/In2S3/CuInS2/Mo 480 4,1 27 0,53 - 2011 [180] Glass/FTO/TiO2/In2S3/CuInS2/Mo 370 11,2 35 1,7 0,5 2011 [181] Glass/FTO/ZnO/CdS coreshell nanorod 578 5,42 - 1,07 - 2012 [182] Glass/ZnO/CdS/CuInS2 425 14,02 28,75 1,71 - 2012 [126] Glass/FTO/ZnOrod/CdS/CuInS2 425 8,7 49,5 1,84 0,031 2014 LA 131 Mc lc Danh mc ký hiu v ch vit tt Danh mc cỏc bng Danh mc cỏc hỡnh v, th M U CHNG I - TNG QUAN TI LIU 13 1.1 Nng lng mt tri - ngun nng lng ca tng lai 13 1.2 Hiu ng PV (PhotoVoltaic Effect) v linh kin quang in s dng hiu ng PV 16 1.3 C s vt lý ca pin mt tri 18 1.3.1 Nguyờn lý hot ng 18 1.3.2 c trng J-V 18 1.3.2.1 Dũng ngn mch Jsc 19 1.3.2.2 in ỏp h mch Voc 21 1.3.2.3 H s lp y ff (fill factor) v hiu sut quang in (Conversion Efficiency) 22 1.3.2.4 c trng J-V ca pin mt tri lý tng 23 1.3.2.5 c trng J-V ca pin mt tri thc 24 1.3.2.6 S mt mỏt hiu sut ca pin mt tri 25 1.4 Pin mt tri mng mng chalcopyrite 26 1.4.1 Cu trỳc ca pin mt tri mng mng chalcopyrite 27 1.4.2 Vt liu chalcopyrite 28 1.5 Pin mt tri mng mng cu trỳc nano 29 1.5.1 Cỏc tớnh cht c bn ca vt liu cu trỳc nano 30 1.5.1.1 Hiu ng kớch thc tinh th 30 1.5.1.2 Cu trỳc nng lng 31 1.5.1.3 Quỏ trỡnh phõn chia ht ti 32 1.5.1.4 Quỏ trỡnh gúp ht ti 33 1.5.2 Gin nng lng ca pin mt tri cu trỳc nano 34 1.5.3 Cỏc cu hỡnh pin mt tri cu trỳc nano 34 1.6 Vt liu km oxide (ZnO) 35 1.6.1 Vt liu ZnO 35 132 1.6.1.1 Cu trỳc tinh th ca ZnO 35 1.6.1.2 Tớnh cht in v quang ca mng ZnO 37 1.6.2 Cụng ngh lng ng cỏc lp chc nng ca pin mt tri 38 1.6.2.1 Phng phỏp phun ph nhit phõn SPD 38 1.6.2.2 Phng phỏp ILGAR (Ion Layer Gas Reaction) 41 Kt lun chng 42 CHNG 2-NGHIấN CU CễNG NGH LNG NG CC LP CHC NNG TRONG CU TRC PMT MNG MNG 43 2.1 Nghiờn cu lng ng mng nano ZnO bng phng phỏp USPD 45 2.1.1 Thc nghim 45 2.1.1.1 Chun b húa cht 45 2.1.1.2 Lng ng mng nano ZnO 45 2.1.2 Kt qu v tho lun 46 2.1.2.1 La chn dung mụi 46 2.1.2.2 nh hng ca cỏc anion 51 2.1.2.3 nh hng ca nhit lng ng 55 2.1.2.4 nh hng ca loi 60 2.1.2.5 nh hng ca tc lng ng 63 2.1.2.6 nh hng ca nng mui km 65 2.2 Nghiờn cu lng ng lp hp th CuInS2 bng phng phỏp USPD 67 2.2.1 Chun b húa cht 67 2.2.2 Lng ng mng CuInS2 68 2.2.3 Kt qu v tho lun 68 2.3 Nghiờn cu lng ng lp m CdS bng phng phỏp USPD-ILGAR 73 2.3.1 Ti li cn lp m pin mt tri mng mng 73 2.3.2 Mng CdS 73 2.3.3 Lng ng lp m nano CdS bng phng phỏp USPD-ILGAR 73 2.3.3.1 Chun b húa cht 73 2.3.3.2 Thc nghim 74 2.3.4 Kt qu v Tho lun 74 CHNG 3-KHO ST CC PHN BIấN ZnO/CdS V CdS/CuInS2 BNG PHNG PHP PH TR KHNG PHC CIS 78 3.1 Phng phỏp ph tr khỏng phc CIS 78 133 3.2 ng dng phng phỏp ph tr khỏng phc nghiờn cu cỏc linh kin cu trỳc lp 80 3.3 Thc nghim 82 3.3.1 Chun b mu 82 3.3.2 Kho sỏt cỏc phõn biờn ZnO/CdS v CdS/CuInS2 82 3.4 Kt qu v tho lun 84 3.4.1 Kho sỏt ph CIS ca h vt liu Glass/ITO/nanoZnO/CdS/CuInS2/Ag 84 3.4.2 Mụ hỡnh húa h vt liu Ag/ITO/ZnO/CdS/CuInS2/Ag 84 Kt lun chng 94 CHNG 4-THIT K V CH TO TH NGHIM PIN MT TRI CU TRC NANO H GLASS/ITO/nanoZnO/CdS/CuInS2 95 4.1 Thit k pin mt tri cu trỳc lp kiu Glass/ITO/nanoZnO/CdS/CuInS2 95 4.1.1 Mụ hỡnh s 95 4.1.2 Chng trỡnh mụ phng SCAPS 96 4.1.3 Thit k pin mt tri mng mng cu trỳc nano 98 4.1.3.1 La chn cu trỳc 98 4.1.3.2 iu kin mụi trng 99 4.2 Ch to pin mt tri mng mng cu trỳc Glass/ ITO/nanoZnO/CdS/CuInS2/Me .108 4.2.1 c trng quang in ca pin mt tri mng mng h Glass/ITO/nanoZnO/CdS/CuInS2 109 4.2.1.1 nh hng ca chiu dy lp hp th CuInS2 109 4.2.1.2 nh hng ca lp ca s nano ZnO 112 Kt lun chng 113 KT LUN 115 TI LIU THAM KHO 116 Danh mc cỏc cụng trỡnh ó cụng b ca Lun ỏn 128 Ph lc 130 ... nano ZnO n hot ng ca pin mt tri mng mng glass/TCO/nanoZnO/CdS/CuInS2/Me lng ng bng phng phỏp USPD-ILGAR Mc ớch nghiờn cu ca lun ỏn 1) Nghiờn cu v phỏt trin cụng ngh lng ng khụng chõn khụng: USPD-ILGAR. .. 3.3 Cu trỳc pin mt tri mng mng CuInS2 (a) v gin nng lng (b) 81 Hỡnh 3.4 S tng ng ca pin mt tri mng mng Glass/ITO/nanoZnO/CdS/CuInS2/Me (a) v ph CIS ca h vt liu Glass/ITO/nanoZnO/CdS/CuInS2/Me... cỏc mu mng nano ZnO lng ng vi cỏc ngun mui km52 Hỡnh 2.8 Kt qu tỏch ph Raman di s súng 300 ữ 500 cm- ca cỏc mu mng nanoZnO 53 Hỡnh 2.9 Ph truyn qua ca cỏc mu nano ZnO lng ng vi

Ngày đăng: 09/07/2017, 20:17

Mục lục

  • Danh mục ký hiệu và chữ viết tắt

  • Danh mục các chữ viết tắt

  • Danh mục các bảng

  • Danh mục các hình vẽ, đồ thị

  • CHƯƠNG ITỔNG QUAN TÀI LIỆU

  • CHƯƠNG 2NGHIÊN CỨU CÔNG NGHỆ LẮNG ĐỌNG CÁC LỚP CHỨCNĂNG TRONG CẤU TRÚC PMT MÀNG MỎNG

  • CHƯƠNG 3 KHẢO SÁT CÁC PHÂN BIÊN ZnO/CdS VÀ CdS/CuInS2BẰNG PHƢƠNG PHÁP PHỔ TRỞ KHÁNG PHỨC CIS

  • CHƯƠNG 4THIẾT KẾ VÀ CHẾ TẠO THỬ NGHIỆM PIN MẶT TRỜI CẤUTRÚC NANO HỆ GLASS/ITO/nanoZnO/CdS/CuInS2

  • TÀI LIỆU THAM KHẢO

  • Danh mục các công trình đã công bố của Luận án

Tài liệu cùng người dùng

Tài liệu liên quan