Tổng hợp và nghiên cứu tính tương thích sinh học khả năng tạo mô xương của vật liệu composit poly (d, l) lactic axithydroxyapatit

130 501 0
Tổng hợp và nghiên cứu tính tương thích sinh học khả năng tạo mô xương của vật liệu composit poly (d, l) lactic axithydroxyapatit

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO TRNG I HC BCH KHOA H NI Trn Thanh Hoi TNG HP V NGHIấN CU TNH TNG THCH SINH HC KH NNG TO Mễ XNG CA VT LIU COMPOSIT POLY (D, L) LACTIC AXIT/HYDROXYAPATIT Chuyờn ngnh: s : Húa lớ thuyt v Húa lớ 62440119 LUN N TIN S HểA HC NGI HNG DN KHOA HC PGS.TS Nguyn Kim Ng PGS.TS H Phỳ H H Ni - 2017 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca tụi v c s hng dn khoa hc ca PGS.TS Nguyn Kim Ng v PGS.TS H Phỳ H Hu ht cỏc s liu, kt qu lun ỏn l ni dung t cỏc bi bỏo ó v sp c xut bn ca tụi v cỏc thnh viờn ca th khoa hc Cỏc s liu, kt qu nghiờn cu c trỡnh by lun ỏn l trung thc v cha tng c cụng b bt k cụng trỡnh no khỏc Tỏc gi Trn Thanh Hoi LI CM N Li u tiờn, tụi xin by t lũng bit n sõu sc ti PGS.TS Nguyn Kim Ng v PGS.TS H Phỳ H ó ht lũng hng dn, giỳp v to mi iu kin thun li nht cho tụi hon thnh bn lun ỏn Tụi xin cỏm n s giỳp v khớch l ca cỏc cỏn b ng nghip v ngoi b mụn Húa lý, Húa Vụ c-i cng, Vin K thut Húa hc, H Bỏch Khoa H Ni Tụi xin cm n s giỳp v to iu kin thun li ca Vin K thut Húa hc, H Bỏch Khoa H Ni i vi tụi quỏ trỡnh thc hin lun ỏn Tụi cng xin gi li cỏm n chõn thnh n gia ỡnh v bn bố ó ng viờn, khuyn khớch tụi quỏ trỡnh lm lun ỏn Tỏc gi Trn Thanh Hoi MC LC DANH MC CC Kí HIU V CH VIT TT DANH MC CC BNG DANH MC CC HèNH NH, TH M U CHNG TNG QUAN 1.1 Xng v cỏc phng phỏp cy ghộp xng 1.2 Cỏc vt liu ch to khuụn nh dng 1.2.1 Polyme phõn hy sinh hc 10 1.2.2 Vt liu vụ c cú hot tớnh sinh hc 14 1.2.3 Composit 16 1.3 Phng phỏp tng hp bt HAp 20 1.4 Phng phỏp ch to khuụn nh dng composit 28 1.5 Phng phỏp nghiờn cu hot tớnh sinh hc ca vt liu 33 1.5.1 Phng phỏp nghiờn cu kh nng to apatit ca vt liu dung dch SBF 33 1.5.2 Phng phỏp nghiờn cu s phỏt trin, bỏm dớnh v di trỳ ca t bo trờn vt liu .34 CHNG THC NGHIM 38 2.1 Húa cht v dng c thớ nghim 38 2.1.1 Húa cht 38 2.1.2 Dng c v thit b thớ nghim 39 2.2 Tng hp bt HAp 39 2.2.1 Tng hp bt HAp s dng cht hot ng b mt P123 39 2.2.2 Tng hp bt HAp s dng cht hot ng b mt CTAB 40 2.3 Tng hp composit HAp/PDLLA 41 2.3.1 Tng hp composit HAp/PDLLA vi dung mụi l 1,4-dioxan 41 2.3.2 Tng hp composit HAp/PDLLA vi dung mụi l chloroform 42 2.4 Cỏc phng phỏp xỏc nh c trng 43 2.4.1 Phng phỏp nhiu x tia X (XRD) 43 2.4.2 Phng phỏp ph hng ngoi (FT-IR) 43 2.4.3 Phng phỏp hin vi in t quột (SEM) 43 2.4.4 Phng phỏp EDS 44 2.4.5 Phng phỏp ng nhit hp ph nit 44 2.4.6 Phng phỏp o xp ca khuụn nh dng 45 2.5 Cỏc phng phỏp xỏc nh hot tớnh ca vt liu 45 2.5.1 Xỏc nh hot tớnh sinh hc ca bt nano HAp 45 2.5.3 Phng phỏp nghiờn cu kh nng to apatit ca khuụn nh dng 47 2.5.4 Phng phỏp kim tra kh nng phỏt trin, bỏm dớnh ca t bo trờn khuụn nh dng 47 CHNG KT QU V THO LUN 50 3.1 Cỏc kt qu nghiờn cu c trng, thnh phn bt HAp tng hp 50 3.1.1 Cỏc kt qu c trng bt HAp tng hp bng phng phỏp thy nhit s dng cht hot ng b mt P123 50 3.1.2 Cỏc kt qu c trng bt HAp tng hp bng phng phỏp thy nhit s dng cht hot ng b mt CTAB 65 3.2 Cỏc kt qu nghiờn cu cỏc c trng, hot tớnh v tớnh tng thớch sinh hc ca khuụn nh dng composit HAp/PDLLA 75 3.2.1 Cỏc kt qu nghiờn cu i vi khuụn nh dng composit HAp/PDLLA tng hp vi dung mụi 1, 4-dioxan 75 3.2.2 Cỏc kt qu nghiờn cu i vi khuụn nh dng composit HAp/PDLLA tng hp vi dung mụi chloroform 92 KT LUN 100 DANH MC CC CễNG TRèNH CễNG B CA LUN N 101 TI LIU THAM KHO 102 PH LC.113 DANH MC CC Kí HIU V CC CH VIT TT Cỏc ch vit tt BMP Protein kớch thớch gen to xng- Bone morphogenetic protein CTAB Cetyltrimethyllammonium bromide DAPI 4, 6-diamidino-2-phenylindol DCPA Dicalcium phosphate EDS Ph tỏn sc nng lng tia X - Energy-dispersive X-ray spectroscopy FT-IR Ph hng ngoi bin i Fourier - Fourier Transform Infrared Spectroscopy HAp: Hydroxyapatit HT-PPFhm Poly(propylen fumarate) cao phõn t vi nhúm hydroxy cui chui PDLLA Poly (D, L) lactic axit PLA Polylactic axit PLGA Poly(lactic-co-glycolic) axit PGA Poly(glycolic axớt) PCL Poly(caprolactone) TTCP Tetracalcium phosphate SEM Hin vi in t quột - Scanning Electron Microscopy SBF Dung dch mụ phng dch c th ngi Simulated Body Fluid XRD Nhiu x tia X - X-Ray Diffraction -TCP -tricalcium phosphate Cỏc ký hiu P123: Pluronic co-polyme PEO20-PPO70-PEO20 DANH MC CC HèNH NH, TH Hỡnh 1.1.Cỏc loi vt liu dựng trongcha tr tỏi to xng [119] Hỡnh 1.2 Cỏc nguyờn tc chung ca k thut mụ[87, 88] Hỡnh 1.3 S polyme húa to polyme (D,L) lactic axit [48] 11 Hỡnh 1.4 Mi quan h gia nht ca dung dch PDLLA v lng phõn t [56] 12 Hỡnh 1.5 Mụ hỡnh cu trỳc tinh th HAp [70] 15 Hỡnh 1.6 Cỏc hỡnh thỏi tinh th HAp cú th tng hp bng phng phỏp thy nhit 22 Hỡnh 1.7 nh hng ca ch nhit n hỡnh thỏi ht HAp [112] 24 Hỡnh 1.8 S kt tinh quỏ trỡnh thy nhit bao gm bc hỡnh thnh mm v bc phỏt trin mm tinh th [36] 25 Hỡnh 1.9 nh SEM ca bt HAp tng hp vi thi gian thy nhit khỏc 200oC: 24 gi (a), 48 gi(b), 72 gi (c)[21] 25 Hỡnh 1.10 nh hng ca kớch thc ht to l parafin n kớch thc l xp ca khuụn nh dng polyme PLLA: 30 Hỡnh 1.11 Nguyờn tc ca phng phỏp AlamarBlue 35 Hỡnh 1.12 Nguyờn tc ca kớnh hin vi laze ng tiờu 36 Hỡnh 1.13 Hỡnh nh t bo gan chut qua kớnh hin vi laze ng tiờu 37 Hỡnh 2.1 Quy trỡnh tng hp bt HAp cú s dng cht hot ng b mt P123 40 Hỡnh 2.2 Quy trỡnh tng hp bt HAp cú s dng cht hot ng b mt CTAB 41 Hỡnh 2.3 Quy trỡnh tng hp khuụn nh dng composit HAp/PDLLA 42 Hỡnh 2.4 Quy trỡnh thớ nghim in-vitro th hot tớnh ca khuụn nh dng 48 Hỡnh 3.1 Cỏc nh SEM ca cỏc mu bt HAp tng hp bng phng phỏp thy nhit vi cỏc nng cht hot ng b mt P123 khỏc nhau: (a) g P123, (b) g P123, (c) g P123, (d) g P123 51 Hỡnh 3.2 S phõn b kớch thc ht nano HAp bt HAp tng hp bng phng phỏp thy nhit vi cỏc nng cht hot ng b mt P123 l g 52 Hỡnh 3.3 Gin XRD ca mu bt nano HAp tng hp bng phng phỏp thy nhit s dng cht hot ng b mt P123: (a) 0P123, (b) 1P123 v (c) 2P123 53 Hỡnh 3.4 Ph FTIR ca bt nano HAp tng hp bng phng phỏp thy nhit vi hm lng cht hot ng b mt P123 khỏc nhau: (a) 0P123, (b) 1P123, (c) 2P123 53 Hỡnh 3.5 Ph EDS ca bt nano HAp tng hp bng phng phỏp thy nhit vi hm lng cht hot ng b mt P123l g 54 Hỡnh 3.6 ng ng nhit hp ph v nh hp ph nit ca cỏc mu bt nano HAp tng hp bng phng phỏp thy nhit vi hm lng cht hot ng b mt P123 khỏc nhau: (a) 0P123, (b) 1P123, (c) 2P123 56 Hỡnh 3.7 ng phõn b kớch thc l trờn ht nano HAp ca cỏc mu tng hp bng phng phỏp thy nhit vi hm lng cht hot ng b mt P123 khỏc 56 Hỡnh 3.8 nh SEM ca mu HAp tng hp khụng qua x lý nhit 57 Hỡnh 3.9 C ch cú th xy quỏ trỡnh to nano HAp: (a) khụng cú mt cht hot ng b mt P123, (b) Cú mt cht hot ng b mt P123 58 Hỡnh 3.10 Hỡnh nh SEM (vi phúng 1000 v 10,000 ln) ca mng composit HAp/PDLLA c tng hp t cỏc mu nano HAp khỏc nhau: (a1), (a2) mu F-0P, (b1), (b2) mu F-1P, (c1), (c2) mu F-2P 59 Hỡnh 3.11 nh SEM (vi phúng i 250 v 25,000 ln) ca mng HAp/PDLLA sau ngõm SBF v ngy 62 Hỡnh 3.12 Phõn tớch EDS ca mu F-2P sau ngõm dung dch SBF: (a) sau ngy ngõm, (b) sau ngy ngõm 63 Hỡnh 3.13 nh SEM ca cỏc mu bt HAp c tng hp vi cỏc hm lng khỏc ca cht hot ng b mt CTAB 66 Hỡnh 3.14 nh SEM ca cỏc mu bt HAp c tng hp vi hm lng CTAB 0,64 gam v cỏc khong thi gian thy nhit khỏc gi (a), 12 gi (b), 18 gi (c) 67 Hỡnh 3.15 Kho sỏt s phõn b chiu di ht nano HAp tng hp vi 0,64 g CTAB v thy nhit 12 gi 68 Hỡnh 3.16 Ph EDS ca mu nano HAp tng hp vi 0,64 g CTAB v thy nhit 12 gi 68 Hỡnh 3.17 Ph FTIR ca cỏc mu HAp tng hp vi hm lng CTAB khỏc nhau: 4,64 g (a), 1,64 g (b), 0,64g (c) 70 Hỡnh 3.18 Gin XRD ca cỏc mu HAp tng hp vi hm lng CTAB khỏc nhau: 0,64 g (a), 1,64 g (b), 4,64 g (a) 70 Hỡnh 3.19 C ch cú th xy quỏ trỡnh to nano HAp: (a) Khi cú mt cht hot ng b mt CTAB, (b) S kt t ca cỏc ht mixen di tỏc ng ca nhit 71 Hỡnh 3.20 nh SEM ca mng HAp/PDLLA (c ph bt HAp cú thi gian thy nhit 12 gi) trc v sau ngõm SBF v ngy: a, c, f l phúng i 1000 ln; b, d, g, e, h l phúng i 5000, 10000, 20000, 50000 ln 74 Hỡnh 3.21 nh khuụn nh dng composit HAp/PDLLA c tng hp bng phng phỏp dung mụi ht s dng dung mụi 1,4-dioxan: (a) mu S3 cú t l HAp l 20%, (b) mu S4 cú t l HAp l 30% 75 Hỡnh 3.22 nh mu khuụn nh dng composit HAp/PDLLA (mu S3) vi phõn gii cao 200 px v 100 px 76 Hỡnh 3.23 nh SEM ca khuụn nh dng c tng hp vi cỏc t l HAp khỏc nhau: (a1, a2) mu S1, (b1, b2) mu S2, (c1, c2) mu S3, (d1, d2) mu S4 vi phúng i 200 v 2000 ln 77 Hỡnh 3.24 S phõn b kớch thc l ca cỏc mu khuụn nh dng composit HAp/PDLLA 79 Hỡnh 3.25 Ph FTIR ca cỏc mu: (a) mu bt HAp, (b) mu S3, (c) mu S4, (d) mu S1 80 Hỡnh 3.26 Mụ hỡnh liờn kt hydro gia nhúm OH ca HAp v nhúm CO ca PDLLA 81 Hỡnh 3.27 Ph EDS ca mu S4 81 Hỡnh 3.28 nh SEM ca mu khuụn nh dng S3, S4 sau ngõm SBF v ngy: a1, a3, b1 l phúng i 5000 ln, a2, a4, b2 l phúng i 50000 ln 83 Hỡnh 3.29 nh SEM ( phúng i 10000 v 15000 ln) ca mu S1, S2 sau ngõm SBF v ngy 84 Hỡnh 3.30 Ph EDS ca mu khuụn nh dng S3 sau ngy ngõm SBF 85 Hỡnh 3.31 C ch hỡnh thnh lp apatit ging xng trờn khuụn nh dng composit Hap/PDLLA dung dch SBF (quỏ trỡnh hỡnh thnh t a n f)[64] 86 Hỡnh 3.32 Kh nng phỏt trin ca t bo MG63 mụi trng cha cỏc mu khuụn nh dng c tng hp vi dung mụi 1,4-dioxan (S1, S2, S3 v S4) sau 3, v ngy 88 Hỡnh 3.33 S bỏm dớnh v phỏt trin ca t bo MG63 trờn khuụn nh dng (S1, S2, S3 v S4) sau v ngy 90 Hỡnh 3.34 nh SEM ca cỏc mu khuụn nh dng composit HAp/PDLLA c tng hp vi dung mụi chloroform (F1, F2 v F3): a1, b1, c1 l nh vi phúng i X 200; a2, b2, c2 l nh vi phúng i X500 93 Hỡnh 3.35 Gin XRD ca mu khuụn nh dng PDLLA v HAp/PDLLA s dng dung mụi chloroform 94 Hỡnh 3.36 th so sỏnh xp v kớch thc l ca cỏc khuụn nh dng tng hp s dng dung mụi chloroform vi t l HAp khỏc 95 Hỡnh 3.37 Kh nng tn ti phỏt trin ca t bo MG63 mụi trng cú cỏc khuụn nh dng c tng hp vi dung mụi chloroform (F1, F2 v F3) sau 3, v ngy 97 Hỡnh 3.38 S bỏm dớnh v phỏt trin ca t bo MG63 trờn khuụn nh dng (F1, F2 v F4) sau v ngy 98 [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] dispersantaided precipitation method Journal of Biomedical Materials Research Part A, 95, pp.1142-1149 Deng C, Weng J, Lu X, Zhou SB, Wan JX, Qu SX, Feng B, Li XH (2008) Preparation and in vitro bioactivity of poly (D, L-lactide) composite containing hydroxyapatit nanocrystals Materials Science and Engineering: C, 28, pp.1304-1310 Di Silvio L, Dalby MJ, Bonfield W (2002) Osteoblast behaviour on HA/PE composite surfaces with different HA volumes Biomaterials, 23, pp.101-107 Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions BMC medicine, 9, pp.1 Du X, Chu Y, Xing S, Dong L (2009) Hydrothermal synthesis of calcium hydroxyapatit nanorods in the presence of PVP Journal of materials science, 44, pp.6273-6279 E Kauschke1 ER, J Fanghọnel, T Bayerlein, T Gedrange, P Proff (2006) The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBoneđ and Straumann Bone Ceramicđ) Via Medica, 63, pp.37-42 Ferraz MP, Monteiro FJ, Manuel CM (2004) Hydroxyapatit nanoparticles: a review of preparation methodologies Journal of Applied Biomaterials and Biomechanics, 2, pp.74-80 Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives Materials Science and Engineering: C, 31, pp.1245-1256 Gong S, Wang H, Sun Q, Xue S-T, Wang J-Y (2006) Mechanical properties and in vitro biocompatibility of porous zein scaffolds Biomaterials, 27, pp.3793-3799 Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) Bone-graft substitutes: facts, fictions, and applications The Journal of Bone & Joint Surgery, 83, pp.S98-103 Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering Eur Cell Mater, 5, pp.1-16 Haul R (1982) SJ Gregg, KSW Sing: Adsorption, Surface Area and Porosity Berichte der Bunsengesellschaft fỹr physikalische Chemie, 86, pp.957-957 Hegde C, Shetty V, Wasnik S, Ahammed I, Shetty V (2013) Use of bone graft substitute in the treatment for distal radius fractures in elderly European Journal of Orthopaedic Surgery & Traumatology, 23, pp.651-656 Hench LL, Wilson J (1993) An introduction to bioceramics World Scientific Hietala EM, Salminen US, Stồhls A, Vọlimaa T, Maasilta P, Tửrmọlọ P, Nieminen MS, Harjula ALJ (2001) Biodegradation of the copolymeric polylactide stent Journal of vascular research, 38, pp.361-369 Holy CE, Shoichet MS, Davies JE (2000) Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period Journal of biomedical materials research, 51, pp.376-382 Honkanen PB, Kellomọki M, Konttinen YT, Mọkelọ S, Lehto MUK (2009) A midterm follow-up study of bioreconstructive polylactide scaffold implants in metacarpophalangeal joint arthroplasty in rheumatoid arthritis patients Journal of Hand Surgery (European Volume), 34, pp.179-185 104 [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] Hoppe A, Gỹldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics Biomaterials, 32, pp.2757-2774 Hu H, Qiao Y, Meng F, Liu X, Ding C (2013) Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO 2/CaSiO coating on titanium Colloids and surfaces B: Biointerfaces, 101, pp.83-90 Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses Journal of biomedical materials research, 4, pp.433-456 Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage Biomaterials, 21, pp.2529-2543 Ignatius AA, Betz O, Augat P, Claes LE (2001) In vivo investigations on composites made of resorbable ceramics and poly (lactide) used as bone graft substitutes Journal of biomedical materials research, 58, pp.701-709 Ioku K, Kawachi G, Sasaki S, Fujimori H, Goto S (2006) Hydrothermal preparation of tailored hydroxyapatit Journal of materials science, 41, pp.1341-1344 Isotalo T, Alarakkola E, Talja M, Tammela TLJ, Vọlimaa T, Tửrmọlọ P (1999) Biocompatibility testing of a new bioabsorbable X-ray positive SR-PLA 96/4 urethral stent The Journal of urology, 162, pp.1764-1767 J L (1998) Lage-scale production, properties and commercial applications of polylactic acid polymers Polymer Degrad Stab, 1-3, pp.145-152 Janicki P, Schmidmaier G (2011) What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells Injury, 42, pp.S77-S81 Jayabalan M, Shalumon KT, Mitha MK, Ganesan K, Epple M (2010) Effect of hydroxyapatit on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications Acta Biomaterialia, 6, pp.763-775 Johnson AJW, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair Acta biomaterialia, 7, pp.16-30 Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis Biomaterials, 26, pp.5474-5491 Karp JM, Shoichet MS, Davies JE (2003) Bone formation on twodimensional poly (DLlactidecoglycolide)(PLGA) films and threedimensional PLGA tissue engineering scaffolds in vitro Journal of biomedical materials research Part A, 64, pp.388-396 Kellomọki M, Puumanen K, Waris T, Tửrmọlọ P (2000) In Vivo Degradation of Composite Membrane of P (CL/LLA) 50/50 Film and P (L/D) LA 96/4 Mesh Materials for Medical Engineering, Volume 2, pp.79-85 Keskin D, Gỹndodu C, Atac AC (2007) Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna Medical Principles and Practice, 16, pp.299-305 Kim H-M, Himeno T, Kawashita M, Kokubo T, Nakamura T (2004) The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatit: an in vitro assessment Journal of the Royal Society Interface, 1, pp.17-22 105 [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism Radionuclide and hybrid bone imaging Springer, pp 29-57 Klawitter JJ, Bagwell JG, Weinstein AM, Sauer BW, Pruitt JR (1976) An evaluation of bone growth into porous high density polyethylene Journal of biomedical materials research, 10, pp.311-323 Kobayashi M, Nakamura T, Shinzato S, Mousa WF, Nishio K, Ohsawa K, Kokubo T, Kikutani T (1999) Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement Journal of biomedical materials research, 46, pp.447-457 Kofron MD, Cooper JA, Kumbar SG, Laurencin CT (2007) Novel tubular composite matrix for bone repair Journal of Biomedical Materials Research Part A, 82, pp.415425 Kokubo T (1991) Bioactive glass ceramics: properties and applications Biomaterials, 12, pp.155-163 Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, pp.2907-2915 Kothapalli CR, Shaw MT, Wei M (2005) Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties Acta Biomaterialia, 1, pp.653-662 Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatit crystals: a review study on the analytical methods Journal of biomedical materials research, 62, pp.600-612 Kricheldorf HR, Jontộ JM (1983) New polymer syntheses Polymer Bulletin, 9, pp.276-283 Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H (1998) BMPinduced osteogenesis on the surface of hydroxyapatit with geometrically feasible and nonfeasible structures: topology of osteogenesis Journal of biomedical materials research, 39, pp.190-199 Lam CXF, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for months in vitro and in vivo Journal of biomedical materials research Part A, 90, pp.906-919 Langer R (1994) Biodegradable polymer scaffolds for tissue engineering Nat Biotechnol Lee ES, Oh YT, Youn YS, Nam M, Park B, Yun J, Kim JH, Song H-T, Oh KT (2011) Binary mixing of micelles using Pluronics for a nano-sized drug delivery system Colloids and Surfaces B: Biointerfaces, 82, pp.190-195 LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates Clinical orthopaedics and related research, 395, pp.81-98 LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials Chemical reviews, 108, pp.4742-4753 Lenhert S, Meier M-B, Meyer U, Chi L, Wiesmann HP (2005) Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir Blodgett lithography Biomaterials, 26, pp.563-570 Leukers B, Gỹlkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatit scaffolds for bone tissue engineering made by 3D printing Journal of Materials Science: Materials in Medicine, 16, pp.1121-1124 106 [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] Li C, Zhao L, Han J, Wang R, Xiong C, Xie X (2011) Synthesis of citrate-stabilized hydrocolloids of hydroxyapatit through a novel two-stage method: A possible aggregatesbreakdown mechanism of colloid formation Journal of colloid and interface science,360, pp.341-349 Li P, De Groot K (1994) Better bioactive ceramics through sol-gel process Journal of Sol-Gel Science and Technology, 2, pp.797-801 Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly (-hydroxy acids) in aqueous media Journal of Materials Science: Materials in Medicine, 1, pp.198-206 Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M (2010) Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds Biomaterials, 31, pp.404-412 Lickorish D, Guan L, Davies JE (2007) A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: evolution of scaffold design Biomaterials, 28, pp.1495-1502 Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering Chemical Engineering Research and Design, 85, pp.1051-1064 Liu CZ, Czernuszka JT (2007) Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology Materials science and technology, 23, pp.379-391 Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatit synthesized by hydrothermal method Ceramics international, 29, pp.629-633 Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair Orthopedics, 36, pp.868-873 Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering Annals of biomedical engineering, 32, pp.477-486 Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly (D, L-lactide)(PDLLA) at processing temperature Polymer Degradation and Stability, 91, pp.259-3265 Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size Tissue Engineering Part B: Reviews, 19, pp 485-502 Loo JSC, Ooi CP, Boey FYC (2005) Degradation of poly (lactide-coglycolide)(PLGA) and poly (L-lactide)(PLLA) by electron beam radiation Biomaterials, 26, pp.1359-1367 Loo SCJ, Siew YE, Ho S, Boey FYC, Ma J (2008) Synthesis and hydrothermal treatment of nanostructured hydroxyapatit of controllable sizes Journal of Materials Science: Materials in Medicine, 19, pp.1389-1397 Ma PX, Choi J-W (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network Tissue engineering, 7, pp.23-33 Ma Z, Gao C, Gong Y, Shen J (2003) Paraffin spheres as porogen to fabricate poly (L lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67, pp.610617 107 [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] Macarini L, Murrone M, Marini S, Mocci A, Ettorre GC (2003) MRI in ACL reconstructive surgery with PDLLA bioabsorbable interference screws: evaluation of degradation and osteointegration processes of bioabsorbable screws La Radiologia medica 107:47-57 Malafaya PB, Silva GA, Reis RL (2007) Naturalorigin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications Advanced drug delivery reviews, 59, pp.207-233 Manafi S, Rahimipour MR, Yazdani B, Sadrnezhaad SK, Amin MH (2008) Hydrothermal synthesis of aligned hydroxyapatit nanorods with ultra-high crystallinity International Journal of Engineering Transactions B: Applications, 21, pp.109-116 Manafi SA, Yazdani B, Rahimiopour MR, Sadrnezhaad SK, Amin MH, Razavi M (2008) Synthesis of nano-hydroxyapatit under a sonochemical/hydrothermal condition Biomedical Materials, 3, pp.025002 Manafi SA, Joughehdoust S (2009) Synthesis of hydroxyapatit nanostructure by hydrothermal condition for biomedical application Iranian Journal of Pharmaceutical Sciences, 5, pp.89-94 Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches Journal of tissue engineering and regenerative medicine, 1, pp.261-273 Mehrabanian M, Nasr-Esfahani M (2011) HA/nylon 6, porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties Int J Nanomed, 6, pp.1651-1659 Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly (L-lactic acid) foams Polymer, 35, pp.1068-1077 Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering Electronic Journal of Biotechnology, 3, pp.23-24 Montazeri L, Javadpour J, Shokrgozar MA, Bonakdar S, Javadian S (2010) Hydrothermal synthesis and characterization of hydroxyapatit and fluorhydroxyapatit nano-size powders Biomedical Materials, 5, pp.045004 Moshiri A, Oryan A (2012) Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns Hard Tissue, 1, pp.11 Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage Nature materials, 6, pp.162-167 Nakase H, Okazaki K, Tabata Y, Uose S, Ohana M, Uchida K, Matsushima Y, Kawanami C, Oshima C, Ikada Y (2000) Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategy Journal of Pharmacology and Experimental Therapeutics, 292, pp.15-21 Nayak AK (2010) Hydroxyapatit synthesis methodologies: an overview International Journal of ChemTech Research, 2, pp.903-907 Neira IS, Kolenko YV, Lebedev OI, Van Tendeloo G, Gupta HS, Guitiỏn F, Yoshimura M (2008) An effective morphology control of hydroxyapatit crystals via hydrothermal synthesis Crystal Growth and Design, 9, pp.466-474 108 [113] Nguyen NK, Leoni M, Maniglio D, Migliaresi C (2013) Hydroxyapatit nanorods: Softtemplate synthesis, characterization and preliminary in vitro tests Journal of biomaterials applications, 28, pp.49-61 [114] Ning C, Zhou Y (2008) Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method Acta biomaterialia, 4, pp.1944-1952 [115] Oh SH, Kang SG, Lee JH (2006) Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one Journal of Materials Science: Materials in Medicine, 17, pp.131-137 [116] Ohba S, Chung UI, Tei Y (2013) Identification of osteogenic signal and the development of artificial bones Clinical calcium, 23, pp.1723 [117] Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective Materials Science and Engineering: R: Reports, 58, pp.77-116 [118] Oryan A, Alidadi S, Moshiri A (2013) Current concerns regarding healing of bone defects Hard tissue, 2, pp.13 [119] Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions Journal of orthopaedic surgery and research, 9, pp.1 [120] Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatit mineralization inspired by bone and enamel Chemical reviews, 108, pp.4754-4783 [121] Parikh SN (2002) Bone graft substitutes: past, present, future Journal of postgraduate medicine, 48, pp.142 [122] Patrớcio T, Domingos M, Gloria A, Bỏrtolo P (2013) Characterisation of PCL and PCL/PLA scaffolds for tissue engineering Procedia CIRP, 5, pp.110-114 [123] Pramanik S, Agarwal AK, Rai KN (2005) Development of high strength hydroxyapatit for hard tissue replacement Trends in Biomaterials and Artificial Organs, 19, pp.4651 [124] Rai B, Lin JL, Lim ZXH, Guldberg RE, Hutmacher DW, Cool SM (2010) Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCLTCP scaffolds Biomaterials, 31, pp.7960-7970 [125] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering Biomaterials, 27, pp.3413-3431 [126] Roeder RK, Sproul MM, Turner CH (2003) Hydroxyapatit whiskers provide improved mechanical properties in reinforced polymer composites Journal of Biomedical Materials Research Part A, 67, pp.801-812 [127] Roeder RK, Converse GL, Kane RJ, Yue W (2008) Hydroxyapatit-reinforced polymer biocomposites for synthetic bone substitutes Jom, 60, pp.38-45 [128] Roy DM, Linnehan SK (1974) Hydroxyapatit formed from coral skeletal carbonate by hydrothermal exchange [129] Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds Eur Cell Mater, 5, pp.39-40 109 [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] Sadat-Shojai M (2009) Preparation of hydroxyapatit nanoparticles: comparison between hydrothermal and solvo-treatment processes and colloidal stability of produced nanoparticles in a dilute experimental dental adhesive Journal of the Iranian Chemical Society, 6, pp.386-392 Sadat-Shojai M, Atai M, Nodehi A (2011) Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatit nanoparticles Journal of the Brazilian Chemical Society, 22, pp.571-582 Sadat-Shojai M, Khorasani M-T, Jamshidi A (2012) Hydrothermal processing of hydroxyapatit nanoparticlesa Taguchi experimental design approach Journal of Crystal Growth, 361, pp.73-84 Salarian M, Solati-Hashjin M, Shafiei SS, Salarian R, Nemati ZA (2009) Templatedirected hydrothermal synthesis of dandelion-like hydroxyapatit in the presence of cetyltrimethylammonium bromide and polyethylene glycol Ceramics International, 35, pp.2563-2569 Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends Macromolecular bioscience, 4, pp.743-765 Sander EA, Alb AM, Nauman EA, Reed WF, Dee KC (2004) Solvent effects on the microstructure and properties of 75/25 poly (D, Llactidecoglycolide) tissue scaffolds Journal of Biomedical Materials Research Part A, 70, pp.506-513 Santos C, Luklinska ZB, Clarke RL, Davy KWM (2001) Hydroxyapatit as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites Journal of Materials Science: Materials in Medicine, 12, pp.565-573 Santos MH, Oliveira Md, Souza LPdF, Mansur HS, Vasconcelos WL (2004) Synthesis control and characterization of hydroxyapatit prepared by wet precipitation process Materials Research, 7, pp.625-630 Schuffenhauer A, Varin T (2011) RuleBased Classification of Chemical Structures by Scaffold Molecular Informatics, 30, pp.646-664 Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST (2009) Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation Cell and tissue banking, 10, pp.19-26 Shin HJ, Lee CH, Cho IH, Kim Y-J, Lee Y-J, Kim IA, Park K-D, Yui N, Shin J-W (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro Journal of Biomaterials Science, Polymer Edition, 17, pp.103-119 Shor L, Gỹỗeri S, Wen X, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatit tissue scaffolds and osteoblast-scaffold interactions in vitro Biomaterials, 28, pp.5291-5297 Stevens MM (2008) Biomaterials for bone tissue engineering Materials today, 11, pp.18-25 Suchanek WL, Riman RE (2006) Hydrothermal synthesis of advanced ceramic powders Trans Tech Publ, pp 184-193 Suh SW, Shin JY, Kim J, Kim J, Beak CH, Kim D-I, Kim H, Jeon SS, Choo I-W (2002) Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique ASAIO journal, 48, pp.460-464 110 [145] Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatit/polymer nanoscale biocomposites for bone regeneration Acta biomaterialia, 7, pp.3813-3828 [146] Tabata Y (2009) Biomaterial technology for tissue engineering applications Journal of the Royal Society Interface, 6, pp.S311-S324 [147] Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche Blood, 105, pp.2631-2639 [148] Takahashi H, Yashima M, Kakihana M, Yoshimura M (1995) Synthesis of stoichiometric hydroxyapatit by a Gel route from the aqueous solution of citric and phosphonoacetic acids European journal of solid state and inorganic chemistry, 32, pp.829-835 [149] Tathe A, Ghodke M, Nikalje AP (2010) A brief review: biomaterials and their application International Journal of Pharmacy and Pharmaceutical Sciences, 2, pp.1923 [150] Thanh DTM, Trang PTT, Huong HT, Nam PT, Phuong NT, Trang NTT, Hoang T, Lam TD, SeoPark J (2015) Fabrication of poly (lactic acid)/hydroxyapatit (PLA/HAp) porous nanocomposite for bone regeneration International Journal of Nanotechnology, 12, pp.391-404 [151] Tửrmọlọ P (1992) Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties Clinical materials, 10, pp.29-34 [152] Torres A, Li SM, Roussos S, Vert M (1996) Poly (lactic acid) degradation in soil or under controlled conditions Journal of Applied Polymer Science, 62, pp.2295-2302 [153] Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication Advanced drug delivery reviews, 56, pp.1635-1647 [154] Viswanath B, Ravishankar N (2008) Controlled synthesis of plate-shaped hydroxyapatit and implications for the morphology of the apatite phase in bone Biomaterials, 29, pp.4855-4863 [155] Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatit composites for hard tissue repair Eur Cell Mater, 11, pp.43-56 [156] Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatit/polyamide composite scaffolds for bone tissue engineering Biomaterials, 28, pp.3338-3348 [157] Wang M, Porter D (1994) Processing, characterisation, and evaluation of hydroxyapatit reinforced polyethylene Br Ceram Trans, 93, pp.91-95 [158] Wang M, Joseph R, Bonfield W (1998) Hydroxyapatit-polyethylene composites for bone substitution: effects of ceramic particle size and morphology Biomaterials, 19, pp.2357-2366 [159] Wang P, Li C, Gong H, Jiang X, Wang H, Li K (2010) Effects of synthesis conditions on the morphology of hydroxyapatit nanoparticles produced by wet chemical process Powder Technology, 203, pp.315-321 [160] Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations Annual Review of Materials Science, 28, pp.271-298 [161] Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP, Wang Y (2011) Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering Biomaterials, 32, pp.1051-1058 [162] Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering Part I Traditional factors Tissue engineering, 7, pp.679-689 111 [163] Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts Journal of biomedical materials research, 55, pp.401-408 [164] Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future Journal of Materials Science, 43, pp.2085-2103 [165] Zhang R, Ma PX (1999) Poly (a-hydroxyl acids)/hydroxyapatit porous composites for bone-tissue engineering I Preparation and morphology Journal of biomedical materials research, 44, pp.446-455 [166] Zhao J, Han W, Chen H, Tu M, Huan S, Miao G, Zeng R, Wu H, Cha Z, Zhou C (2012) Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering Journal of Materials Science: Materials in Medicine, 23, pp.517-525 [167] Zhao X-F, Li X-D, Kang Y-Q, Yuan Q (2011) Improved biocompatibility of novel poly (L-lactic acid)/-tricalcium phosphate scaffolds prepared by an organic solvent-free method International journal of nanomedicine, 6, pp.1385-1390 112 PH LC Ph lc Gin XRD ca mu bt nano HAp tng hp bng phng phỏp thy nhit s dng cht hot ng b mt P123: (a) 0P123, (b) 1P123, (c) 2P123 VNU-HN-SIEMENS D5005 - Mau 0gP123 - HAP - 500C (a) d =2 400 d =2 7 d =2 d =1 d =1 4 d =1 d =1 d =1 d =1 5 d =1 d =1 d =1 4 d =1 d =1 1 d =1 d =1 9 d =1 d =1 d =1 d =1 9 d =2 d =2 d =3 d =3 1 100 d =2 5 d =2 d =2 d =3 200 10 20 30 40 50 60 70 2-Theta - Scale File: Nga-DHBK-0gP123-HAP-500C.raw - Type: 2Th alone - Start: 10.000 - End: 70.000 - Step: 0.030 - Step time: 1.0 s - Temp.: 25.0 C (Room) - Anode: Cu - Creation: 11/12/12 15:51:03 24-0033 (D) - Hydroxylapatite - Ca5(PO4)3(OH) - Y: 54.55 % - d x by: 1.000 - WL: 1.54056 VNU-HN-SIEMENS D5005 - Mau 1gP123 - HAP - 500C 500 d =2 32 (b) d =1 53 d =1 17 d =1 99 d =1 81 d =1 14 d =1 54 d =1 12 d =1 98 d =1 63 d =1 51 d =1 95 d =2 57 d =2 83 d =2 64 d =2 46 d =3 59 d =3 14 d =3 26 d =3 02 d =5 80 100 d =2 31 d =3 25 200 d =1 20 d =1 96 300 d =1 40 d =2 78 d =2 44 400 Lin (C ps ) L in (C p s ) 300 10 20 30 40 50 2-Theta - Scale File: Nga-DHBK-1gP123-HAP-500C.raw - Type: 2Th alone - Start: 10.000 - End: 70.000 - Step: 0.030 - Step time: 1.0 s - Temp.: 25.0 C (Room) - Anode: Cu - Creation: 11/12/12 11:36:41 24-0033 (D) - Hydroxylapatite - Ca5(PO4)3(OH) - Y: 77.36 %- d x by: 1.000 - WL: 1.54056 113 60 70 VNU-HN-SIEMENS D5005 - Mau 1gP123 - HAP - 500C (c) d =2 32 500 d =1 53 d =1 14 d =1 17 d =1 99 d =1 81 d =1 12 d =1 54 d =1 63 d =1 98 d =1 95 d =2 57 d =2 83 d =2 64 d =2 46 d =3 59 d =3 14 d =3 26 d =3 02 d =5 80 100 d =2 31 d =3 25 200 d =1 20 d =1 96 d =1 51 Lin (C ps ) 300 d =1 40 d =2 78 d =2 44 400 10 20 30 40 50 60 70 2-Theta - Scale File: Nga-DHBK-1gP123-HAP-500C.raw - Type: 2Th alone - Start: 10.000 - End: 70.000 - Step: 0.030 - Step time: 1.0 s - Temp.: 25.0 C (Room) - Anode: Cu - Creation: 11/12/12 11:36:41 24-0033 (D) - Hydroxylapatite - Ca5(PO4)3(OH) - Y: 77.36 %- d x by: 1.000 - WL: 1.54056 Ph lc Ph FTIR ca mu bt nano HAp tng hp bang phng phỏp thy nhit s dng cht hot ng b mt P123: (a) 0P123, (b) 1P123, (c) 2P123 (a) 114 (b) (c) 115 Ph lc nh SEM ca mng HAp/PDLLA sau ngõm SBF ngy (a) 0P12 3 ngy 2àm (b) 1P123 ngy 2àm (c) 2P12 3 ngy 2àm 116 Ph lc S bỏm dớnh v phỏt trin ca t bo MG63 trờn khuụn nh dng HAp/PDLLA tng hp s dng 1,4-dioxan sau ngy: mu S1 (A), S2 (B), S3 (C) v S4 (D) A 3Day ngy B 100 m 100 m C 3Day ngy D Day 3 ngy DayDay 3 3ngy 100 m 100 m 117 Ph lc S bỏm dớnh v phỏt trin ca t bo MG63 trờn khuụn nh dng HAp/PDLLA tng hp s dng chloroform sau ngy: mu F1 (A), F2 (B)v F4 (C) (d) (a) ngy (b ) ngy 100 àm 100 àm ngy (c) 100 àm 118 ... chính: vật liệu polyme phân hủy sinh học; vật liệu vô có hoạt tính sinh học; vật liệu composit tổng hợp từ dạng vật liệu (polyme /vật liệu vô hoạt tính sinh học) 1.2.1 Polyme phân hủy sinh học Các polyme... thích sinh học khả tạo mô xương vật liệu composit poly (D, L) lactic axit/hydroxyapatit’’ Mục tiêu luận án: Nghiên cứu tổng hợp vật liệu composit sinh học gồm hydroxyapatit polyme sinh học (PDLLA)... mô [59,107] Khuôn định dạng chế tạo từ vật liệu polyme phân hủy sinh học, vật liệu vô có hoạt tính sinh học composit Vật liệu polyme phân hủy sinh học vật liệu vô nghiên cứu nhiều Nhưng vật liệu

Ngày đăng: 28/03/2017, 10:12

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan