Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại - Hữu cơ

149 377 0
Nghiên cứu tổng hợp và ứng dụng của một số vật liệu khung kim loại - Hữu cơ

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Header Page of 148 I HC HU TRNG I HC S PHM NG TH QUNH LAN NGHIấN CU TNG HP V NG DNG CA MT S VT LIU KHUNG KIM LOI-HU C LUN N TIN S HểA HC HU-NM 2015 Footer Page of 148 Header Page of 148 I HC HU TRNG I HC S PHM NG TH QUNH LAN NGHIấN CU TNG HP V NG DNG CA MT S VT LIU KHUNG KIM LOI-HU C Chuyờn ngnh: Húa lý thuyt v húa lý Mó s: 62.44.01.19 LUN N TIN S HểA HC NGI HNG DN KHOA HC PGS.TS V Anh Tun PGS.TS Dng Tun Quang HU-NM 2015 Footer Page of 148 Header Page of 148 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi, cỏc s liu v kt qu nghiờn cu nờu lun ỏn l trung thc, c cỏc ng tỏc gi cho phộp s dng v cha tng cụng b bt k cụng trỡnh no khỏc Tỏc gi ng Th Qunh Lan Footer Page of 148 Header Page of 148 LI CM N Trc ht, tụi xin c t lũng bit n sõu sc n PGS.TS V Anh Tun v PGS.TS Dng Tun Quang, cỏc thy ó tn tỡnh hng dn, h tr v giỳp tụi hon thnh lun ỏn Tụi xin chõn thnh cm n TS H Vn Thnh, TS Hong Vinh Thng ó giỳp tụi sut quỏ trỡnh nghiờn cu Tụi xin chõn thnh cm n th cỏn b phũng Húa lý B mt- Vin Húa hc- Vin Hn lõm Khoa hc v Cụng ngh Vit Nam, quý thy cụ thuc khoa Húa trng i hc S phm Hu v trng i hc Khoa hc ó giỳp tụi quỏ trỡnh thc hin lun ỏn Tụi xin chõn thnh cm n Tnh y, UBND Tnh Tha Thiờn Hu, cm n Ban giỏm hiu trng Cao ng S phm ó quan tõm v to iu kin thun li cho tụi thc hin ti nghiờn cu Cui cựng, tụi xin cm n gia ỡnh, bn bố, cỏc ng nghip ó ng viờn giỳp tụi hon thnh lun ỏn ny ng Th Qunh Lan Footer Page of 148 Header Page of 148 MC LC Trang Trang ph bỡa i Li cam oanii Li cm n iii Mc lc.iv Danh mc cỏc ch vit tt vi Danh mc cỏc bngvii Danh mc cỏc hỡnh vviii M U.1 CHNG 1: TNG QUAN TI LIU18 1.1.Gii thiu chung v vt liu khung kim loi - hu c (Metal-OrganicFrameworksMOFs). 18 1.2.Cỏc phng phỏp tng hp MOFs24 1.3.Gii thiu v cỏc vt liu nghiờn cu25 1.4.Gii thiu v quỏ trỡnh hp ph 36 .Phn ng Fenton 40 1.5.1.Quỏ trỡnh oxi húa Fenton d th40 .2.Quỏ trỡnh quang Fenton 41 .3.ng dng ca Fenton x lý nc thi dt nhum 42 1.6.Hp ph asen44 1.6.1.Tớnh c hi ca asen.44 1.6.2.C ch ca quỏ trỡnh hp ph asen.46 CHNG M C TI U, N I DUNG, PHNG PH P NGHI N CU V TH C NGHIM 47 2.1.Mc tiờu 47 2.2.Ni dung.47 2.3.Phng phỏp nghiờn cu .47 2.3.1.Phng phỏp ph hng ngoi FT-IR 47 2.3.2.Phng phỏp nhiu x Rnghen (X-ray diffraction, XRD).48 2.3.3.Phng phỏp ph quang in t tia X (XPS) 50 2.3.4.Phng phỏp ph tỏn sc nng lng tia X (EDX).51 2.3 .Phng phỏp phõn tớch nhit (TGA) 52 2.3.6.Phng phỏp hin vi in t truyn qua (TEM) 53 2.3.7.Phng phỏp hin vi in t quột (SEM).54 2.3.8.Phng phỏp ng nhit hp ph- kh hp ph nitrogen (BET) 54 2.3.9.Phng phỏp ph hp th t ngoi v kh kin 56 Footer Page of 148 Header Page of 148 2.3.10.Phng phỏp quang ph hp th nguyờn t (AAS) 58 2.4.Thc nghim 59 2.4.1.Húa cht..59 2.4.2.Tng hp vt liu Cr-MIL-101 .60 2.4.3.Tng hp vt liu MIL- 3(Fe)..62 2.4.4.Tng hp vt liu MIL-88B 65 2.4 .Tng hp vt liu Fe-Cr-MIL-10166 2.4.6.Xỏc nh im ng in ca MIL-53(Fe)67 2.4.7.ỏnh giỏ kh nng hp ph asen67 2.4.8.Phn ng quang húa Fenton.68 CHNG K T QU V TH O LU N 69 3.1.Tng hp vt liu Cr-MIL-101.69 3.1.1.Nghiờn cu cỏc yu t nh hng n quỏ trỡnh tng hp vt liu Cr-MIL-101 69 3.1.2.c trng vt liu Cr-MIL-101 76 3.2.Tng hp vt liu MIL- 3(Fe).80 3.2.1.Nghiờn cu cỏc yu t nh hng n quỏ trỡnh tng hp MIL- 3(Fe)80 3.2.2.c trng vt liu MIL- 3(Fe)85 3.3.Tng hp vt liu MIL-88B.89 3.3.1.Nghiờn cu cỏc yu t nh hng n quỏ trỡnh tng hp MIL-88B 89 3.3.2.c trng vt liu MIL-88B92 3.4.Tng hp vt liu th ng hỡnh Cr b ng Fe MIL-101.97 .Nghiờn cu kh nng hp ph v xỳc tỏc quang húa Fenton ca vt liu Cr-MIL101, Fe-Cr-MIL-101, MIL-53(Fe), MIL88B103 .1.Kh nng hp ph thuc nhum RR19 trờn vt liu Cr-MIL-101, Fe-Cr-MIL101, MIL-53(Fe), MIL88B104 .2.Kh nng xỳc tỏc quang húa Fenton ca vt liu Cr-MIL-101 v Fe-Cr-MIL101106 3.6.Kh nng hp ph As(V) trờn cỏc vt liu nghiờn cu .112 3.7.Nghiờn cu ng hc quỏ trỡnh hp ph asen ca vt liu MIL- 3(Fe) v MIL-88B 114 3.7.1.im ng in ca MIL-53(Fe).114 3.7.2.Nghiờn cu cỏc yu t nh hng n quỏ trỡnh hp ph.116 3.7.3.Kho sỏt ng ng nhit hp ph120 3.7.4.ng hc quỏ trỡnh hp ph124 K T LU N129 Footer Page of 148 Header Page of 148 DANH M C C C BI B O LI N QUAN N LU N N TI LIU THAM KH O PH L C Footer Page of 148 Header Page of 148 DANH MC CC CH VIT TT TRONG LUN N AAS Ph hp ph nguyờn t (Atomic Adsorption Spectroscopy) BET Brunauer-Emmett-Teller COD Nhu cu oxi húa hc (Chemical Oxygen Demand) CUS S phi trớ cha bóo hũa (Coordinated Unsaturated Site) DTA Phõn tớch nhit vi sai (Differental Thermal Analysis) FT-IR Ph hng ngoi (Fourier Transform Infrared) EDX Tỏn x tia X (Energy Dispersive X-ray) HKUST-1 HongKong University of Science and Technology- HPHH Hp Ph Húa Hc HPVL Hp Ph Vt Lý IUPAC International Union of Pure and Applied Chemistry MCM Mobil Composition of Matter MIL Material Institute Lavoisier MOFs Metal Organic Frameworks SBA Santa Barbara Amorphous SBUs Cỏc n v cu trỳc th cp (Secondary Building Units) SEM Hin vi in t quột (Scanning Electron Microscopy) TEM Hin vi in t truyn qua (Transmission Electron Microscopy) TGA Phõn tớch nhit trng (Thermogravimetric Analysis) TMAOH Tetramethyl Ammonium Hydroxide UV-Vis Ph t ngoi-kh kin (Ultra Violet Visible) VOC Hp cht hu c d bay hi (Volatile Organic Compound) XPS Ph quang in t tia X (X-ray Photoelectron Spectroscopy) XRD Nhiu x tia X (X-Ray Diffraction) Footer Page of 148 Header Page of 148 DANH MC CC BNG Bng 2.1 Cỏc loi húa cht chớnh dựng lun ỏn .59 Bng 2.2 Ký hiu tờn cỏc mu Cr-MIL-101 tng hp cú t l H2BDC/Cr3+ khỏc .61 Bng 2.3 Ký hiu cỏc mu Cr-MIL-101 tng hp cú t l HF/Cr(NO3)3 khỏc .61 Bng 2.4 Ký hiu cỏc mu Cr-MIL-101 tng hp cú thi gian gia nhit khỏc .62 Bng Ký hiu cỏc mu MIL- 3(Fe) tng hp cú t l H2BDC/FeCl3 khỏc .64 Bng 2.6 Ký hiu cỏc mu MIL- 3(Fe) tng hp cú t l DMF khỏc .64 Bng 2.7 Ký hiu cỏc mu MIL-88B tng hp cú t l H2BDC/FeCl3 khỏc .65 Bng 2.8 Ký hiu tờn cỏc mu MIL-88B tng hp cú t l DMF khỏc .66 Bng 2.9 Ký hiu tờn cỏc mu MIL-88B tng hp cú nhit kt tinh khỏc .66 Bng 3.1 nh hng t l H2BDC/Cr(NO3)3 i vi tinh khit ca vt liu Cr-MIL-101 70 Bng 3.2 Thnh phn húa hc ca Cr-MIL-101 v Fe-Cr-MIL-101 98 Bng 3.3 Mt s tớnh cht húa lý ca Cr-MIL-101 v Fe-Cr-MIL-101 100 Bng 3.4 Mt s tớnh cht ca vt liu nghiờn cu 104 Bng Thnh phn húa hc ca cỏc vt liu nghiờn cu 112 Bng 3.6 So sỏnh dung lng hp ph As(V) ca cỏc cht hp ph khỏc nhau114 Bng 3.7 S ph thuc ca qt vo thi gian hp ph t 119 Bng 3.8 Cỏc giỏ tr Ce , qe, v Ce/qe, theo cỏc nng khỏc ca MIL- 3(Fe) v MIL-88B 121 Bng 3.9 Cỏc giỏ tr, logqe v logCe theo cỏc nng khỏc ca MIL- 3(Fe) v MIL-88B 123 Bng 3.10 Cỏc thụng s ca phng trỡnh ng nhit Langmuir v Freundlich ca MIL-53(Fe) 124 Bng 3.11 Cỏc thụng s ca phng trỡnh ng nhit Langmuir v Freundlich ca MIL-88B .124 Bng 3.12 Mt s tham s ca phng trỡnh ng hc biu kin bc nht 127 Bng 3.13 Mt s tham s ca phng trỡnh ng hc biu kin bc hai 127 Footer Page of 148 Header Page 10 of 148 DANH MC CC HèNH Hỡnh 1.1 Cỏch xõy dng khung MOF chung 18 Hỡnh 1.2 Mt s cu ni hu c MOFs .19 Hỡnh 1.3 Vớ d v cỏc SBU ca vt liu MOFs t cacboxylat a din kim loi mu xanh; O ; C mu en Cỏc a giỏc hoc a din c xỏc nh bi cỏc nguyờn t carbon ca nhúm cacboxylat (im m rng cú mu ) 20 Hỡnh 1.4 S lng cỏc cụng trỡnh cụng b v MOFs 12 nm gn õy 21 Hỡnh C ch hp ph cỏc cht c hi trờn vt liu MOFs 23 Hỡnh 1.6 Cỏc phng phỏp tng hp MOFs .24 Hỡnh 1.7 Quỏ trỡnh hỡnh thnh MIL-53(Fe) v MIL-88B b ng s to mm 25 Hỡnh 1.8 (a) Xõy dng khung ca MIL-101, 3D-[Cr3(O)(BDC)3(F)(H2O)2] 25H2O, (b) n v xõy dng th cp ca MIL101{Cr3(O)(F)(H2O)2} gm cỏc nhúm cacboxylat liờn kt vi nguyờn t Cr, (c) cỏc ca s ang m rng ln nht xung quanh cỏc lng mao qun, (d) kt ni ca ca ng giỏc v lc giỏc, (e) lng mao qun khung 3D 27 Hỡnh 1.9 Cu trỳc tinh th ca MIL- 3(Fe) gm bỏt din FeO6 liờn kt vi nhúm cacboxylic (cựng mt trc) 28 Hỡnh 1.10 Hiu ng th ca vt liu MIL-88(A,B,C,D) 29 Hỡnh 1.11 Cu trỳc tinh th MIL-88B, (a) cựng trc b v (b) cựng trc c 30 Hỡnh 1.12 c tớnh hớt th ca MIL-53(Fe) 34 Hỡnh 1.13 C ch ca quỏ trỡnh hp ph As(V) trờn vt liu cú cha Fe 46 Hỡnh 2.1 S chựm tia ti v chựm tia nhiu x trờn tinh th 49 Hỡnh 2.2 tự ca pic phn x gõy kớch thc ht 49 Hỡnh 2.3 Quỏ trỡnh phỏt quang in t 50 Hỡnh 2.4 Nguyờn tc phỏt x tia X dựng ph 52 Hỡnh Cỏc dng ng ng nhit hp ph-kh hp ph theo phõn loi IUPAC 55 Hỡnh 2.6 Bc chuyn ca cỏc electron phõn t .57 Hỡnh 2.7 Mi quan h gia cng vch ph A v nng cht Cx .59 Hỡnh 2.8 S tng hp vt liu MIL-53(Fe) 63 10 Footer Page 10 of 148 Header Page 135 of 148 organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions, Journal of Physical Chemitry C, 116 (15), pp 86018607 21 Bing L., Yongchun D., Zhizhong D., Yiming X., and Chi Z (2013), Renovation and reuse of reactive dyeing effluent by a novel heterogeneous Fenton system based on metal modified PTFE fibrous catalyst/H2O2, International Journal of Photoenergy, Article ID 169493, 10 pages 22 Bourrelly S., Llewellyn P L., Serre C., Millange F., Loiseau T., Fộrey G (2005), How hydration drastically improves adsorption selectivity for CO2, Journal of the American Chemical Society, 127, pp 13519-13521 23 Camilla Catharina Scherb (2009), Controlling the surface growth of metalorganic frameworks, Dissertation for the PhD degree from the Faculty of Chemistry and Pharmacy of the Ludwig-Maximilians-University of Munich 24 Camilla S., Alexander S., and Thomas B (2008), Directing the structure of metalorganic frameworks by oriented surface growth on an organic monolayer, Angewandte Chemie-International Edition, 47, 5777 5779 25 Carl K B and Mircea D (2013), Ti3+, V2+/3+, Cr2+/3+, Mn2+, and Fe2+ substituted MOF-5 and redox reactivity in Cr- and Fe-MOF- , Journal of the American Chemical Society, 13 , pp 1288612891 26 Carlos M G., Andrộ D S B., Susana R., Isabel C M S S., Baltazar C., Luớs C S and Salete S B (2014), Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr), Catalysis Science & Technology, 4, pp 1416-1425 27 Chanda D., Tanay K., Bishnu P B., Arijit M., and Rahul B (2014), Crystalline metal-organic frameworks (MOFs): synthesis, structure and function, Acta Crystallographica, B70, pp 3-10 135 Footer Page 135 of 148 Header Page 136 of 148 28 Chang J.S., Fộrey G., Hong D.Y., Hwang Y.K., Serre C (2009), Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites Advanced Functional Materials, 19, pp 15371552 29 Chen C., Meng Z., Qingxin G., Wei L (2012), Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL101(Cr), Chemical Engineering Journal, 183, pp 6067 30 Chen Y F., Babarao R., Sandler S I., Jiang J W (2010), Metal Organic Framework MIL-101 for adsorption and effect of terminal water molecules simulation, Langmuir, 26 (11), pp 8743 8750 31 Christian S., Sandrine B., Alexandre V., Naseem A R, Guillaume M., Philip L L, Marco D., Yaroslav F., Olivier L., Paul B., Gộrard F (2007), An explanation for the very large breathing effect of a metalorganic framework during CO2 adsorption, Advanced Functional Materials, 19, pp 22462251 32 Christoph J and Jana K.V (2010), MOFs, MILs and more concepts, properties and applications for porous coordination networks (PCNs), New Journal of Chemistry, 34, pp 23662388 33 Demessence A., Patricia H., Christian S., Cedric B., David G.,Clement S., and Fộrey G (2009), Elaboration and properties of hierarchically structured optical thin lms of MIL-101(Cr), The Royal Society of Chemistry, 10, pp 7149 7151 34 Do Xuan D., Hoang Vinh T., Serge K (2011), MIL-53(Al) mesostructured metal-organic frameworks, Microporous and Mesoporous Materials, 141, pp 135139 35 Do-Young H., Young K H., Christian S., Gộrard F and Jong-San C (2009), Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis, Advanced Functional Materials, 19,(10), pp 15371552 36 Eddaoudi M (2002), Systematic design of pore size and functionality in 136 Footer Page 136 of 148 Header Page 137 of 148 isoreticular MOFs and their application in methane storage, Science, 295, pp.469-472 37 Enamul H., Ji E L., In T J., Young K H., Jong-San C., Jonggeon J., Sung H J (2010), Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium benzenedicarboxylates, Journal of Hazardous Materials, 181, pp 535542 38 Fabian C., Jie S., Ana E P.P., Wei W., Yifeng Y., Louise S., and Xiaodong Z (2013), Framework isomerism in vanadium metalorganic frameworks: MIL-88B(V) and MIL-101(V), Crystal Growth & Design, 13, pp 036 044 39 Farha O K., Malliakas C D., Kanatzidis M G., & Hupp J T (2010), Control over catenation in metal-organic frameworks via rational design of the organic building block, Journal of the American Chemical Society, 132, pp.950952 40 Fộrey G., Latroche M., Serre C., Millange F., Loiseau T., PercheronGuộgan A (2003), Hydrogen adsorption in the nanoporous metalbenzenedicarboxylate M(OH)(O2CC6H4CO2)(M = Al3+, Cr3+), MIL- 3, Chemical Communications, pp 2976-2977 41 Fộrey G., Mellot-D.C., Serre C., Millange F., Dutour J., Surblộ S., Margiolaki I (2005), Chromium terephthalatebased solid with unusually large pore volumes and surface area, Science, 309, pp 2040-2042 42 Finsy V, Ma L., Alaert L., De Vos D E., Baron G.V., Denayer J.F.M (2009), Separation of CO2/CH4 mixtures with the MIL-53(Al) metal organic framework, Microporous and Mesoporous Materials, 120, pp 221227 43 Franck M., Nathalie G., Manuela E M., Gộrard F., Abel C.S., Kathryn M G., and Richard I W (2010), Selective sorption of organic molecules by the flexible porous hybrid metal-organic framework MIL-53(Fe) controlled 137 Footer Page 137 of 148 Header Page 138 of 148 by various host-guest interactions, Chemistry of Materials, 22, pp 4237 4245 44 G de Combarieu, M Morcrette, F Millange, N Guillou, J Cabana, C P Grey, I Margiolaki, G Fộrey, and J M Tarascon (2009), Influence of the benzoquinone sorption on the Sstructure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a Lithium-Ion battery, Chemistry of Materials, 21, pp 16021611 45 Gu Z., Fang J and Deng B (200 ), Preparation and evaluation of GACbased iron-containing adsorbents for arsenic removal, Environmental Science and Technology, 39, pp 38333843 46 Guodong S., Yimin L., Xin Y., Xuemei R., Shitong Y., Jun H and Xiangke W (2012), Efficient removal of arsenate by versatile magnetic graphene oxide composites, The Royal Society of Chemistry Advances, 2, pp.12400 12407 47 Horcajada P (2010), Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nature Materials 9, pp.172-178 48 Horcajada P., Serre C., Vallet-Regi M., Sebban M., Taulelle F., Fộrey G (2006), Metal-organic frameworks as efficient materials for drug delivery, Angewandte Chemie-International Edition, 45, pp 5974-5978 49 Horcajada P., Surble S., Serre C., Hong D Y., Seo Y K., Chang J S., Grenốche J M., Margiolaki I., Fộrey G (2007), Synthesis and catalytic properties of MIL-100(Fe) an iron(III) carboxylate with large pores, Chemical Communications, 27, pp 2820-2822 50 Hwang Y K., Hong D Y., Chang J S., Seo H., Yoon M., Kim J., Jhung S H., Serre C., Fộrey G (2009), Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101, Applied Catalysis A: General, 358, pp 249-253 138 Footer Page 138 of 148 Header Page 139 of 148 51 Jana J.A., Jesỳs F.S., Ignacio L., Pablo S.C., Emmanuel S., Vera P S., Emilio P., Francesc X L.X., Freek K., Jorge G (2013), The oxamate route, a versatile post-functionalization for metal incorporation in MIL101(Cr) Catalytic applications of Cu, Pd, and Au, Journal of Catalysis, 307, pp 295304 52 Jeff G., Hossein K., Sohrab R (2012), Rapid and efficient crystallization of MIL- 3(Fe) by ultrasound and microwave irradiation, Microporous and Mesoporous Materials, 162, pp 36 -43 53 Jeongyong L (2007), Synthesis and gas sorption study of microporous metal organic frameworks for hydrogen and methane storage, PhD thesis, The State University of New Jersey 54 Jesse L C R., Omar M Y (200 ), Strategies for hydrogen storage in metal-organic frameworks, Angewandte Chemie-International Edition, 44, pp 4670-4679 55 Jia J., Fujian X., Zhou L., Xiandeng H and Michael J S (2013), Metal organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+, Chemical Communications, 49, pp 4670-4672 56 Jiangfeng Y., Jinping L., Jinxiang D., Qiang Z (2009), Synthesis of metalorganic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behaviour, Microporous and Mesoporous Materials, 130, pp 174179 57 Joshi U D., Joshi P N., Tamhankar S S., Joshi V V., Shiralkar V P (2002), Effect of nonframework cations and crystallinity on the basicity of NaX zeolites, Applied catalysis, 235, p.135 58 Kathryn M L T P., Joseph D R., Zhigang X., Sylvie T., and Wenbin L (2009), Postsynthetic modifications of Iron-carboxylate nanoscale metalorganic frameworks for imaging and drug delivery, Journal of the American Chemical Society, 131, pp 1426114263 139 Footer Page 139 of 148 Header Page 140 of 148 59 Kitagawa S., Kitaura R., Noro S I (2004), Functional porous coordination polymers, Angewandte Chemie-International Edition, 43, pp 2334-2375 60 Koh K., Wong-Foy A G & Matzger A J (2009), A porous coordination copolymer with over 5000 m2/g BET surface area, Journal of the American Chemical Society, 131, pp.4184-4185 61 Latroche M., Surblộ S., Serre C., Mellot-Darznieks C., Llewellyn P L., Lee J H., Chang J S., Jhung S H., Fộrey G (2006), Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101, Angewandte Chemie-International Edition, 118, pp 8407-8411 62 Lebedev O I., Millange F., Serre C., Van Tendeloo G., and Fộrey G (200 ), First direct imaging of giant pores of the metalorganic framework MIL-101, Chemistry of Materials, 17 (26), pp 65256527 63 Leonard R MacGillivray, Metal-organic frameworks: Design and application, John Wiley & Sons, Inc., Hoboken, New Jersey, Canada 64 Li J.R., Kuppler R.J., Zhou H.C (2009), Selective gas adsorption and separation in metalorganic frameworks, Chemical Society Reviews, 38, pp 1477-1504 65 Liu J., Chen L., Cui H., Zhang J., Zhang L., and Su C.-Y (2014), Applications of metalorganic frameworks in heterogeneous supramolecular catalysis, Chemical Society Reviews, 43, pp 6011-6062 66 Llewellyn P L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G., Chang J S., Hong D Y., Hwang Y K., Jhung S H., Fộrey G (2008), High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101, Langmuir, 24, pp 7245-7250 67 Llewellyn P L., Horcajada P., Maurin G., Devic T., Rosenbach N., Bourrelly S., Serre C., Vincent D., Loera-Serna S., Filinchuk Y., and Fộrey G (2009), Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL- 3(Fe), Journal of the American Chemical Society, 131, pp.1300213008 140 Footer Page 140 of 148 Header Page 141 of 148 68 Loiseau T., Serre C., Huguenard C., Fink G., Taulelle F., Henry M., Bataille T., Ferey G (2004), A Rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chemical Engineering Journal, 10 (6), pp 13731382 69 Lorena P., Beatriz S., Daniel J., Vớctor S., Carlos T., and Joaquớn C (2013), Accelerating the controlled synthesis of metalorganic frameworks by a microfluidic approach: A nanoliter continuous reactor, ACS Applied Materials & Interfaces, 5, pp 94059410 70 Lunhong A., Caihong Z., Lili L., Jing J (2014), Iron terephthalate metal organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation, Applied Catalysis B: Environmental 148149, pp 191200 71 Lunhong A., Lili L., Caihong Z., Jian F., and Jing J (2013), MIL-53(Fe): A metalorganic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing, Chemical Engineering Journal, 19, pp.15105 15108 72 Maksimchuk N.V., Timofeeva M.N., Melgunov M.S., Shmakov A.N., Chesalov Yu.A., Dybtsev D.N., Fedin V.P., Kholdeeva O.A (2008), Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates, Journal of Catalysis, 257, pp 315323 73 McKinlay A C., Eubank J F., Wuttke S., Xiao B., Wheatley P S., Bazin P., Lavalley J.-C., Daturi M., Vimont A., De Weireld G., Horcajada P., Serre C., and Morris R E (2013), Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metalorganic frameworks, Chemistry of Materials, 25, 15921599 74 Michael OKeeffe (2006), Tetrahedral frameworks TX2 with TXT angle = 1800 Rationalization of the structures of MOF-500 and of MIL-100 and MIL-101, Materials Research Bulletin, 41, pp 911915 141 Footer Page 141 of 148 Header Page 142 of 148 75 Millange F., Fộrey G., Morcrette M., Serre C., Doub.et M-L., Grenốche J-M., Tarasconb M (2007), Towards the reactivity of MIL-53 or FeIII(OH)0.8F0.2[O2C-C6H4-CO2] versus lithium, from zeolites to porous MOF Materials the 40th Anniversary of International Zeolite Conference, pp 2037-2041 76 Mingyan M., Angộlique B., Irene W., Noura S A.H., Roland A F and Nils M.N (2013), Iron-based metalorganic frameworks MIL-88B and NH2MIL-88B: high quality microwave synthesis and solvent-Induced lattice Breathing, Crystal Growth & Design, 13, pp 22862291 77 Minh Thuy H N., Quoc Thiet N (2014), Efficient refinement of a metal organic framework MIL-53(Fe) by UVvis irradiation in aqueous hydrogen peroxide solution, Journal of Photochemistry and Photobiology A: Chemistry, 288, pp 5559 78 Minh-Hao P., Gia-Thanh V., Anh-Tuan V., and Trong-On D (2011), Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework Nanocrystals, Langmuir, 27, pp 1526115267 79 Mỹller U., Schubert F., Teich F., Pỹtter H., Schierle-Arndt K., Pastrộ J (2006), Metal-organic frameworks-prospective industrial applications, Journal of Materials Chemistry, 16, pp 626-636 80 Naseem A R., Thuy Khuong Trung, Lorna S., Farid N., Thomas D., Patricia H., Emmanuel M., Olivier D., Christian S., and Philippe (2013), Impact of the flexible character of MIL-88 Iron(III) dicarboxylates on the adsorption of nalkanes, Chemistry of Materials, 25, pp 479488 81 Nathalie G.I., Richard I W and Franck M (2010), MIL-53(Fe): a good example to illustrate the power of powder diffraction in the field of MOFs, Zeitschrift fỹr ristallographie, 225, pp 552556 142 Footer Page 142 of 148 Header Page 143 of 148 82 Nazmul A K., Zubair H., Sung H J (2013), Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review, Journal of Hazardous Materials, 244245, pp 444456 83 Nazmul A K., Jong W J., Sung H J (2010), Effect of water concentration and acidity on the synthesis of porous chromium benzenedicarboxylates, European Journal of Inorganic Chemistry, 10, pp 10431048 84 Nazmul A K., Sung H J (2010), Phase-transition and phase-selective synthesis of porous chromium-benzenedicarboxylates, European Journal of Inorganic Chemistry, 10, pp 1860-1865 85 Nazmul A K., Sung H J (2013), Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel, Journal of Hazardous Materials, 260, pp 10501056 86 Ni Z v Masel R I (2006), Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis, Journal of the American Chemical Society, 128, pp 12394-12395 87 Olga V Z., Konstantin A K., Yurii A C., Maxim S M., Vladimir I Z.i, Vasily V K., Alexander B S., Oxana A K and Vladimir P F (2011), Iron tetrasulfophthalocyanine immobilized on metal organic framework MIL-101 synthesis, characterization and catalytic properties, Dalton Transactions, 40, pp 1441-1444 88 Patricia H., Fabrice S., Stefan W., Thomas D., Daniela H., Guillaume M., Alexandre V., Marco D.i, Olivier D., Emmanuel M., Norbert S., Yaroslav F., Dmitry P., Christian R.l, Gerard F., and Christian S (2011), How linkers modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88, Journal of the American Chemical Society, 133, pp 1783917847 89 Patricia H., Christian S., Guillaume M., Naseem A R., Francisco B., Mara V.R., Muriel S., Francis T., Gerard F (2008), Flexible porous 143 Footer Page 143 of 148 Header Page 144 of 148 metal-organic frameworks for a controlled drug delivery, Journal of the American Chemical Society, 130, pp 67746780 90 Petra S., Pablo S C., Iulian D., Jorge G., Hans G and Bernard D (2013), Post-synthetic cation exchange in the robust metalorganic framework MIL-101(Cr), Crystal Engineering Communications, 15, pp 10175-10178 91 Pichon A., Lazuen G A., v James S L (2006), Solvent-free synthesis of a microporous metal-organic framework, Crystal Engineering Communications, 8, pp 211-214 92 Qiu L G (2008), Hierarchically micro-and mesoporous metal-organic frameworks with tunable porosity, Angewandte Chemie-International Edition, 7, pp 9487-9491 93 Qiuqiang C., Pingxiao W., Zhi D., Nengwu Z., Ping L., Jinhua W., Xiangde W (2010), Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN, Separation and Purification Technology, 71 (3), pp 315323 94 Racha E O., Abel C S., Nathalie G., Richard I W., Frederik V., Micha l M., Dirk de V., and Franck M (2012), Liquid-phase adsorption and separation of xylene isomers by the flexible porous metalorganic framework MIL- 3(Fe), Chemistry of Materials, 24, pp 27812791 95 Rahmani A R., Zarrabi M., Samarghandi M R., Afkhami A., Ghaffari H R (2010), Degradation of azo dye reactive Black and acid Orange by Fenton-like mechanism, Iranian Journal of Chemical Engineering, 7, (1) , IACHE 96 Sabine A., Gunter H., Jaroslaw K., Itamar M M., Christoph K and Ralf M (2009), Metal-organic frameworks for sensing applications in the gas phase, Sensors, 9, pp 1574-1589 97 Serre C., Millange F., Thouvenot C., Nogueốs M., Marsolier G., Loueăr D., Ferey G (2002), Very large breathing effect in the first 144 Footer Page 144 of 148 Header Page 145 of 148 nanoporous chromium (III) - based solids: MIL-53 or CrIII(OH)ã{O2CC6H4CO2}ã{HO2CC6H4CO2H}xãH2Oy, Journal of the American Chemical Society, 124, pp 1351913526 98 Shekhah O., Wang H., Zacher D., Fischer R A., Wửll C (2009), Growth mechanism of metalorganic frameworks: insights into the nucleation by employing a step-by-step route, Angewandte Chemie-International Edition, 48, pp.5038 5041 99 Suzy S., Christian S., Caroline M D., Franck M and Gerard F (2006), A new isoreticular class of metal-organic-frameworks with the MIL-88 topology, Chemical Communications, pp 284286 100 Tabatha R W., Wang X., Lumei L., Allan J J (200 ), Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions, Solid State Sciences, 7, pp 10961103 101 Thuy K T., Naseem A R., Philippe T., Nathalie T., Christian S., Franỗois F., Gộrard F (2010), Adsorption of C C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr) A manometric study, Microporous and Mesoporous Materials, 134, pp.134140 102 Tranchemontagne D.J., Mendoza C J L., OKeeffe M., Yaghi O.M (2009), Secondary building units, nets and bonding in the chemistry of metalorganic frameworks, Chemical Society Reviews, 38, pp 1257-1283 103 Tuba S., Yasemin K., Selcan K (2010), Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite, Journal of Hazardous Materials, 184, pp.164169 104 Velivckovic Z., Vukovic G D., Marinkovic A D., Moldovan M S., Peric-Grujic A A., Uskokovic P S and Ristic M D (2012), Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes, Chemical Engineering Journal, 181, pp 174181 145 Footer Page 145 of 148 Header Page 146 of 148 105 Xiao Y C., Hoang V T., Denis R., and Serge K (2012), Amine-functionalized MIL-53 metalorganic framework in polyimide mixed matrix membranes for CO2/CH4 separation, Industrial & Engineering Chemistry Research, 51, pp 68956906 106 Xiaojun Guo (201 ), Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst, Journal of the Taiwan Institute of Chemical Engineers, 000, pp 111 107 Yaghi O M., O'Keeffe M., Ockwig N W., Chae H K., Eddaoudi M., Kim J (2003), Reticular synthesis and the design of new materials, Nature, 423, pp 705-714 108 Yan W., Hanjin L., and Hou W (2014), Synthesis of iron(III)-based metalorganic framework/graphene oxide composites with increased photocatalytic performance for dye degradation, The Royal Society of Chemistry Advances, 4, pp 4043540438 109 Yan-Xi T., Fei W., Yao K., and Jian Z (2011), Dynamic microporous indium(III)-4,40-oxybis(benzoate) framework with high selectivity for the adsorption of CO2 over N2, Chemical Communications, 47, pp 770772 110 Yao J T., Chen F Y., Chien K C., Shan L W., Ting S C (2012), Arsenate adsorption from water using a novel fabricated copper ferrite, Chemical Engineering Journal, 198-199, pp.440448 111 Ye Y W., Cheng X., Xiu P Y (2014), Fabrication of metalorganic framework MIL-88B films on stainlesssteel fibers for solid-phase microextraction of polychlorinatedbiphenyls, Journal of Chromatography A, 1334, pp 18 112 Ying Y L., Ju L Z., Jian Z., Fen X., Li X S (2007), Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect, International Journal of Hydrogen Energy, 32, pp 4005 4010 146 Footer Page 146 of 148 Header Page 147 of 148 113 Young K H., Do Y H., Jong S Ch., Hyejin S., Minji Y., Jinheung K., Sung H J., Christian S., Gộrard F (2009), Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101, Applied Catalysis A: General, 358, pp 249253 114 Zhao S., Feng C., Huang X., Li B., Niu J and Shen Z (2012), Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite, Journal of Hazardous Materials, 203204, pp 317325 115 Zhi-Yuan G v Xiu-Ping Y (2010), Metalorganic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and Ethylbenzene, Angewandte Chemie-International Edition, 49, pp 1477 1480 147 Footer Page 147 of 148 Header Page 148 of 148 148 Footer Page 148 of 148 Header Page 149 of 148 149 Footer Page 149 of 148 ... trung nghiên cứu tổng hợp vật liệu khung kim loại - hữu (Metal-Organic-Framework, kí hiệu MOFs) Vật liệu khung kim loại - hữu (MOFs) mạng không gian đa chiều, tạo nên từ kim loại oxit kim loại. .. thực vật Để nghiên cứu cách có hệ thống trình tổng hợp khả hấp phụ đặc biệt vật liệu MOFs, chọn đề tài Nghiên cứu tổng hợp ứng dụng số vật liệu khung kim loại - hữu cơ Nhiệm vụ luận án - Nghiên. .. 2.4.2 .Tổng hợp vật liệu Cr-MIL-101 ……………………………………………….60 2.4.3 .Tổng hợp vật liệu MIL- 3(Fe)……………………………………….……….62 2.4.4 .Tổng hợp vật liệu MIL-88B…………………………………………… 65 2.4 .Tổng hợp vật liệu Fe-Cr-MIL-101……………………………………………66

Ngày đăng: 11/03/2017, 02:44

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan