Nghiên cứu tổng hợp vật liệu zno cấu trúc nano một chiều ứng dụng cho cảm biến khí NO2

130 572 0
Nghiên cứu tổng hợp vật liệu zno cấu trúc nano một chiều ứng dụng cho cảm biến khí NO2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi Cỏc s liu, kt qu lun ỏn l trung thc, cha tng c tỏc gi khỏc cụng b Tụi xin cam oan rng mi s giỳp cho vic thc hin lun ỏn ó c cm n, cỏc thụng tin trớch dn lun ỏn ny u c ch rừ ngun gc H Ni, Ngy thỏng nm Tỏc gi lun ỏn i LI CM N Trc tiờn, tụi xin by t lũng bit n sõu sc ti thy hng dn GS.TS Trn Trung, ngi ó nh hng, hng dn, giỳp tụi hon thnh cỏc nhim v t cho lun ỏn Tụi xin chõn thnh cm n cỏc thnh viờn Nhúm iSensor Vin o to Quc t v Khoa hc Vt liu (ITIMS) nhng ngi ó ch bo cho tụi cỏch nghiờn cu khoa hc, nh hng nghiờn cu cho tụi c bit tụi xin gi li cm n sõu sc n cỏc thy GS.TS Nguyn Vn Hiu v PGS TS Nguyn c Hũa ó giỳp tụi rt nhiu tụi cú th hon thin lun ỏn ca mỡnh Tụi xin chõn thnh cm n ti Ban giỏm c, B mụn Vt liu in t & cm bin thuc Vin o to Quc t v Khoa hc Vt liu (ITIMS), Vin o to sau i hc - Trng i hc Bỏch khoa H Ni ó to iu kin giỳp tụi sut thi gian hc v thc hin ti Tụi xin chõn thnh cm n Lónh o Trng i hc S phm K thut Hng Yờn ó to iu kin thun li v thi gian, cng nh cỏc s giỳp ng h khỏc giỳp tụi hon thnh bn lun ỏn ny Xin chõn thnh cm n n tt c cỏc ng nghip, bn bố v gia ỡnh ó ng viờn giỳp thi gian qua v chuyờn mụn cng nh v vt cht ln tinh thn cú liờn quan trc tip hoc giỏn tip giỳp tụi hon thnh bn lun ỏn ny Tỏc gi lun ỏn Hong Vn Hỏn ii DANH MC CC Kí HIU V CH VIT TT Ký hiu Tờn ting Anh Tờn ting Vit CVD Chemical vapor deposition Lng ng hi húa hc EDX Energy-Dispersive X-ray Tỏn sc nng lng tia X FE-SEM Field Emission Scanning Electron Kớnh hin vi in t quột phỏt x Microscope trng Nb Niobium Niobi NO2 Nitrogen (IV) Oxide Ni - t (IV) ụ - xớt P123 Pluronic Pluronic ppm parts per million Mt phn triu PID Proportional integral derivative B iu khin vi tớch phõn t l PL Photoluminescence Phỏt x hunh quang R Resistance in tr SLS Solid Liquid Solid Rn Lng Rn sccm standard cubic centimeter per Centi-một trờn phỳt minute (ml trờn phỳt) MFC Mass flow controler Thit b iu khin lu lng khớ SAED Selected area electron diffraction Nhiu x in t vựng c chn SEM Scanning Electron Microscope Kớnh hin vi in t quột TEM Transmission Electron Microscope Kớnh hin vi in t truyn qua Ultravioletvisible spectroscopy Ph t ngoi-kh kin XRD X-ray diffraction Nhiu x tia X ZnO Zinc Oxide Km ụ-xớt UV-Vis iii MC LC CHNG 1: TNG QUAN 1.1 Gii thiu tng quan v ZnO 1.1.1 Cu trỳc tinh th ca vt liu ZnO .1 1.1.2 Mt s c tớnh ni bt ca vt liu ZnO cu trỳc mt chiu 1.1.3 Mt s ng dng ca vt liu ZnO mt chiu 1.2 Cỏc phng phỏp ch to s lng ln v dõy nano dng t 10 1.2.1 Ch to nano ZnO bng phng phỏp bc bay nhit .10 1.2.2 Ch to nano ZnO bng phng phỏp thy nhit 15 1.2.3 Ch to nano ZnO bng quỏ trỡnh nhit 21 1.3 Cm bin khớ dng dn 25 1.3.1 Khỏi nim v cm bin 25 1.3.2 Cỏc i lng c trng ca cm bin .26 1.3.3 Cu to ca cm bin khớ kiu thay i in tr 29 1.3.4 Cỏc dng vt liu s dng ca cm bin khớ 30 1.3.5 Cỏc yu t nh hng n c tớnh ca cm bin khớ .32 1.3.6 Nguyờn lý hot ng ca cm bin khớ 37 CHNG 2: THC NGHIM V PHNG PHP NGHIấN CU 40 2.1 Tng hp vt liu nano ZnO 40 2.1.1 Ch to nano ZnO bng phng phỏp thy nhit 40 2.1.2 Ch to vt liu nano ZnO mt chiu bng phng phỏp bc bay nhit 43 2.2 Ch to cm bin trờn c s vt liu nano ZnO 46 2.2.1 in cc s dng cho cm bin .46 2.2.2 Ch to cm bin 46 2.2.3 Ch to cm bin s dng dõy nano bin tớnh bng Nb2O5 .47 2.3 o cỏc c trng ca vt liu 48 2.3.1 Kho sỏt cỏc tớnh cht c bn 48 2.3.2 Kho sỏt cỏc c trng ca cm bin .48 iv 2.3.3 Quy trỡnh o .49 2.3.4 Cỏc tớnh toỏn cho cỏc c trng ca cm bin 50 CHNG 3: KT QU V THO LUN 52 3.1 ỏnh giỏ quy trỡnh ch to v nghiờn cu cỏc tớnh cht c bn ca vt liu nano ZnO 52 3.1.1 Thanh nano ZnO ch to bng phng phỏp thy nhit 52 3.1.2 Nano ZnO ch to bng phng phỏp bc bay nhit .58 3.2 c trng nhy khớ ca vt liu nano ZnO 72 3.2.1 La chn nhit ca cm bin 72 3.2.2 Tớnh cht nhy khớ ca cm bin s dng nano ZnO ch to bng phng phỏp thy nhit 74 3.2.3 Tớnh cht nhy khớ ca cm bin s dng dõy nano ZnO ch to bng phng phỏp bc bay nhit 79 3.2.4 Tớnh cht nhy khớ ca cm bin nano tetrapod ZnO ch to bng phng phỏp bc bay nhit 84 3.3 c trng nhy khớ ca cm bin dõy nano ZnO bin tớnh Nb2O5 87 3.3.1 c trng c bn ca dõy nano ZnO bin tớnh 88 3.3.2 Tớnh cht nhy khớ ca cm bin dõy nano ZnO bin tớnh theo nng Nb2O5 khỏc 89 3.4 Phõn tớch, ỏnh giỏ v so sỏnh cỏc loi vt liu nano ZnO ch to c v c trng nhy khớ ca chỳng 93 3.4.1 Vt liu nano ZnO 93 3.4.2 Tớnh cht nhy khớ ca cỏc vt liu nano ZnO 96 KT LUN CHUNG 105 TI LIU THAM KHO 106 DANH MC CC CễNG TRèNH CễNG B CA LUN N 107 v DANH MC HèNH V Hn Mụ hỡnh minh cu trỳc tinh th bn vng ca ZnO theo kiu Wurzite (a) v Zincblende (b) Hn Ph phỏt quang ca cỏc nano ZnO vi kớch thc tinh th khỏc Hn : Ph hunh quang ca ZnO vi cỏc cu trỳc nano mt chiu cú hỡnh dng khỏc .4 Hn Gin mc nng lng ca ZnO Hn c trng I V ca dõy nano ZnO (a), s ph thuc ca in tr dõy nano ZnO theo nhit (b) Hn Minh cu to chung ca FET (MOSFET) .7 Hn : c trng IDS-VDS (A), IDS-Vg ca FET s dng dõy nano ZnO (B) Hn Cu trỳc ca mt cm bin húa hc s dng vt liu nano ZnO Hn Sn phm ZnO c tng hp bng phng phỏp bc bay (a,) nh FE-SEM ca sn phm (b,c) v nh HR-TEM (d) 12 Hn nh HR TEM ca vt liu ZnO (a,b), SEAD ca ZnO (c,d) .13 Hn : Quy trỡnh ch to vt liu bng phng phỏp thy nhit 16 Hn : nh SEM (a,b), nh HR-TEM ca vt liu nano ZnO (c,d) .17 Hn : nh TEM ca cỏc sn phm ZnO thờm Na2CO3 vi cỏc lng khỏc nhau: 5g (a) v 10 g (b) .18 Hn C ch hỡnh thnh dõy nano ZnO bng phng phỏp thy nhit 19 Hn : nh SEM vựng nhit trung bỡnh 800 850 C (a, b, c), vựng nhit trung bỡnh 700- 800 C (d, e, f) 22 Hn : nh TEM (a), HR- TEM (b), SEAD (c) ca nano ZnO .23 Hn S s ca bn c ch cú th cú ca chuyn ion phn ng ụ - xi húa, s chuyn ca cỏc ion ụ - xi ca c ch k ụ - xi (a), s chuyn ca cỏc ion ụ - xi ca c ch trng ụ - xi (b), s chuyn ca cỏc ion kim loi bng c ch in k kim loi (c), chuyn ca cỏc ion kim loi bng c ch kim loi trng (d) 24 Hn S ph thuc ca ỏp ng vo nng o (Ethanol) [ỏp ng khớ ca cm bin mó s TGS2611 ca hóng Figaro c ng ti trờn trang web ca hóng] .27 vi Hn : c tuyn mụ t quỏ trỡnh hi ỏp cm bin tng tỏc vi khớ o .28 Hn Cu to ca cm bin khớ 29 Hn Cu to cm bin dng 30 Hn Kt cu dng mng 31 Hn : Kt cu dng dõy 32 Hn Hỡnh mụ t lp tip xỳc gia dõy nano trờn cm bin 33 Hn : nh hng ca kớch thc dõy n ỏp ng ca cm bin 34 Hn S ph thuc ca ỏp ng vo nhit .35 Hn : S nng lng ti b mt ca ht tinh th 37 Hn : C ch hp ph khớ thụng qua s gim vựng dn ca dõy nano 38 Hn Hỡnh nh mt s thit b s dng quỏ trỡnh ch to vt liu nano ZnO bng phng phỏp thy nhit 41 Hn S ch to vt liu ZnO bng phng phỏp thu nhit 42 Hn : S minh h ch to vt liu ZnO bng phng phỏp bc bay nhit 44 Hn nh ca lũ dựng ch to dõy nano ZnO bng phng phỏp bc bay nhit 45 Hn Minh cu trỳc in cc rng lc ca cm bin .46 Hn Chu trỡnh nhit ca linh kin cm bin nano ZnO .47 Hn : S nguyờn lý ca h trn khớ 49 Hn Giao din phn mm VEE Pro ghi nhn s thay i in tr ca cm bin theo thi gian thay i nng khớ 49 Hn : Minh vic tớnh toỏn thi gian ỏp ng v thi gian hi phc ca cm bin 50 Hn nh SEM ca vt liu ZnO ch to bng phng phỏp thu nhit vi pH khỏc pH = (a), pH = (b), pH = 10 (c) v pH = 11 (d) 53 Hn nh SEM (a), nh HR-TEM (b,c,d) v nh bin i Fourier hai chiu - FFT (e) ca nano ZnO c ch to vi pH = 10 54 Hn nh TEM (a), phõn b EDS ca cỏc nguyờn t C (b), O(c) v Zn (d) ca nano ZnO c ch to iu kin vi pH = 10 55 vii Hn Gin nhiu x XRD ca vt liu nano ZnO ch to bng phng phỏp thy nhit vi pH =10 56 Hn Ph hp th UV-Vis ca vt liu nano ZnO ch to bng phng phỏp thy nhit vi pH =10 56 Hn : Ph hunh quang (PL) ca vt liu nano ZnO c ch to bng phng phỏp thy nhit vi pH =10 57 Hn : nh minh dõy nano ZnO thu c trờn cc thy tinh v h mu I (a), h mu II (b) v h mu III (c) 60 Hn : nh SEM mu M11 vi phúng i khỏc ca cỏc cu trỳc dng dõy (a, b) v dng cú cỏc tetrapod (c, d) .62 Hn : nh SEM mu M12 vi phúng i khỏc ca cỏc cu trỳc dng dõy (a, b) v dng cú cỏc tetrapod (c, d) .62 Hn : nh SEM mu M13 vi phúng i khỏc ca cỏc cu trỳc dng dõy (a, b) v dng cú cỏc tetrapod (c, d) .63 Hn : nh SEM mu M14 vi phúng i khỏc ca cỏc cu trỳc dng dõy (a, b) v dng cú cỏc tetrapod (c, d) .63 Hn : nh SEM mu M15 vi phúng i khỏc ca cỏc cu trỳc dng dõy (a, b) v dng cú cỏc tetrapod (c, d) .64 Hn nh TEM ca dõy nano ZnO 65 Hn : nh HR-TEM (a,b), bin i Fourier hai chiu-FFT (c) v ph biu din s phõn b 38 mt phng 10 nm (d) ca dõy nano ZnO .65 Hn : nh SEM (a), nh TEM (b,c); bin i Fourier hai chiu - FFT (d), HRTEM (e,f), ph biu din s phõn b 38 mt phng 10 nm (g) ca vt liu nano ZnO cú cu trỳc tetrapod 66 Hn Gin nhiu x tia X ca dõy nano ZnO ch to bng phng phỏp bc bay nhit 68 Hn Ph phỏt x hunh quang ( PL) ca dõy nano ZnO ch to bng phng phỏp bc bay nhit 69 Hn 18: Ph hunh quang ca dõy nano ZnO vi cỏc nhit mu khỏc t 400 700 oC ti vựng t ngoi 381 nm (a) v vựng kh kin 514 nm (b) .70 Hn S minh quỏ trỡnh hỡnh thnh dõy nano ZnO bng phng phỏp bc bay khụng s dng mm xỳc tỏc ban u 71 viii Hn Minh c ch hỡnh thnh nano tetrapod ZnO bng phng phỏp bc bay nhit 72 Hn : ỏp ng ca cm bin s dng dõy nano ZnO ti nhit hot ng l 250 oC vi nng NO2 khớ t 0,5 n 10 ppm ng ti nhit mu khỏc l 400 oC (a), 500 oC (b), 600 oC (c) v 700 oC (d) .73 Hn : in tr ca cm bin dõy nano ZnO o 10 ppm NO2 nhit t 400 oC n 700 oC 73 Hn : S ỏp ng in tr ca cm bin nano ZnO vi nng khớ NO2 t 0.5 ppm n 10 ppm ti nhit lm vic khỏc 200 oC (a), 250 oC (b), 300 oC (c) v 350 oC (d) 75 Hn ỏp ng ca cm bin nano ZnO ph thuc vo nng khớ NO2 ti cỏc nhit t 200 n 350 oC 76 Hn hi ỏp ca cm bin nano ZnO vi v 10 ppm khớ NO2 ph thuc vo nhit hot ng 76 Hn in tr ca cm bin nano ZnO ỏp ng vi ppm khớ NO2 ti cỏc nhit lm vic t 200 oC n 350 oC 77 Hn S ph thuc thi gian ỏp v thi gian hi phc ca cm bin nano ZnO vi nng khớ NO2 l ppm vo nhit lm vic t 200 oC n 350 oC .78 H nh 3.28: ỏp ng ca cm bin nano ZnO theo chu k o vi ppm NO2/khụng khớ ti nhit hot ng 250 oC 79 Hn ỏp ng ca cm bin dõy nano ZnO theo nng khớ NO2 ti nhit hot ng 200 oC (a), 250 oC (b), 300 oC (c) v 350 oC (d) 80 Hn : S ph thuc ỏp ng ỏp ng khớ vo nng khớ NO2 ti cỏc nhit hot ng t 200 n 350 oC 80 Hn : ỏp ng ca cm bin dõy nano ZnO vi v 10 ppm khớ NO2 ph thuc vo nhit hot ng 81 Hn : S ph thuc ca in tr cm bin dõy nano ZnO ỏp ng vi 1ppm NO2 ti cỏc nhit hot ng t 200 350 oC 82 Hn Thi gian ỏp ng v thi gian hi phc ca cm bin dõy nano ZnO vi nng ppm ph thuc vo nhit hot ng t 200 350 oC .83 Hn : ỏp ng ca cm bin dõy nano ZnO vi chu kỡ ca ppm khớ NO2/khụng khớ 83 ix Hn ỏp ng ca cm bin nano tetrapod ZnO vi cỏc nng NO2 ti nhit hot ng 200 oC (a), 250 oC (b), 300 oC (c) v 350 oC (d) .84 H nh 3.36: ỏp ng ca cm bin nano tetrapod ZnO ph thuc vo nng khớ NO2 ti cỏc nhit hot ng khỏc .85 Hn ỏp ng ca cm bin nano tetrapod ZnO theo nhit vi nng khớ v 10 ppm NO2 85 Hn S thay i in tr ca cm bin nano tetrapod ZnO vi nng khớ ppm ti cỏc nhit hot ng 200 oC (a),250 oC (b), 300 oC (c) v 350 oC (d) .86 Hn Thi gian ỏp ng v thi gian hi phc ca cm bin nano tetrapod ZnO vi nng ppm ph thuc vo nhit hot ng 87 Hn nh SEM ca cỏc mu dõy nano ZnO bin tớnh bng Nb2O5: M4 (a), M3 (b), M2 (c) v M1 (d) .88 Hn : Ph tỏn x nng lng EDS ca dõy nano ZnO bin tớnh bng Nb2O5 89 Hn : ỏp ng ca cm bin M1 (a), M0 (b) vi nng khớ NO2; ỏp ng ca cỏc cm bin ph thuc vo nng khớ NO2 (c); biu ỏp ng ca cỏc cm bin M0, M1, M2, M3 v M4 vi 10 ppm NO2 (d) hot ng ti 200 oC .90 Hn : ỏp ng ca cm bin M vi khớ NO2 ti nhit hot ng 200 oC (a), 250oC (b), 300 oC (c) v 350 oC (d) 91 Hn : ỏp ng ca cm bin M2 ph thuc nng khớ NO2 (a), ph thuc nhit hot ng vi ppm v 10 ppm khớ NO2 (b) 91 H n 3.45: in tr cm bin M2 ỏp ng vi ppm NO2 ti cỏc nhit hot ng 92 Hn : Thi gian ỏp ng v hi phc ca cm bin M2 vi ppm NO2 ph thuc vo nhit hot ng t 200 n 350 oC .92 Hn nh SEM, TEM, HR - TEM ca cỏc loi vt liu nano ZnO ch to bng phng phỏp thy nhit v bc bay nhit 94 Hn Gin nhiu x tia X (a), v ph phỏt x hunh quang (b) ca nano v dõy nano ZnO 95 Hn Minh cỏc mc nng lng vựng cm gõy bi cỏc sai hng cu trỳc vt liu ZnO [102] 95 x O2 + 2e 2O- (ads) (3.16) Trong dõy nano ZnO, in t cng c bt ngun t cỏc nguyờn t km in k Zni2 + hoc khuyt thiu oxy (VO) úng vai trũ l ngun cung cp in t Trong ú khớ NO2 b hp ph v tng tỏc vi b mt dõy ZnO nh ó trỡnh by trờn Nb2O5 O2 Vựng nghốo H Nb2O5 Vựng dn Nano ZnO 3.52: Minh s m rng kờnh dn in ca dõy nano ZnO cú bin tớnh cỏc ht Nb2O5 Khi cú cỏc vt liu nn oxit kim loi c bin tớnh cỏc cht xỳc tỏc trờn b mt (c th õy l dõy nano ZnO bin tớnh ht Nb2O5) Khi cha tng tỏc vi cỏc khớ, ZnO c bin tớnh trờn b mt bng Nb2O5 thỡ cú th to s thay i v dn in mnh Chi tit, s gia tng dn in ca ZnO bin tớnh Nb2O5 l c ch th hỡnh thnh cỏc ht ti in c mụ t nh l [85]: NbZn NbZn 3e (3.17) Nb2O5 (ZnO) 2Nb+Zn + 2O- + 3/2 O2 (g) (3.18) Nh cỏc phng trỡnh trờn, s lng ca cỏc in t vựng dn ca dõy nano ZnO s tng, rng kờnh dn in dõy nano ZnO s m rng nh th hin trờn Hỡnh 3.52 Hn na, bin tớnh thỡ tn ti nhiu im m cỏc ht Nb2O5 ni cỏc dõy nano vi Do vy, in tr tng cng cm bin s gim mnh so vi trng hp khụng bin tớnh (nh kt qu ó trỡnh by trc õy Mc 3.3.2) T cỏc hiu ng trờn, cm bin dõy nano ZnO bin tớnh Nb2O5 tng tỏc vi khớ NO2 thỡ cht xỳc tỏc úng vai trũ phõn ly cỏc phn t khớ hp ph v phõn tỏn chỳng trờn b mt ca vt liu cm bin theo nguyờn tc trn spill-over [89].Do ú, in tr ca cm bin tng mnh lm cho t s in tr sau v trc tng tỏc khớ ( ỏp ng) thay i mnh 100 c) ỏ iỏ tớ c t ca cỏc cm bin nano ZnO Nhm tỡm mi liờn h gia hỡnh thỏi hc, cu trỳc tớnh th, tớnh cht quang vi cỏc c trng nhy khớ tng ng ca cỏc vt liu nano ZnO ch to t hai phng phỏp thy nhit v bc bay nhit, chỳng tụi ỏnh giỏ phõn tớch v so sỏnh mt cỏch h thng cỏc kt qu nhy khớ NO2 thu c t cỏc cm bin ny Độ đáp ứng RG/RA 50 40 30 20 10 Thanh nano Dây nano Nano tetrapod 150 200 250 300 350 o Nhiệt độ ( C) H 3.53: ỏp ng ca cỏc cm bin nano ZnO dng thanh, dõy v tetrapod vi 10 ppm NO2 ph thuc vo nhit hot ng Hỡnh 3.53 ch ỏp ng ca cỏc cm bin nano ZnO dng thanh, dõy v tetrapod vi 10 ppm NO2 ph thuc vo nhit hot ng Kt qu ny ch rng ỏp ng ca cm bin nano ZnO cú cc i ti nhit hot ng 250 oC cũn cm bin dõy nano hay nano tetrapod ZnO thỡ ti nhit hot ng c 200 oC Cm bin nano ZnO dng dõy hoc nano tetrapod cú ỏp ph thuc vo nhit l rt ging cú kiu dỏng cng nh ln, kt qu ny cho thy minh chng hai vt liu cú cựng ngun gc hỡnh thnh ỏp ng ca hai cm bin ny gim khỏ nhanh theo chiu tng nhit hot ng (ti 350 oC thỡ ỏp ng RG/RA ca cm bin ch khong l 6) Khi so sỏnh thỡ cm bin nano ZnO th hin ỏp ng khỏ ln vựng nhit hot ng cao, ti 350 oC thỡ ỏp ng l RG/RA = 16 Theo chỳng tụi, kt qu ny th hiờn trờn Hỡnh 3.53 ny v cỏc cm bin cú th l liờn 101 quan n hon ho ca tinh th cng nh tớnh nh hng tinh th u tiờn ca cỏc vt liu nano ZnO ch to lun ỏn C th nh sau: - Thụng thng, nano ụ-xớt kim loi cú nh hng tớnh th u tiờn s tn ti mt s trng thỏi nng lng riờng bit no ú tng ng vi nh hng tinh th [41, 42] Vỡ vy, vt liu cú ng nht cao v tớnh nh hng tớnh th tt thỡ s cú tớnh chn lc tng tỏc vi mt loi khớ no ú iu ny s tng ng vi cm bin da trờn vt liu ú s cú mt vựng nhit hot ng hp Trờn c s ú xột cho cỏc cm bin nano ZnO lun ỏn ny, chỳng ta cú dõy nano ZnO hay nano tetrapod ZnO cú tớnh ng nht, hon ho tinh th v nh hng tinh th tt hn nhiu so vi nano ZnO Vỡ th, hiu ng ny cú th l nguyờn nhõn m cm bin dõy nano ZnO hay cm bin nano tetrapod ZnO cú nh ca ng ỏp ng vi khớ NO2 ph thuc vo nhit hot ng nhn hn, cng nh vựng nhit hot ng ti u thp hn so vi ca cm bin nano ZnO - Chỳng ta ý rng khớ NO2 cú xu hng t phõn hy mt phn thnh NO nhit cao Do vy, hot ng nhit cao nano ụ-xit kim loi m cú nhiu trng thỏi nng lng b mt (vớ d nh nano ZnO ch to lun ỏn ó bit cú tớnh hon ho tinh th v nh hng tinh th kộm hn) thỡ cú th tng tỏc khớ s phc v cựng lỳc vi nhiu loi khớ (NO2 v NO), dn n vựng nhit hot ng ca cm bin nano ZnO ny m rng v vựng nhit cao Khi xột cho cỏc cm bin dõy nano ZnO hoc nano tetrapod cỏc vt liu cú th ch cú mt s nng lng riờng bit m ti u cho tng tỏc vi khớ NO2 nhit thp Ngoi ra, minh chng thờm cho lp lun trờn v mi liờn h gia c trng nhy khớ vi tớnh cht tinh th v ng nht ca cỏc nano ZnO, chỳng tụi xem xột n thi gian hi ỏp ca cỏc cm bin Bng 3.3 lit kờ thi gian ỏp ng v thi gian hi phc ca cỏc cm bin vi 2,5 ppm khớ NO2 ti hai nhit hot ng l 200 v 350 oC T cỏc kt qu ny chỳng tụi nhn thy rng: Cỏc cm bin nano ZnO u th hin s tng i phự hp gia thi gian ỏp ng v hi phc Nu cm bin cú thi gian ỏp ng di thỡ cng cú thi gian hi phc di Cm bin dõy nano ZnO v nan tetrapod ZnO cú giỏ tr thi gian hi ỏp gn nh ti mi nhit hot ng Khi so sỏnh thỡ cm bin nano ZnO cú thi gian hi ỏp cú xu hng l nh hn ti cỏc nhit hot ng Kt qu ny cú th c gii thớch nh sau: 102 - Vt liu nhy khớ cú nhiu sai hng (thanh nano ZnO) dn n tn ti nhiu mc nng lng vựng cm iu ny lm cho vt liu cú nng ht ti (in t) ln, ú rng vựng nghốo (hoc rng Debye LD) trờn b mt gim Nh chỳng ta ó bit c ch nhy khớ ca oxit kim loi bỏn dn l quỏ trỡnh trao i in t vựng dn vi cỏc khớ hp ph trờn b mt qua mt lp cỏch in (hay cũn gi vựng nghốo) Vy, vựng nghốo ca vt liu gim thỡ quỏ trỡnh trao i in t dn gia vt liu v khớ (NOx) d dng, tc l thi gian hi ỏp gim - Tuy vy, nu vt liu cú nhiu mc nng lng vựng cm sai hng thỡ in t tr v sau quỏ trỡnh tng tỏc vi NO2 (cm bin hi phc sau quỏ trỡnh ngt khớ NO2) s cú th dch chuyn qua nhiu trng thỏi nng lng Chớnh vỡ vy hiu ng ny cú th l nguyờn nhõn m thi gian hi phc ca cm bin nano ZnO ti nhit hot ng thp 200 oC cú thi gian di so vi cỏc cm bin khỏc 3.3: Bng lit kờ thi gian hi ỏp ca cỏc cm bin nano ZnO vi 2,5 ppm khớ NO2 ti nhit hot ng 200 v 350 oC Vt liu N it ot T i gian ỏp ng T i gian i p c ng ( C) ti , ppm NO2 ti , ppm NO2 200 76 76 350 46 16 200 81 62 350 49 19 200 92 56 350 53 21 200 91 34 350 16 o Thanh nano ZnO Dõy nano ZnO Nano tetrapod ZnO Dõy nano ZnO bin tớnh Nb2O5 Cỏc gii thớch v lp lun ny mt ln na minh chng mi liờn h cht ch gia tớnh cht nhy khớ v cỏc c trng v cu trỳc tớnh th, s sai hng, ng nht ca vt liu nano ZnO lun ỏn 103 Trong lun ỏn ny, vic chỳng tụi th nghim bin tớnh dõy nano ZnO bng Nb2O5 ó cho thy nhng kt qu rt kh quan so sỏnh vi cm bin dõy nano ZnO khụng bin tớnh v ỏp ng tng lờn hng trm ln v thi gian hi ỏp cng c gim khỏ nhiu (thi gian ỏp ng gim t 53 giõy n 16 giõy, thi gian hi phc gim t 21 giõy v giõy ti nhit hot ng 350 oC) Kt lun c ng Thanh nano ZnO vi kớch thc 50 nm ì 500 nm ó c ch to thnh cụng bng phng phỏp thy nhit iu kin pH=10, nhit 160 oC, v khụng s dng mm kt tinh ban u Dõy nano ZnO v nano tetrapod ZnO vi kớch thc ng kớnh c 30 nm ó c ch to bng phng phỏp bc nhit iu kin ỏp sut khớ quyn, nhit phn ng 1100 oC, thi gian ngn (15 phỳt), v khụng s dng mm kt tớnh ban u Hai quy trỡnh dựng ch to vt liu nano ZnO, dõy nano ZnO v nano tetrapod ZnO u cho hiu sut cao tng ng c 80% v 10 % Cỏc cm bin trờn c s vt liu nano ZnO ch to c kho sỏt nhy khớ NO2 vi nng t 0,5 n 10 ppm ti vựng nhit hot ng t 150 n 350 oC Cỏc cm bin ny u cú ỏp ng khớ tt v khỏ ging nhau, t giỏ cao nht khong 50 ln vi 10 ppm NO2 c trng nhy khớ ca cỏc cm bin nano ZnO ó c gii thớch liờn quan n nh hng ca cỏc tham s v nh hng tớnh th u tiờn, tớnh hon ho tinh th, v tớnh ng nht kớch thc Cm bin dõy nano ZnO bin tớnh Nb2O5 th hin ỏp ng tng vt bc (t giỏ tr i 371 ln) so vi khụng bin tớnh ln (giỏ tr ln nht l 53 ln), v thi gian hi ỏp gim khỏ mnh Lun ỏn a mụ hỡnh gii thớch v s bin tớnh Nb2O5 nh hng n c trng nhy khớ ca NO2 104 KT LUN CHUNG KT LUN CHUNG Trong quỏ trỡnh thc hiờn ti lun ỏn tin s, tỏc gi v th hng dn ó thu c nhng kt qu nht nh Cỏc kt qu nghiờn cu ca lun ỏn ó c tỏc gi v th hng dn cụng b trờn cỏc chuyờn ngnh nc v quc t Trong ú, cỏc kt qu cú nhiu ý ngha khoa hc v cú tớnh mi ó c cụng b hai bi bỏo quc t thuc h thng SCI Cỏc kt qu chớnh lun ỏn c kt lun nh sau: Cỏc vt liu nano ZnO dng thanh, dõy v tetrapod c ch to thnh cụng t cỏc phng phỏp thy nhit v bc bay nhit Cỏc quy trỡnh ch to ca hai phng phỏp ny u n gin, hiu qu v cho hiu sut cao Mi vt liu nano ZnO ch to c u cú ng nht cao v hỡnh thỏi hc, kớch thc v cú phm cht tinh th tt Vt liu nano ZnO dng dõy v tetrapod cú hon ho n tớnh th v ng u v hỡnh thỏi l tt hn nhiu so vi vt liu dng c trng nhy khớ ca cỏc cm bin s dng nano ZnO, dõy nano ZnO, v nano tetrapod ZnO u th hin tớnh cht nhy khớ tt vi NO2 v khỏ ging im khỏc bit gia cỏc cm bin l ỏp ng khớ NO2 l v vựng nhit hot ng ti u v thi gian hi ỏp, cm bin dõy nano ZnO v nano tetrapod ZnO cú vựng nhit hot ng ti u nh hn v hp hn so vi cm bin nano ZnO Mi liờn h mt thit gia cỏc c trng nhy khớ ca cỏc cm bin vi nh hng cu trỳc tinh th u tiờn, hon ho tinh th v tớnh cht ng nht ca cỏc dng nano ZnO ó c gii thớch chi tit lun ỏn Cm bin dõy nano ZnO bin tớnh bng cỏc ht Nb2O5 cho ỏp ng tng vt bc hng trm ln v thi gian hi ỏp gim khỏ nhiu 105 TI LIU THAM KHO TI LIU THAM KHO Aga, Mu (2010) Doping of Polymers with ZnO Nanostructures for Optoelectronic and Sensor Applications Nanowires Sci Technol doi: 10.5772/39487 Ahn M-W, Park K-S, Heo J-H, Kim D-W, Choi KJ, Park J-G (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity Sensors Actuators B Chem 138:168173 doi: 10.1016/j.snb.2009.02.008 Akbari E, Yusof R, Ahmadi MT, Enzevaee A, Kiani MJ, Karimi H, Rahmani M (2014) Bilayer Graphene Application on NO2 Sensor Modelling J Nanomater 2014:17 doi: 10.1155/2014/534105 Ashrafi A (2008) Heterointerfaces of stable and metastable ZnO phases Appl Surf Sci 255:23422346 doi: 10.1016/j.apsusc.2008.07.103 Bae SY, Na CW, Kang JH, Park J (2005) Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation J Phys Chem B 109:25262531 doi: 10.1021/jp0458708 Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol J Catal doi: 10.1016/j.jcat.2016.03.017 Banerjee D, Lao JY, Wang DZ, Huang JY, Ren ZF, Steeves D, Kimball B, Sennett M (2003) Large-quantity free-standing ZnO nanowires Appl Phys Lett 83:20612063 doi: 10.1063/1.1609036 Baratto C, Comini E, Faglia G, Sberveglieri G, Zha M, Zappettini A (2005) Metal oxide nanocrystals for gas sensing Sensors Actuators B Chem 109:26 doi: 10.1016/j.snb.2005.03.091 Burke-Govey CP, Plank NO V (2013) Review of hydrothermal ZnO nanowires: Toward FET applications J Vac Sci Technol B Microelectron Nanom Struct 31:06F101 doi: 10.1116/1.4821801 10 Chinh ND, Van Toan N, Van Quang V, Van Duy N, Hoa ND, Van Hieu N (2014) Comparative NO2 gas-sensing performance of the self-heated individual, multiple and networked SnO2 nanowire sensors fabricated by a simple process Sensors Actuators, B Chem 201:712 doi: 10.1016/j.snb.2014.04.095 11 Choi M-Y, Park H-K, Jin M-J, Ho Yoon D, Kim S-W (2009) Mass production and characterization of free-standing ZnO nanotripods by thermal chemical vapor deposition J Cryst Growth 311:504507 doi: 10.1016/j.jcrysgro.2008.09.057 12 Choopun S, Hongsith N, Wongrat E (2010) Metal-Oxide Nanowires by Thermal Oxidation Reaction Technique Nanowires doi: 10.5772/39506 13 Choopun S, Hongsith N, Wongrat E (2012) Metal-Oxide Nanowires for Gas Sensors Nanowires - Recent Adv doi: 10.5772/54385 14 Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N (2009) Zinc oxide nanostructures for applications as ethanol sensors and dye106 sensitized solar cells 10.1016/j.apsusc.2009.05.139 Appl Surf Sci 256:9981002 doi: 15 Chougule MA, Sen S, Patil VB (2012) Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring Ceram Int 38:26852692 doi: 10.1016/j.ceramint.2011.11.036 16 Cuscun M, Convertino A, Zampetti E, Macagnano A, Pecora A, Fortunato G, Felisari L, Nicotra G, Spinella C, Martelli F (2012) On-chip fabrication of ultrasensitive NO2 sensors based on silicon nanowires Appl Phys Lett 101:103101 doi: 10.1063/1.4748099 17 Das SN, Kar JP, Choi J-H, Lee T Il, Moon K-J, Myoung J-M (2010) Fabrication and Characterization of ZnO Single Nanowire-Based Hydrogen Sensor J Phys Chem C 114:16891693 doi: 10.1021/jp910515b 18 Deb B, Desai S, Sumanasekera GU, Sunkara MK (2007) Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films Nanotechnology 18:285501 doi: 10.1088/0957-4484/18/28/285501 19 Deng Z, Tian Y, Yin X, Rui Q, Liu H, Luo Y (2008) Physical vapor deposited zinc oxide nanoparticles for direct electron transfer of superoxide dismutase Electrochem commun 10:818820 doi: 10.1016/j.elecom.2008.03.005 20 Ding Y, Wang ZL, Sun T, Qiu J (2007) Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires Appl Phys Lett 90:35 doi: 10.1063/1.2722671 21 Du GH, Xu F, Yuan ZY, Van Tendeloo G (2006) Flowerlike ZnO nanocones and nanowires: Preparation, structure, and luminescence Appl Phys Lett 88:35 doi: 10.1063/1.2211007 22 Fan HJ, Scholz R, Kolb FM, Zacharias M (2004) Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals Appl Phys Lett 85:4142 4144 doi: 10.1063/1.1811774 23 Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties J Nanosci Nanotechnol 5:15611573 doi: 10.1166/jnn.2005.182 24 Fan Z, Lu JG (2005) Gate-refreshable nanowire chemical sensors Appl Phys Lett 86:123510 doi: 10.1063/1.1883715 25 Feng P, Shao F, Shi Y, Wan Q (2014) Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors Sensors 14:1740617429 doi: 10.3390/s140917406 26 Ge M, Xuan T, Hu J, Yin G, Lu J, He D (2015) Preparation of Porous SnO2/ZnO Composite Microspheres and Analysis of Their Gas-Sensing Property Sens Lett 13:338343 doi: 10.1166/sl.2015.3440 27 Grigorjeva L, Millers D, Smits K, Kalinko A, Monty CJ, Kouam J (2006) Progress in ZnO luminescence studies 28 Hamedani NF, Mahjoub AR, Mortazavi Y, Materials N (2012) CO and ethanol selective sensor of La2O3-doped ZnO nanostructures synthesized by microwave assisted fast method 16411643 doi: 10.5162/IMCS2012/P2.7.15 107 29 Han L, Wang D, Cui J, Chen L, Jiang T, Lin Y (2012) Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature J Mater Chem 22:12915 doi: 10.1039/c2jm16105b 30 Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, Laroche JR (2004) ZnO nanowire growth and devices Mater Sci Eng R Reports 47:147 doi: 10.1016/j.mser.2004.09.001 31 Van Hieu N, Khoang ND, Trung DD, Toan LD, Van Duy N, Hoa ND (2013) Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires J Hazard Mater 244245:209216 doi: 10.1016/j.jhazmat.2012.11.023 32 Hsu NF, Chung TK (2014) A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing Appl Phys A Mater Sci Process 116:12611269 doi: 10.1007/s00339-013-8217-y 33 Hsueh T-J, Hsu C-L (2008) Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles Sensors Actuators B Chem 131:572576 doi: 10.1016/j.snb.2007.12.045 34 Hu H, Huang X, Deng C, Chen X, Qian Y (2007) Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale Mater Chem Phys 106:5862 doi: 10.1016/j.matchemphys.2007.05.016 35 Hulanicki a., Glab S, Ingman F (1991) Chemical sensors: definitions and classification Pure Appl Chem 63:12471250 doi: 10.1351/pac199163091247 36 Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification Pure Appl Chem doi: 10.1351/pac199163091247 37 Hwang I-S, Kim S-J, Choi J-K, Choi J, Ji H, Kim G-T, Cao G, Lee J-H (2010) Synthesis and gas sensing characteristics of highly crystalline ZnOSnO2 core shell nanowires Sensors Actuators B Chem 148:595600 doi: 10.1016/j.snb.2010.05.052 38 Jun ST, Choi GM (1994) CO gas-sensing properties of ZnO/CuO contact ceramics Sensors Actuators B Chem 17:175178 doi: 10.1016/09254005(93)00868-Y 39 Kim D-H, Lee G-W, Kim Y-C (2012) Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping Solid State Commun 152:17111714 doi: 10.1016/j.ssc.2012.06.016 40 Kim T-W, Kawazoe T, Yamazaki S, Ohtsu M, Sekiguchi T (2004) Lowtemperature orientation-selective growth and ultraviolet emission of singlecrystal ZnO nanowires Appl Phys Lett 84:3358 doi: 10.1063/1.1723696 41 Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches Sensors Actuators, B Chem 107:209232 doi: 10.1016/j.snb.2004.10.006 42 Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B Solid-State Mater Adv Technol 139:1 23 doi: 10.1016/j.mseb.2007.01.044 43 Kumar R, Al-Dossary O, Kumar G, Umar A (2014) Zinc oxide nanostructures 108 for NO2 gassensor applications: A review Nano-Micro Lett 7:124 doi: 10.1007/s40820-014-0023-3 44 Kundu S, Sain S, Satpati B, Bhattacharyya SR, Pradhan SK (2015) Structural interpretation, growth mechanism and optical properties of ZnO nanorods synthesized by a simple wet chemical route RSC Adv 5:2310123113 doi: 10.1039/C5RA01152C 45 Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method Phys Chem Chem Phys 16:12741 doi: 10.1039/c4cp01315h 46 Law M, Goldberger J, Yang P (2004) Semiconductor Nanowires and Nanotubes Annu Rev Mater Res 83122 doi: 10.1146/annurev.matsci.34.040203.112300 47 Layek A, De S, Thorat R, Chowdhury A (2011) Spectrally resolved photoluminescence imaging of ZnO nanocrystals at single-particle levels J Phys Chem Lett 2:12411247 doi: 10.1021/jz200370s 48 Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ (2002) Field emission from well-aligned zinc oxide nanowires grown at low temperature Appl Phys Lett 81:3648 doi: 10.1063/1.1518810 49 Lee JS, Islam MS, Kim S (2006) Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method Nano Lett 6:14871490 doi: 10.1021/nl060883d 50 Lee M-K, Tu H-F (2008) AuZnO and PtZnO Films Prepared by Electrodeposition as Photocatalysts J Electrochem Soc 155:D758 doi: 10.1149/1.2990719 51 Li QH, Liang YX, Wan Q, Wang TH (2004) Oxygen sensing characteristics of individual ZnO nanowire transistors Appl Phys Lett 85:63896391 doi: 10.1063/1.1840116 52 Li Y, Delaunay J-J (2010) Progress Toward Nanowire Device Assembly Technology Nanowires doi: 10.5772/39521 53 Liang H, Pan L, Liu Z (2008) Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors Mater Lett 62:17971800 doi: 10.1016/j.matlet.2007.10.010 54 Liu P, Li Y, Guo Y, Zhang Z (2012) Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient Nanoscale Res Lett 7:220 doi: 10.1186/1556-276X-7-220 55 Lu L, Wong M (2014) The resistivity of zinc oxide under different annealing configurations and its impact on the leakage characteristics of zinc oxide thinfilm transistors IEEE Trans Electron Devices 61:10771084 doi: 10.1109/TED.2014.2302431 56 Martin M, Fromm E (1997) Low-temperature oxidation of metal surfaces J Alloys Compd 258:716 doi: 10.1016/S0925-8388(97)00076-5 57 Menzel A, Subannajui K, Bakhda R, Wang Y, Thomann R, Zacharias M (2012) Tuning the growth mechanism of ZnO nanowires by controlled carrier and reaction gas modulation in thermal CVD J Phys Chem Lett 3:28152821 doi: 109 10.1021/jz301103s 58 Minami T, Sato H, Nanto H, Takata S (1985) Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering Jpn J Appl Phys 24:L781L784 doi: 10.1143/JJAP.24.L781 59 Mute A, Peres M, Peiris TC, Lourenỗo AC, Jensen LR, Monteiro T (2010) Structural and Optical Characterization of ZnO Nanowires Grown on Alumina by Thermal Evaporation Method J Nanosci Nanotechnol 10:26692673 doi: 10.1166/jnn.2010.1386 60 Muth JF, Kolbas RM, Sharma AK, Oktyabrsky S, Narayan J (1999) Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition J Appl Phys 85:7884 doi: 10.1063/1.370601 61 Nath S, Kar JP, Myoung J-M (2011) Junction Properties and Applications of ZnO Single Nanowire Based Schottky Diode Nanowires - Fundam Res doi: 10.5772/16344 62 Nguyen T, Tuan NT, Nguyen VD, Cuong ND, Kien NDT, Huy PT, Nguyen VH, Nguyen DH (2014) Near-infrared emission from ZnO nanorods grown by thermal evaporation J Lumin 156:199204 doi: 10.1016/j.jlumin.2014.08.018 63 Oh E, Oh E, Choi H-Y, Choi H-Y, Jung S-H, Jung S-H, Cho S, Cho S, Kim JC, Kim JC, Lee K-H, Lee K-H, Kang S-W, Kang S-W, Kim J, Kim J, Yun J-Y, Yun J-Y, Jeong S-H, Jeong S-H (2009) High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation Sensors Actuators B Chem 141:239243 doi: 10.1016/j.snb.2009.06.031 64 Okada T, Agung BH, Nakata Y (2004) ZnO nano-rods synthesized by nanoparticle-assisted pulsed-laser deposition Appl Phys A 79:14171419 doi: 10.1007/s00339-004-2797-5 65 Opoku C, Dahiya a S, Cayrel F, Poulin-Vittrant G, Alquier D, Camara N (2015) Fabrication of field-effect transistors and functional nanogenerators using hydrothermally grown ZnO nanowires RSC Adv 5:6992569931 doi: 10.1039/C5RA11450K 66 ệztỹrk S, Klnỗ N, ệztỹrk ZZ (2013) Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position J Alloys Compd 581:196201 doi: 10.1016/j.jallcom.2013.07.063 67 Park SK, Park JH, Ko KY, Yoon S, Chu KS, Kim W, Do YR (2009) HydrothermalElectrochemical Synthesis of ZnO Nanorods Cryst Growth Des 9:36153620 doi: 10.1021/cg9003593 68 Pawinrat P, Mekasuwandumrong O, Panpranot J (2009) Synthesis of AuZnO and PtZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes Catal Commun 10:1380 1385 doi: 10.1016/j.catcom.2009.03.002 69 Ponnuvelu DV, Pullithadathil B, Prasad AK, Dhara S, Ashok A, Mohamed K, Tyagi AK, Raj B (2015) Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas 110 sensor applications Appl 10.1016/j.apsusc.2015.07.143 Surf Sci 355:726735 doi: 70 Ponnuvelu DV, Pullithadathil B, Prasad AK, Dhara S, Ashok A, Mohamed K, Tyagi AK, Raj B (2015) Rapid synthesis and characterization of hybrid ZnO@Au coreshell nanorods for high performance, low temperature NO2 gas sensor applications Appl Surf Sci 355:726735 doi: 10.1016/j.apsusc.2015.07.143 71 Qin N, Xiang Q, Zhao H, Zhang J, Xu J (2014) Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties CrystEngComm 16:7062 doi: 10.1039/C4CE00637B 72 Van Quy N, Minh VA, Van Luan N, Hung VN, Van Hieu N (2011) Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods Sensors Actuators B Chem 153:188193 doi: 10.1016/j.snb.2010.10.030 73 Ren S, Bai YF, Chen J, Deng SZ, Xu NS, Wu QB, Yang S (2007) Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation Mater Lett 61:666670 doi: 10.1016/j.matlet.2006.05.031 74 Rout CS, Hari Krishna S, Vivekchand SRC, Govindaraj A, Rao CNR (2006) Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes Chem Phys Lett 418:586590 doi: 10.1016/j.cplett.2005.11.040 75 Sadek AZ, Choopun S, Wlodarski W, Ippolito SJ, Kalantar-zadeh K (2007) Characterization of ZnO Nanobelt-Based Gas Sensor for H2, NO2, and Hydrocarbon Sensing IEEE Sens J 7:919924 doi: 10.1109/JSEN.2007.895963 76 ahin Y, ệztỹrk S, Klnỗ N, Kửsemen A, Erkovan M, ệztỹrk ZZ (2014) Electrical conduction and NO2 gas sensing properties of ZnO nanorods Appl Surf Sci 303:9096 doi: 10.1016/j.apsusc.2014.02.083 77 Sakai G, Matsunaga N, Shimanoe K, Yamazoe N (2001) Theory of gasdiffusion controlled sensitivity for thin đ lm semiconductor gas sensor Sensors Actuators B Chem 80:125131 doi: 10.1016/S0925-4005(01)00890-5 78 Samanta PK, Chaudhuri PR (2011) Substrate effect on morphology and photoluminescence from ZnO monopods and bipods Front Optoelectron China 4:130136 doi: 10.1007/s12200-011-0168-3 79 Santos-Putungan AB, Bambao LM, Sarmago R V (2015) Electrical properties of an individual ZnO micro/nanorod IOP Conf Ser Mater Sci Eng 79:12030 doi: 10.1088/1757-899X/79/1/012030 80 Schroeder P, Kast M, Halwax E, Edtmaier C, Bethge O, Brỹckl H (2009) Morphology alterations during postsynthesis oxidation of Zn nanowires J Appl Phys 105:104307 doi: 10.1063/1.3126519 81 Sekar A, Kim SH, Umar A, Hahn YB (2005) Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders J Cryst Growth 277:471478 doi: 10.1016/j.jcrysgro.2005.02.006 82 Shen G, Bando Y, Lee CJ (2005) Synthesis and evolution of novel hollow ZnO 111 urchins by a simple thermal evaporation process J Phys Chem B 109:10578 10583 doi: 10.1021/jp051078a 83 Shen G, Bandog Y, Lee CJ (2005) Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process J Phys Chem B 109:1077910785 doi: 10.1021/jp050950c 84 Son JY, Lim SJ, Cho JH, Seong WK, Kim H (2008) Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor Appl Phys Lett 93:53109 doi: 10.1063/1.2967871 85 Sonam R, Sujata S, Ashish A, Satish K (2009) Influence of Nb O on the optical band gap and electrical conductivity of Nb2O5 ãBaOãB2O3 IOP Conf Ser Mater Sci Eng 2:12041 doi: 10.1088/1757-899X/2/1/012041 86 Stypua B, Kmita A, Hajos M (2014) Morphology and Structure of ZnO Nanoparticles Produced by Electrochemical Method 20: 87 Sun XH, Lam S, Sham TK, Heigl F, Jỹrgensen A, Wong NB (2005) Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: Nanowires, nanoneedles, nanoflowers, and tubular whiskers J Phys Chem B 109:3120 3125 doi: 10.1021/jp044926v 88 Tigli O, Juhala J (2011) ZnO nanowire growth by physical vapor deposition In: 2011 11th IEEE Int Conf Nanotechnol IEEE, pp 608611 89 Toan N Van, Viet N, Duy N Van, Duc D (2015) Applied Surface Science Scalable fabrication of SnO thin films sensitized with CuO islands for enhanced H S gas sensing performance Appl Surf Sci 324:280285 doi: 10.1016/j.apsusc.2014.10.134 90 Tonezzer M, Dang TT Le, Bazzanella N, Nguyen VH, Iannotta S (2015) Comparative gas-sensing performance of 1D and 2D ZnO nanostructures Sensors Actuators B Chem 220:11521160 doi: http://dx.doi.org/10.1016/j.snb.2015.06.103 91 Tonezzer M, Hieu N V (2012) Size-dependent response of single-nanowire gas sensors Sensors Actuators, B Chem 163:146152 doi: 10.1016/j.snb.2012.01.022 92 Van Tong P, Hoa ND, Van Quang V, Van Duy N, Van Hieu N (2013) Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors Sensors Actuators, B Chem 183:372380 doi: 10.1016/j.snb.2013.03.086 93 Vuong NM, Chinh ND, Huy BT, Lee Y-I (2016) CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors Sci Rep 6:26736 doi: 10.1038/srep26736 94 Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors Appl Phys Lett 84:3654 doi: 10.1063/1.1738932 95 Wan, Sun J, Liu H (2011) Semiconducting Oxide Nanowires: Growth, Doping and Device applications Nanowires - Implementations Appl doi: 10.5772/16930 112 96 Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: Sensitivity and influencing factors Sensors 10:20882106 doi: 10.3390/s100302088 97 Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications J Phys Condens Matter 16:R829R858 doi: 10.1088/0953-8984/16/25/R01 98 Wang ZL (2009) Ten years venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications Chinese Sci Bull 54:40214034 doi: 10.1007/s11434-009-0456-0 99 Wen Yua CP (2009) Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism Mater Chem Phys 115:7475 doi: 10.1016/.2008.11.022 100 Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors Catal Surv from Asia 7:6375 doi: 10.1023/A:1023436725457 101 Yao BD, Chan YF, Wang N (2002) Formation of ZnO nanostructures by a simple way of thermal evaporation Appl Phys Lett 81:757 doi: 10.1063/1.1495878 102 Zendehnam A, Mirzaee M, Miri S (2013) Effect of annealing temperature on PL spectrum and surface morphology of zinc oxide thin films Appl Surf Sci 270:163168 doi: 10.1016/j.apsusc.2012.12.154 103 Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires J Nanomater doi: 10.1155/2012/624520 104 Zhou Q, Chen W, Xu L, Peng S (2013) Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties Sensors 13:61716182 doi: 10.3390/s130506171 113 DANH MC CC CễNG TRèNH CễNG B CA LUN N DANH MC CC CễNG TRèNH CễNG CA LUN N Hoang Van Han, Nguyen Van Hieu, Tran Trung (2011) Method of produce ZnO nanowires with high performance for gas sensor The 3rd International Workshop on Nanotechnology and Application IWNA 2011 Hong Vn Hỏn (2011) Kho sỏt tớnh cht nhy khớ ca dõy nano ụ xớt kim loi Tp nghiờn cu khoa hc v cụng ngh S 16 Hoang Van Han, Nguyen Van Hieu, Tran Trung (2011) Produce ZnO nanowires with short responses time for gas sensor The Sixth Vietnam-Korea International Joint Symposium, Hanoi Hoang Van Han, Tran Trung, Vu Van Quang, Nguyen Duc Hoa (2012) Fabrication of high Aspect Ratio ZnO Nanowires stuctrures for NO2 sensing application International Conference on Advanced Materials and Nanotechnologies ICAMN Hoang Van Han, Nguyen Duc Hoa, Pham Van Tong, Hugo Nguyen, Nguyen Van Hieu (2013) Single-crystal zinc oxide nanorods with nanovoids as highly sensitive NO2 nanosensors Materials Letters vol 94 Pp 41-43 Hoang Van Han1, 2, Nguyen Van Hieu2, and Tran Trung1, (2014) A Simple Method for Production of High Aspect Ratio ZnO Nanowires with Uniform Structure for NO2 Gas Sensors Science of Advanced Materials Vol 6, Tran Trung, Hoang Van Han, Nguyen Van Hieu (2016) New insights on the mechanism of semiconductor nanostructures formed during vapor transport at atmospheric pressure Jounal of sciencs and technology Vol 54-5A, 107-117 Hoang Van Han, Chu Van Tuan, Tran Trung (2016) Study the response of gas sensor using ZnO nanorod synthesized by hydrothermal method Jounal of sciencs and technology Vol 54-5A, 201-207 114 ... tạo cảm biến sở vật liệu nano ZnO đồng thời khảo sát đặc trưng nhạy khí cảm biến với khí NO2 - Biến tính vật liệu nano ZnO Nb2O5 cho nghiên cứu đặc trưng nhạy khí NO2 - Phân tích, đánh giá kết nghiên. .. điện cực .Cho đến nay, nhiều nghiên cứu tập trung chế tạo dây nano ZnO ứng dụng cho cảm biến khí Bảng 1-1 liệt kê dây/thanh nano ZnO nghiên cứu gần cho số loại khí Kết cho thấy vật liệu nano ZnO có... dung vật viết nano ZnO có đường kính 200 nm ứng dụng cho cảm biến khí Trong nước có nhiều nhóm nghiên cứu PGS TS Nguyễn Ngọc Toàn nghiên cứu tính chất vật liệu perovskite ô-xít ứng dụng cho cảm biến

Ngày đăng: 07/07/2017, 16:55

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan