Zeki berk food process engineering and technology

623 5K 0
Zeki berk food process engineering and technology

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

F o o d a n d P r o c e s s E n g i n e e r i n g T e c h n o l o g y FOOD PROCESS ENGINEERING AND TECHNOLOGY Food Science and Technology International Series Series Editor Steve L Taylor University of Nebraska - Lincoln, USA Advisory Board Ken Buckle The University of New South Wales, Australia Mary Ellen Camire University ofMaine, USA Roger Clemens University of Southern California, USA Hildegarde Heymann University of California — Davis, USA Robert Hutkins University of Nebraska Lincoln, USA Ron S Jackson Quebec, Canada Huub Lelieveld Bihkoven, The Netherlands Daryl B Lund University of Wisconsin, USA Connie Weaver Purdue University, USA Ron Wrolstad Oregon State University, USA A complete list of books in this series appears at the end of this volum F o o d P r o c e s s E n g i n e e r i n g T e c h n o l o g a n y Zeki Berk Professor (Emeritus) Department of Biotechnology and Food Engineering TECHNION Israel Institute ofTechnology Israel nunc UN THOKG m-munEn j «H HOC NW fl g KGfllff M ( »0l' S^SWgara AMSTERDAM • BOSTON • HED IELBERG * LONDON • NEW YORK • OXFORD aAgBfliM ' ' FRANCS ICO * SN IGAPORE • SYDNEY • TOKYO ELSEVIER Academci Press is an imprint of Elsevier PARIS SAN D I E C SAN To my students Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32Jamescown Road London NW1 7BY, UK 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 360 Park Avenue South, New York, NY 1001 0-1 710, USA First edition 2009 Copyright © 2009 Elsevier I nc All rights reserved No part of this publication may be reproduced, stored in a retrieval system transmited in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior writen permission of the publisher Permissions may be sought directly from Elsevier's Science & Technology Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email; permissions^elsevier.com Alternatively visit the Science and Technology Books website at www elsevierdirect.com/rights for further information Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a mater of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made Library For informatof ion Congress on all AcademicCataloging Press publicationsin Publication Data Avisit cataolo reecbordsiteforatthis oo.eklsevisierdaiv le from the Library of Congress urgw wwbw reacitl.caobm British Library Cataloguing Typeset by Charon Tec Ltd., A Macmilan Cin ompPublication any, (www.macmilData ansolutions.com) A c a t a l o g u e r e c o r d for this b o o k i s a v a i l a b l e from e British L ibrarAmerica y Printed and bound in the United th States of ISBN: 978-0-12-373660-4 09 10 11 12 13 1098765432 WorkingI together to grow libraries in developing countries www.clscvicr.com | www.bookaid.org www.sabre.org ELSEVIER ?„?™„^° Sabre Foundation C o n t e n t s Introduction - Food is Life 1 Physical properties of food materials -1 Introduction 1.2 Mechanical properties 1.2.1 Definitions 1.2.2 Rheological models 1.3 Thermal properties 10 1.4 Electrical properties 11 1.5 Structure 11 1.6 Water activity 13 1.6.1 The importance of water in foods 13 1.6.2 Water activity, definition and determination 14 1.6.3 Water activity: prediction 14 1.6.4 Water vapor sorption isotherms 16 1.6.5 Water activity: effect on food quality and stability 19 1.7 Phase transition phenomena in foods 19 1.7.1 The glassy state in foods 19 1.7.2 Glass transition temperature 20 Fluid flow 27 2.1 Introduction 27 2.2 Elements of fluid dynamics 27 2.2.1 Viscosity 27 2.2.2 Fluid flow regimes 28 2.2.3 Typical applications of Newtonian laminar flow 30 2.2.3a Laminar flow in a cylindrical channel (pipe or tube) 30 2.2.3b Laminar fluid flow on flat surfaces and channels 33 2.2.3c Laminar fluid flow around immersed particles 34 2.2.3d Fluid flow through porous media 36 2.2.4 Turbulent fluid flow 36 2.3 2.3.2 2.3.1 Flow properties T Non-Newtonian 2.2.4a (tube 2.2.4b ypes or ofTurbulent Turbulent fluid pipe) of fluids flow fluid Newtonian fluid behavior flow flowin around fluid pipesflow imm inerasedcylindrical particleschannel 344 741 0039 vi Contents 2.4 Transportation of fluids 2.4.1 Energy relations, the Bernoulli Equation 2.4.2 Pumps: Types and operation 2.4.3 Pump selection 2.4.4 Ejectors 2.4.5 Piping 2.5 Flow of particulate solids (powder flow) 2.5.1 Introduction 2.5.2 Flow properties of particulate solids 2.5.3 Fluidization 2.5.4 Pneumatic transport Heat and mass transfer, basic principles 69 3.1 Introduction 3.2 Basic relations in transport phenomena 3.2.1 Basic laws of transport 3.2.2 Mechanisms of heat and mass transfer 3.3 Conductive heat and mass transfer 3.3.1 The Fourier and Fick laws 3.3.2 Integration of Fourier's and Fick's laws for steady-state conductive transport 3.3.3 Thermal conductivity, thermal diffusivity and molecular diffusivity 3.3.4 Examples of steady-state conductive heat and mass transfer processes 3.4 Convective heat and mass transfer 3.4.1 Film (or surface) heat and mass transfer coefficients 3.4.2 Empirical correlations for convection heat and mass transfer 3.4.3 Steady-state interphase mass transfer 3.5 Unsteady state heat and mass transfer 3.5.1 The 2nd Fourier and Fick laws 3.5.2 Solution of Fourier's second law equation for an infinite slab 3.5.3 Transient conduction transfer in finite solids 3.5.4 Transient convective transfer in a semi-infinite body 3.5.5 Unsteady state convective transfer 3.6 Heat transfer by radiation 3.8 3.8.1 3.6.1 3.6.2 3.6.3 M H7eic.a1 3rtow ex Overall Fouling Radiation H B Interaction av cah esaictnheating geprinciples exrcoefficient cshachno begm eaetw tb rseib nof x eein n ctd w hof m aethe matter n with eich g nre oaw food flowing tbconvection aetransfer vatw endep heating erno thermal fluids ce surfaces ss industry radiation 43 43 46 52 55 56 56 56 57 62 65 69 69 69 70 70 70 71 73 76 81 81 84 87 89 89 90 92 94 95 96 1100 1410 1090 9872 60005 Contents vii 3.9 Ohmic heating 3.9.1 Introduction 3.9.2 Basic principles 3.9.3 Applications and equipment Reaction kinetics 115 4.1 Introduction 4.2 Basic concepts 4.2.1 Elementary and non-elementary reactions 4.2.2 Reaction order 4.2.3 Effect of temperature on reaction kinetics 4.3 Kinetics of biological processes 4.3.1 Enzyme-catalyzed reactions 4.3.2 Growth of microorganisms 4.4 Residence time and residence time distribution 4.4.1 Reactors in food processing 4.4.2 Residence time distribution Elements of process control 29 5.1 Introduction 5.2 Basic concepts 5.3 Basic control structures 5.3.1 Feedback control 5.3.2 Feed-forward control 5.3.3 Comparative merits of control strategies 5.4 The blockdiagram 5.5 Input, output and process dynamics 5.5.1 First order response 5.5.2 Second order systems 5.6 Control modes (control algorithms) 5.6.1 On-off (binary) control 5.6.2 Proportional (P) control 5.6.3 Integral (I) control 5.6.4 Proportional-integral (PI) control 5.6.5 Proportional-integral-differential (PID) control 5.6.6 Optimization of control 5.7 The physical elements of the control system 5.7.1 The sensors (measuring elements) 5.7.2 The controllers 5.7.3 T Size 6 6.2.4 6.2.3 6.2.1 6.2.2 Particle Introduction reduction A Mathematical defining Particle Defining shizenote eactuators and son ai153 the zeparticle m 'particle distribution sem iazn eodof particle esliszah eofPSD asingle pdistribution einsize' a particle population of particles; 109 109 110 112 115 116 116 116 119 121 121 22 123 123 24 29 29 131 131 131 32 132 133 133 35 36 36 138 139 140 140 141 142 142 149 115143591 81554 45 viii Contents 6.3 Size reduction of solids, basic principles 6.3.1 Mechanism of size reduction in solids 6.3.2 Particle size distribution after size reduction 6.3.3 Energy consumption 6.4 Size reduction of solids, equipment and methods 6.4.1 Impact mills 6.4.2 Pressure mills 6.4.3 Attrition mills 6.4.4 Cutters and choppers Mixing 175 7.1 Introduction 7.2 Mixing of fluids (blending) 7.2.1 Types of blenders 7.2.2 Flow patterns in fluid mixing 7.2.3 Energy input in fluid mixing 7.3 Kneading 7.4 In-flow mixing 7.5 Mixing of particulate solids 7.5.1 Mixing and segregation 7.5.2 Quality of mixing, the concept of'mixed ness' 7.5.3 Equipment for mixing particulate solids 7.6 Homogenization 7.6.1 Basic principles 7.6.2 Homogenizers Filtration 195 8.1 Introduction 8.2 Depth filtration 8.3 Surface (barrier) filtration 8.3.1 Mechanisms 8.3.2 Rate offiltration 8.3.3 Optimization of the filtration cycle 8.3.4 Characteristics offiltration cakes 8.3.5 The role of cakes in filtration 8.4 Filtration equipment 8.4.1 Depth filters 8.4.2 Barrier (surface) filters 8.5 Expression Centrifugation 9 9.2.4 9.2.1 9.2.2 9.2.3 B 8.5.1 8.5.2 8.5.3 Introduction asic principles T Applications F Liquid-liquid M Introduction rhoem chcontinuous baffled athe nis21 msettling s asettling separation ndsettling etank qutank ipm totank en athe n td the tubular disc-bowl centrifuge centrifuge 163 163 163 163 165 66 167 168 170 75 175 175 177 78 181 84 84 84 184 187 189 189 191 195 196 198 198 199 204 205 206 207 207 207 211 222 121 21 48138 222203 Contents i> 9.3 Centrifuges 9.3.1 Tubular centrifuges 9.3.2 Disc-bowl centrifuges 9.3.3 Decanter centrifuges 9.3.4 Basket centrifuges 9.4 Cyclones 10 Membrane processes 233 10.1 Introduction 10.2 Tangential filtration 10.3 Mass transfer through MF and UF membranes 0.3.1 Solvent transport 0.3.2 Solute transport; sieving coefficient and rejection 0.3.3 Concentration polarization and gel polarization 0.4 Mass transfer in reverse osmosis 10.4.1 Basic concepts 0.4.2 Solvent transport in reverse osmosis 0.5 Membrane systems 10.5.1 Membrane materials 10.5.2 Membrane configurations 10.6 Membrane processes in the food industry 10.6.1 Microfiltration 10.6.2 Ultrafiltration 10.6.3 Nanofikration and reverse osmosis 10.7 Electrodialysis 11 Extraction 259 11.1 Introduction 11.2 Solid -liquid extraction (leaching) 11.2.1 Definitions 11.2.2 Material balance 11.2.3 Equilibrium 1.2.4 Multistage extraction 11.2.5 Stage efficiency 11.2.6 Solid-liquid extraction systems 11.3 Supercritical fluid extraction 11.3.1 Basic principles 11.3.2 Supercritical fluids as solvents 11.3.3 Supercritical extraction systems 11 3h.1 4adsorption Applications 12 Adsorption 12 111.2 31 Adsorption B Equilibrium Liquid-liquid Introduction atc4 Principles and inconditions extraction colu ion mnsexchange 279 226 227 228 230 230 231 233 234 235 235 237 238 241 241 242 245 245 247 249 249 249 251 253 259 261 261 262 262 262 266 268 271 271 272 273 227 27 85 76 27 I n d e x Absorption cycle 417-8 Biofilms 563 Absorptivity 96 Biot number 91 Activation energy 120 Black body 96 Actuator 130 Blanching 356 Adiabatic saturation 462-3 Block diagram (control) 132-3 Adsorption 279-94 Boiling point elevation (BPE) 431, 436 batch 282-7 Boiling point 436-7 column 287-8 Boundary layer (in turbulentflow)36-7 repeated batch 284 Bourdon gage 145 Agglomeration 504 Breakthrough curve 288 Angle of repose 61 Brix ("Brix), Bx 432 Appert, Nicolas 355 Cabinet dryer 486-7 Arrhenius equation 119 -20, 392 Cakes (filtration) 205-6 Aseptic processing 388-90 Calandria 438.451 Asymmetric membranes 246 Can seamers 379-80 Atomizing 153 Canning 375 Autoclave see Retort Capilary viscosimeter 32-3 Azeotrope 296 Celophane 551 Baking 528-30 Centrifugation 217-32 impingement oven 530 Centrifuges 227-30 microwave 530 basket 230 ovens 529-30 decanter 230 Barometric leg 447.448 desludger (self cleaning) 229 Beer-Lambert law 535 nozzle 228 Belt dryer 489 solid-wall bowl 228 Belt-trough dryer 489 tubular 227 Bernoulli equation 43-6 Characteristic curve 46 IFood Bi B SB E inm g T Nhed:atarm (yB le7ort8 hun Process fluids -e0 nor4-m a1 la9u2 y0.o -e3r-m 1E34m e61 0t6 e8m r0s,2-48 et1,Engineering 14Teller) model 18, 2and 8Copyright Chilling C 1hn eeloem m rnin-iTechnology ceealenlm t3 a5r9ey61an7-ct4 a-t8 ir0 oy1 0n6sC111 62009 15-6 All Elsc\ier rights reservedInc 594 Index Crystallizers (pans) 323 Chopping 153, 171 Cuters 171^4 Cleaning in place (CIP) 570 bowl 171-2 Cleaning out of place (COP) 570 cube 171 Cleaning 561-92 silent 171 dry 569-70 water jet 173-4 effect of cleaning agent 564-6 Cuting 153, 171-4 effect of contaminant 562-4 Cyclone 23 I effect of shear 566 Darcy'slaw 200,235 effect of support 564 Decimal reduction time 356-8 effect of temperature 566 effect of temperature 358-60 kinetics 562-6 Deformation 8-9 wet 568-9 elastic Climacteric crops 398 plastic 8-9 Coefficient of performance (COP) 415 Dehydration (drying) 459-510 Cognac, distillation of 315 conductive 460,481-5 Cold chain 391,423 convective 460,464-81 Cold storage 420 drum 483 Colection efficiency 197 effect on quality 460, 502-3 Combined processes 353 energy consumption 505-7 Compression ratio (extruder) 336 fixed bed 480-1 Concentration polarization 238 kinetics 460 Condensers (evaporation) 447 objectives of 459 direct (jet) 447, 448 radiation 477 indirect 447,448 sun (solar) 501 Conductive switch 147 superheaied steam 484-5 Conductometry 148 tray 478-80 Control loop 130-1 tunnel or belt 481 Control modes 136 -141 vacuum 484 integral 139-40 Desorpion drying 512 on-off 136-7 Dew point 463 proportional 138-9 Dielectric loss factor 108 proportional-integral (PI) 140 Dielectric loss tangent 108 proportional-integral-differential 140 Dielectric permittivity 108 Control valve 149-50 Differential scanning calorimetry normaly closed 144 (DSC) 23 normaly open 149-50 Diffusivity C o n t r o l e d a t m o s p h e r e ( C A ) 9 Crystallization Critical C o rskinetics p intelligent yu arnsro c lo targo m slriao ls3m egb m n2rsr',o 7m ow -3 tinplate S l1 aisa2 w controller th u b5 8lre-37 2of 13lc2 o 7og -0 friction 3n5 i-c1 3t5 en5controller t1 -64946578-9 (PLC) 149 Distillation Dicb D ikinetics effective slao esaint-on ab tco fect lnth o uin m tw iuofluids i(differential) o slnu ncentrifuge s527 36 flash 5 756 -8 13 -3-1905298c3a0p1acity 223-4 distillate 295 Robert 450 fractional 304-313 swept surface 453 residue 295 vacuum pan 449 steam 313 EVOH 551 Ditus-Boelter correlation 85 Exhausting, thermal 378 Double seam 379-80 Expression 211-5 Drum dryer 499-500 applications 213-5 classification 499 mechanism 211-3 feeding methods 500 Extinction coefficients 536 Drying curve 464-7 Extraction 259-77 characteristic 477-8 equilibrium 260 262 constant rate 466,467-70 kinetics 260 falling rate 466, 470-2 material balance 260 262 rising rate 466 multistage countercurrent 26 Drying rate 464-5 stage efficiency 266 effect of external conditions 475-6 supercritical 271-6 Drying time 472-5 Extractors 268-71 Ejector 55 auger 271 Electrical conductivity 111 basket 271 Electrical properties 11 carousel 270-1 Electrodialysis 253—4 fixed bed 268-9 Electromagnetic waves (-, rays) 533 535-7 moving belt 269-70 Electron accelerators 534-5 Extruder barrel 334 Electron beams (3 rays) 533,535-6 Extruder die 335 Electrostatic forces 57 Extruder screw 335 End-over-end agitation 366 Extruder, single screw 334-40 Energy balance Extruder, twin-screw 340-343 Ergun equation 63^1 co-rotating 341 Error (deviation) 130 counter-rotating 341 Error function 95 Extrusion cooking 333-4 Ethylene 398 Extrusion 333-50 Evaporation 429-58 breakfast cereals 346-7 aroma loss and recovery 457 chocolate 349 cut-back 457-8 confectionery 348-9 energy balance 430 effect on foods 343 energy economy 440-7 effect on proteins 344-5 material balance 430-2 effect on starch 344 Ev o p n centrifugal cl falling forced thaplib aem petru tjn o em rbi cratn alip tv o 4lfilm gacirculation er5n sd s3film am of 44a5 g43 -e45 25 3to 1-4235quality 91 454 F„ep Fick' eformi flow rpellets aex value etsh sp tid6 aeen f1 r2o s'n d nog cedrule d e3m s(4lp at7 siw m o an361 3d sa4 teca9 lk s)85s93-3 494 325 4-54-0 596 Index Picks' 1st law 70-3 Filled thermometers 142 Filler 375-7 hand 376 hand-pack 376 piston 377 tumbler 377 Filling, hot 378 Film boiling 435 Film, steady state mass transfer 79-80 Filter aid 206 Filters 207-10 cartridge 208 depth 207 filter centrifuge 210 filter press 208 frame-and-plate 208 rotary vacuum 208-10 Filtration 195-216 constant pressure 201 — constant rate 201—4 cross-flow see tangential filtration dead-end 199 depth 196-8 optimization 204-5 surface (barrier) 198-206 Finite shapes, transient conduction 92-4 Float switch 147 Flow diagram (process) 4-6 block engineering 5-6 equipment Flow Function (ffc) 61 Flow through porous media 199 Fluid dynamics 27 Fluidflow27-67 Fluid head 38 F Flolutp cb m oraio d renitxciszeh tiecp n fat rd hru vio rey m o a3 c m n4 tb su ieoiecasn d istpi6 to eroys2 nidn7 -1r5 ty 27 e-I5 -r6624 -497-8 Food safety Fouling 104—5 Fourier transform infrared spectroscopy (FTIR) 148 Fouriers' 1st law 70-3 Fouriers' 2nd law 89-92 Freeze concentration 520-2 basic principles 520 process 521-2 Freeze dryers 519-20 batch 520 continuous 520 structure 519-20 Freeze drying 511-23 advantages 511 commercial facilities 518-9 in practice 518-9 kinetics 512-8 Freezers 423 blast 423-5 cabinet 423 fluidized bed 424—5 plate 425-6 scraped surface 426 spiral belt 424 tunnel 424 Freezing 400-28 cryogenic 426-7 effect on texture 408-9 point 401-2 time 402-8 Freundlichs' model 281 Friction factor chart 37-8 Friction factor 37 Froude number (Fr) 178-9 Frozen storage 409-10 effect on food quality 409-10 Fruyrlp Gel G d h sstir azy iasze nisn y eagy tep tm d transition 5polarization lo as5 r2(y n tsg i2 am 6d eit5cre-m s568 m 24e1 91 a rs9 -s48 iso t-e92n m 0transfer )pe5r2a6ture5239^tO 2260 73 Index 597 Grashof Number 82 exchange capacity 289 Gray (radiation dose unit) 537 selectivity 290-1 Grinding 153 Ionizing irradiation 533-41 Guggenheim-Anderson-de Boer (GAP) biological effects 538-9 model 19 chemical effects 538 Hagen-Poiseuille equation 31industrial applications 540-1 Half life 119 Isotope sources 534 Head space 376.378 Jenike shear cell 59-60 Heat exchangers 100-107 Joules' law 110 plate 106-7 Juice extractor (citrus) 215 scraped surface 107 Kick's law 165 shel-and-rube 106 Kneading 181-2 tubular 105-6 Kozeny-Carman equation 64, 205-6 Heat transfer coefficient 81-7 Laminar flow 28-36 Heat transfer in evaporation 432^40 around immersed particless 34-6 overall coefficient 433-6 in tube 30-3 temperature drop 436-40 onflatsurfaces 33—4 Heat transfer 69-112 Langmuirs' model of adsorption 280-1 conduction 70-81 Lethality 360 convection 81-7 Liquid bridge 57 radiation 96-100 Liquid carbon dioxide 427 leafing lag factor, j 367 Liquid nitrogen 427 Helicoidal extractor 214 Liquid-liquid extraction 259, 276-7 Herschel-Bulkleyfluids40 Liquid-liquid separation (centrifugal) 224-6 High pressure preservation 541 Low temperature 392—400 High temperature-short time (HTST) 363 effect on chemical spoilage 392-5 Homogenization 153,189-93 effect on enzymes 395-6 mechanism 189-91 effect on microorganisms 396-7 Homogenizers 191-2 effect on physical properties 399-400 high pressure 191-2 effect on respiring tissues 396 high shear 191 MacLeod Gage 144 ultrasonic 192 Manometers 144 Hot-wire anemometer 147 Mashing 153 Humidity 461 Massflowmeter(Coriolis) 147 absolute 461 Mass transfer coefficient 81-7 relative 462 Mass transfer 69-112 Hurdle effect see Combined processes Massecuite 325 IIndividual Infrared H onntelectrolytic cy erdso petresx h arsucea-h lsicn ieasthk nep d g am rm g ie1 ar7 em rap sossr2 m eo2 8t2 eaptransfer quick er8 bet1-r9 iy rliti-2 y e99 s214 224 39681freezing 7-8 (IQF) Mtspiral hu p eaaolm cab tnelhto u re424 b iaw -lratnlern im cw eb fiber adlao -pflu ca4 repan5 o8 rrm d ac n otu e2 fpierg 4e29 ur43 tir7 edifference, as4tio 7n8s-9247-l9 ogarithmic 103 598 Index Membrane processes 233-57 Membrane systems 245-9 Mesophiles 396-7 Michaelis-Menten constant 121 Michaelis-Menten equation 121 Microbial growth 122 decline phase 122 lag phase 122 log phase 122 stationary phase 122 Microfiltration (MF) 233.249 Microwaves 107-9 Mils 166-70 attrition 168-70 ball 169 colloid 170 disc 168-9 hammer 166-7 impact 166 pressure 167 roller 167 Mixer dryer 501 Mixers 175 89 anchor 175 drum 187 paddle 175 planetary 182 propeler I 76 ribbon 189 sigma blade 182 tumbler 188 turbine 175 V-shaped 188 Mixing 175 43 energy input 178 flow paterns 177 fluids (blending) 175-84 M Mul ofsqual o u eophretn lh petalridpleh tcm d saresr-u leiyer sd te fayeo lsaib lazriag qeffect w efficiency cP (truor im ak s3 mobi o8 ralm w a on4 rb i6 dtxo-a9ecrd4 3ole6 i4t7 n ylv0 467 e3a4 1s.-p4 s3 )o 234r96 a1t6 1io8n4-6441-5 Nanofiltration (NF) 233 Net suction pressure 46 Neural network 149 Newmans' law 94 Newtonianfluids28, 40 Non-Newtonian fluids 28 flow in pipe 41-2 Nucleate boiling 435 Nucleation 318-20 heterogeneous 319 homogeneous 319 secondary 320 Nusselt Number 82 Odor abatement 571-2 biofilter 572 catalytic combustion 572 scrubbing 572 Ohmic (Joule) heating 109-12 Operating line 299 Orifice flowmeter 146 Osmotic dehydration 507 Osmotic pressure 242 Overal heat transfer coefficient U 100-102 Packaging materials 546-51 glass 549 mechanical properties 554-5 metals 548 optical properties 553^1 paper 549 polymers 549-51 transport properties 551-3 Packaging, food 545 60 active 557 controled atmosphere (CAP) 557 environmental issues 558 modified atmosphere (MAP) 557 objectives 545-6 Pami v lG n R d osrao td g ieco arlu lk-m eu lsneuirn im zai-nsrR a3 lsm w -L S ti8zaodistribution c7 oe im atn h c5 u lhu5ilsedistribution h61 rm 355 13 (Wei 4a5n -75n bdistribution ul 15 l)81distribution -959 5-60 159 160 Index 599 Peltier effect 414,418 Percent saturation (pychrometry) 462 Permeability 80 Phase transition 19-23 Physical properties 7-23 Piezoelectric transducer 145 Piping 56 Pilot tube flowmeter 146 Planks' equation 402 Plant layout Pneumatic dryer 498 Pneumatic transport 65-8 positive pressure 65-6 vacuum 67-8 Polyethylene terephtalate (PET ) 550 Polyethylene 550 Polystyrene 550 Ponchon-Savarit diagram 264-7 Pool boiling 436 Pot still 315 Powderflow56-62 Power number (Po) 178-80 Prandl Number 82 Preservation 352 chemical 352 ionizing radiation 352 low temperature 352 reduction of water activity 352 thermal 352 Preservation processes 351 Presses 214-5 hydraulic 214 inflated pouch 215 screw (expeller) 214 Process control ! 29-51 automatic 129 basic concepts 129-30 b aio P Pulper-finislier usrm o y opt eflsec u eep h e ddisrm o so -fsm p electric n erizc4 o lrah ltek at w p sictln 3ire-oy ct5 asio nri5 v d fluids n3 e4 fields 31 21 914 light 63 12 ^ -7 -1-)44 6-720545242 centrifugal 46-9 diaphragm 50 positive displacement 49-52 progressing cavity (Moyno) 50-2 reciprocating 49 rotary 50 Purity (in sugar) 325 Rad (radiation dose unit) 537 Radiation dose 537-8 Rankine cycle 413 Raoults' law 295 Raw materials Rayleighs' law 302 Reaction kinetics 115-128 Reaction order 116-119 first order 118-9 rate constant 117 zero order 117 Reactors 123^4 continuous stirred tank (CSTR) 124 laminarflow124 plugflow124 Reflectivity 96 Refractive index 148 Refrigerants 414,418-9 ozone depleting 419 Refrigerated transport 423 Refrigeration 391-412,413-28 mechanical 413-9 absorption 417-8 Regulation 129 Rehydration 503^4 Relative volatility 296 Residence time distribution (RTD) 123-6 cumulative distribution function 124-6 frequency density function 124-6 Residence time 123 RehVoi b c M B y v teso rain ae o stn rcatro g a lseo gxh tie h ln d lw ht geac u sim s-ceo Kel s3 alsN u i8m ts-h 05 u v9 m e-m o i83 nrm s0 oib s8d -e1 o er(m l-sR 5(for 28-9 O e9 te)rsmi 231 x3 in3 g)2411-748,-9251-3 600 Index air heater 493 Rheology 27,40 atomizer 493 Rheopectic fluids 41 bi-fluid nozzle 495 Rittinger's law 164-5 control 497 Rotameter 145-7 pressure nozzle 494 Rotary dryer 490 ultrasonic atomization 495 Rotary washer 569 Steady state 71 Rubbery state 21 Steam injection 378 Sandincss in ice cream 317 Steam-jet ejector 55-6 Sanitation 561 92 Sterilization 355 Saran 550 flame 365 383 Schmidt Number 83 Stokes' law 35 Screw conveyor dryer 500-1 Strain gages 144-5 Seebeck coefficient 143 Strain, definition Segregation (in particulate solids) 184 Stress, definition Selective permeability 233 compressive Semi-infinite body 94-5 shear Sensor 130, 142 tensile color 148 Structure 11 -3 composition 148 cellular I flow rate 145-7 gels 12 level 147-8 emulsions 12 pressure 144-5 foams 12 temperature 142 powders 13 Servo control 129 fibrous II Set point Sublimation drying 512 Settling tank 218 Sublimation front 513 Shear rate 28 Sublimation 511-2 Shear stress 28 Supercritical carbon dioxide 273 Shelf life 351 Supercritical extraction applications 275-6 Sherwood Number S3 decafTei nation of coffee 275 Sieder-Tate equation 85 hops 275 Sieving coefficient 237 Supercritical extraction systems 273 -4 Si/e reduction 153- 73 Supercriticalfluid(SCF) 271-3 energy consumption 163-5 as solvents 272-3 forces 163 properties 271 mechanism 163 Supersaturation 317 Slab, steady state conduction 76 Sol S p o laair "riano eb L ipd k y ci,ltaei-lflow ofagi rg iat-qcn rw dfeaui lar,n tyah sdisethfe ip o hera "teah ontrtx d ete 4artm r4 to n ac5 32 o cm s-tn i7o(1 d izw n4ua9tcaio6 t(ieoln-ernac7v4 ha9 ip n0 5o g-2 r) 21569-1.9261-71Tangential Syu T h esfirst m ertefrcm o ao pcrentatrd ilacnrtu aetcdiffusivity p slro ep ro rneo dc q dquotient n ee6 u rse iscve-ti6 a1 v sle3 ifiltration tyn5 33t-7 73 -a7 Q, 5r-3-4 e4-,a4 1£20221234-5 Thermal processing 355-74 Vapor compression cycle 413-7 in-flow 369-73,386-8 Vapor recompression 446-7 in-package 364-9,385-6 mechanical 446 optimization 363^4 thermal 446-7 Thermal properties 10-11 Vapor-liquid equilibrium (VLE) 295-8 Thermistors 144 Variables 130 Thermocouples 143 controlled 130 Thermophiles 396-7 manipulated 130 Thixotropicfluids41 Venturi flowmeter 146 Three-dimensional color space 148 View factor 99 Transmembrane pressure difference Viscosity 27-8 (TMPD) 235 Washing 568-70 Transmissivity 96 Water activity 13-9 Transport phenomena 69-70 definition 14 Triple point 512 determination 14 Tubular centrifuge capacity 220-3 prediction 14-16 Tunnel dryer 487-8 Water as plasticizer 21 Turbulentflow28,36-9 Water in foods 13^4 around immersed particles 39 Water softening 292-3 in tube 37 -8 Wet bulb temperature 463 Ultrafiltration (UF) 233.249-51 Whisky, distillation of 315 Unit operations 1-2 Wiliams-Landel-Ferry (WLF) equation Vacuum closing 379 Yield locus 59 Van der Waals forces 57 Youngs' modulus Vant' Hoff's equation 242-3 Food Science and Technology Series List Maynard A Amerine, Rose Marie Pangborn, and Edward B Roessler, Principles of Sensory Evaluation of Food 1965 Martin Glicksman, Gum Technology in the Food Industry 1970 Maynard A Joslyn, Methods in Food Analysis, second edition 1970 C R Stumbo, Thermobacteriology in Food Processing, second edition 1973 Aaron M Altschul (ed.), New Protein Foods: Volume 1, Technology, Part A—1974 Volume 2, Technology, Part B—1976 Volume 3, Animal Protein Supplies, Part A—1978 Volume 4, Animal Protein Supplies, Part B—1981 Volume 5, Seed Storage Proteins—1985 S A Goldblith, L Rey, and W W Rothmayr, Freeze Drying and Advanced Food Technology 1975 R B Duckworth (ed.), Water Relations of Food 1975 John A Troller and J H B Christian, Water Activity and Food 1978 A E Bender, Food Processing and Nutrition 1978 D R Osborne and P Voogt, The Analysis of Nutrients in Foods 1978 Marcel Loncin and R L Merson, Food Engineering: Principles and Selected Applications 1979 J G Vaughan (ed.), Food Microscopy 1979 J R A Pollock (ed.), Brewing Science, Volume 1—1979 Volume 2—1980 Volume 3—1987 J Christopher Bauernfeind (ed.), Carotenoids as Colorants and Vitamin A Precursors: Technological and Nutritional Applications 1981 Pericles Markakis (ed.), Anthocyanins as Food Colors 1982 George F Stewart and Maynard A Amerine (eds), Introduction to Food Science and Technology, second edition 1982 Malcolm C Bourne, Food Texture and Viscosity: Concept and Measurement 1982 Hector A Iglesias and Jorge Chirife, Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components 1982 Colin Dennis (ed.), Post-Harvest Pathology of Fruits and Vegetables 1983 P J Barnes (ed.) Lipids in Cereal Technology 1983 David Pimentel and Carl W Hall (eds), Food and Energy Resources 1984 J o M g n sScientists tlrm ceeim alenn4 d.— Carrie E e3n— sietthe em i1 ne9,r88Food Protein An F Wal F R S M e.oerafor Research g E bxM — tu eim rstC o1 M Food Herschdoerfer V M uR C n5 neD Urbain, iC neGacula, g eV ly cho ad u sn a1du9aeFood a,8 Jr Microwaves d(ed.), anN ad1 n9 d Irradiation A Kathryn 8Quality 5Jagbir 1C 9V o 8o x4lu.R m (eds), Singh, L.eegin Control W Microbiology Statistical Food 6(eds) V inoluthe m Iron Processing eMethods 4Food — Fortification of 198 Poultry 7Chemistry: Industry, in Industry Food Meat of secand Foods on Products d9Introduction 8edition Consumer 198V 5o.1lu9m 87 e 604 Food Science and Technology: Series List Peter J Bechtel, Muscle as Food 1986 H W.-S Chan, AutoxidaSion of Unsa Lipids 1986 Chester McCorkle, Jr., Economics of Food Processing in the United State Jethro Japtiani, Harvey T Chan, Jr and Wiliam S Sakai, Tropical Fruit Processing J Solms, D A Booth, R M Dangborn, and O Raunhardt, Food Acceptance and Nutrition 1987 R Macrae, HPLC in Food Analysis, second edition 1988 A M Pearson and R B Young, Muscle and Meat Biochemistry 1989 Marjorie P Penfield and Ada Marie Campbel, Experimental Food Science, third e 1990 Leroy C Blankenship, Colonization Control of Human Bacterial Enteropa Poultry 1991 Yeshajahu Pomcranz, Functional Properties ofFood Components, second edit Reginald H Walter, The Chemistry and Technology of Pectin 1991 Herbert Stone and Joel L Sidel, Sensory Evaluation Practices, second edition 19 Tilak Nagodawithana and Gerald Reed Enzymes in Food Processing, third edition Dallas G Hoover and Larry R Steenson, Bacteriocins 1993 Takayaki Shibamoto and Leonard Bjeldanes, Introduction to Food Toxicology 19 John A Troller, Sanitation in Food Processing, second edition 1993 Harold D Hafs and Robert G Zimbclman, Low-fat Meats 1994 Lance G Phillips Dana M Whitehead and John Kinsella, Structure-Function Prop of Food Proteins 1994 Robert G Jensen, Handbook of Milk Composition 1995 Yrjo H Roos Phase Transitions in Foods 1995 Reginald H Walter, Polysaccharide Dispersions 1997 Gustavo V Barbosa-Canovas, M Marcela Gongora-Nieto, Usha R Pothakamury, and Barry G Swanson, Preservation of Foods with Pulsed Electric Fields Ronald S Jackson Wine Tasting: A Professional Handbook 2002 Malcolm C Bourne, Food Texture and Viscosity: Concept and Measurem edition 2002 Benjamin Caballero and Barry M Popkin (eds) The Nutrition Transition: Diet an Disease in the Developing World 2002 Dean O Cliver and Hans P Riemann (eds), Foodborne Diseases, second edition 20 Martin Kohlmeier, Nutrient Metabolism, 2003 Herbert Stone and Joel L Sidel Sensory Evaluation Practices, third edition 2004 Jung H Han Innovations in Food Packaging 2005 D aeand -Biotechnology? W eitsn S Emerging Technologies for Processing 0Evaluation 08 inBev Flke Ho loannis R K edition n bsanled sK h RS ieAround Bagchi, A D m ura2aeArvanitoyannis Jn ai.d n c0 dk tModern Computer sa.ao nNutraceutical nd nd,the P D Wine FaeauablniWorld o2 B.Techniques Cliver 0Waste D 0Science: T aVision lh oBello m (epd 2s0 so Management and )0n8 Gluten-Free Foodborne Technology What Principles Functional for Food CanFood Authentication Infections for Nanotechnology for and Cereal Food the Food Applications, Food Regulations Products Quality and Industries Intoxications, 22 0Learn and third edition the From 200er 8U Food Science and Technology: Series List 605 R Paul Singh and Dennis R Heldman Introduction to Food Engineering, fourth edition 2008 Zeki Berk, Food Process Engineering and Technology 2009 Abby Thompson, Mike Boland and Harjinder Singh, Milk Proteins: From Expression to Food 2009 Wojciech J Florkowski, Stanley E Prussia Robert L Shewfelt and Bernhard Brueckner (eds) Postharvest Handling, second edition 2009 F o o d a n d P r o c e s s E n g i n e e r i n g T e c h n o l o g y Zeki Berk Technion, Israel Institute of Technology Combining scientific depth with practical usefulness, this book serves as a valuable tool for practicing food engine technologists and researchers as well as advanced-level students looking for the latest information on engineerin processes, process control and plant hygiene topics Beginning with a brief introduction of the applicable essentials, Food Process Engineering and Technology examines the relevant basics of physics, chemistry, biology, biochemistry and core engineering sciences Focusing on their applicability to food processing, the book uses a unit structure organized into transformation processes an preservation processes Providing a balanced approach to understanding the range of responsibilities held by today's food process engineer this book is designed in view of that versatility It is largely based on food engineering courses taught by the auth Technion, MIT and the Ecole Nationale Superieure des Industries Agro-alimentaires (ENSIA) in Massy, France, as w as his 40 years of experience as a practicing food engineer FEATURES: • Engineering/design aspects illustrated with easy-to-understand numerical examples • Application examples included with the most descriptive technology chapters to aid readers in understanding aspects of the design • Focused coverage of process control and plant hygiene Related Titles: Introduction to Food Engineering Fourth Edition (2008) Singh/Heldman ISBN: 9780123709004 Practical Design, Construction and Operation of Food Facilities (2008) Clark ISBN: 9780123742049

Ngày đăng: 02/12/2016, 13:24

Từ khóa liên quan

Mục lục

  • Food Process Engineering an Technology

  • Contents

  • Introduction

    • 'Food is Life'

    • The Food Process

    • Batch and Continuous Processes

    • Process Flow Diagrams

    • References

  • 1. Physical Properties of Food Materials

    • 1.1 Introduction

    • 1.2 Mechanical Properties

      • 1.2.1 Definitions

      • 1.2.2 Rheological models

    • 1.3 Thermal Properties

    • 1.4 Electrical Properties

    • 1.5 Structure

    • 1.6 Water Activity

      • 1.6.1 The importance of water in foods

      • 1.6.2 Water activity, definition and determination

      • 1.6.3 Water activity: prediction

      • 1.6.4 Water vapor sorption isotherms

      • 1.6.5 Water activity: effect on food quality and stability

    • 1.7 Phase Transition Phenomena in Foods

      • 1.7.1 The glassy state in foods

      • 1.7.2 Glass transition temperature

    • References

  • 2. Fluid Flow

    • 2.1 Introduction

    • 2.2 Elements of Fluid Dynamics

      • 2.2.1 Viscosity

      • 2.2.2 Fluid flow regimes

      • 2.2.3 Typical applications of newtonian laminar flow

      • 2.2.4 Turbulent fluid flow

    • 2.3 Flow Properties of Fluids

      • 2.3.1 Types of fluid flow behavior

      • 2.3.2 Non-Newtonian fluid flow in pipes

    • 2.4 Transportation of Fluids

      • 2.4.1 Energy relations, the Bernoulli Equation

      • 2.4.2 Pumps: Types and operation

      • 2.4.3 Pump selection

      • 2.4.4 Ejectors

      • 2.4.5 Piping

    • 2.5 Flow of Particulate Solids (Powder Flow)

      • 2.5.1 Introduction

      • 2.5.2 Flow properties of particulate solids

      • 2.5.3 Fluidization

      • 2.5.4 Pneumatic transport

    • References

  • 3. Heat and Mass Transfer, Basic Principles

    • 3.1 Introduction

    • 3.2 Basic Relations in Transport Phenomena

      • 3.2.1 Basic laws of transport

      • 3.2.2 Mechanisms of heat and mass transfer

    • 3.3 Conductive Heat and Mass Transfer

      • 3.3.1 The Fourier and Fick laws

      • 3.3.2 Integration of Fourier's and Fick's laws for steady-state conductive transport

      • 3.3.3 Thermal conductivity, thermal diffusivity and molecular diffusivity

      • 3.3.4 Examples of steady-state conductive heat and mass transfer processes

    • 3.4 Convective Heat and Mass Transfer

      • 3.4.1 Film (or surface) heat and mass transfer coefficients

      • 3.4.2 Empirical correlations for convection heatand mass transfer

      • 3.4.3 Steady-state interphase mass transfer

    • 3.5 Unsteady State Heat and Mass Transfer

      • 3.5.1 The 2nd Fourier and Fick laws

      • 3.5.2 Solution of Fourier's second law equation foran infinite slab

      • 3.5.3 Transient conduction transfer in finite solids

      • 3.5.4 Transient convective transfer in a semi-infinite body

      • 3.5.5 Unsteady state convective transfer

    • 3.6 Heat Transfer by Radiation

      • 3.6.1 Interaction between matter and thermal radiation

      • 3.6.2 Radiation heat exchange between surfaces

      • 3.6.3 Radiation combined with convection

    • 3.7 Heat Exchangers

      • 3.7.1 Overall coefficient of heat transfer

      • 3.7.2 Heat exchange between flowing fluids

      • 3.7.3 Fouling

      • 3.7.4 Heat exchangers in the food process industry

    • 3.8 Microwave Heating

      • 3.8.1 Basic principles of microwave heating

    • 3.9 Ohmic Heating

      • 3.9.1 Introduction

      • 3.9.2 Basic principles

      • 3.9.3 Applications and equipment

    • References

  • 4. Reaction Kinetics

    • 4.1 Introduction

    • 4.2 Basic Concepts

      • 4.2.1 Elementary and non-elementary reactions

      • 4.2.2 Reaction order

      • 4.2.3 Effect of temperature on reaction kinetics

    • 4.3 Kinetics of Biological Processes

      • 4.3.1 Enzyme-catalyzed reactions

      • 4.3.2 Growth of microorganisms

    • 4.4 Residence Time and Residence Time Distribution

      • 4.4.1 Reactors in food processing

      • 4.4.2 Residence time distribution

    • References

  • 5. Elements of Process Control

    • 5.1 Introduction

    • 5.2 Basic Concepts

    • 5.3 Basic Control Structures

      • 5.3.1 Feedback control

      • 5.3.2 Feed-forward control

      • 5.3.3 Comparative merits of control strategies

    • 5.4 The Block Diagram

    • 5.5 Onput, output and process dynamics

      • 5.5.1 First order response

      • 5.5.2 Second order systems

    • 5.6 Control Modes (Control Algorithms)

      • 5.6.1 On-off (binary) control

      • 5.6.2 Proportional (P) control

      • 5.6.3 Integral (I) control

      • 5.6.4 Proportional-integral (PI) control

      • 5.6.5 Proportional-integral-differential (PID) control

      • 5.6.6 Optimization of control

    • 5.7 The Physical Elements of the Control System

      • 5.7.1 The sensors (measuring elements)

      • 5.7.2 The controllers

      • 5.7.3 The actuators

    • References

  • 6. Size Reduction

    • 6.1 Introduction

    • 6.2 Particle Size and Particle Size Distribution

      • 6.2.1 Defining the size ofa single particle

      • 6.2.2 Particle size distribution in a population of particles;defining a 'mean particle size'

      • 6.2.3 Mathematical models of PSD

      • 6.2.4 A note on particle shape

    • 6.3 Size Reduction of Solids, Basic Principles

      • 6.3.1 Mechanism of size reduction in solids

      • 6.3.2 Particle size distribution after size reduction

      • 6.3.3 Energy consumption

    • 6.4 Size Reduction of Solids, Equipment and Methods

      • 6.4.1 Impact mills

      • 6.4.2 Pressure mills

      • 6.4.3 Attrition mills

      • 6.4.4 Cutters and choppers

    • References

  • 7. Mixing

    • 7.1 Introduction

    • 7.2 Mixing of Fluids (blending)

      • 7.2.1 Types of blenders

      • 7.2.2 Flow patterns in fluid mixing

      • 7.2.3 Energy input in fluid mixing

    • 7.3 Kneading

    • 7.4 In-flow Mixing

    • 7.5 Mixing of Particulate Solids

      • 7.5.1 Mixing and segregation

      • 7.5.2 Quality of mixing, the concept of 'mixedness'

      • 7.5.3 Equipment for mixing particulate solids

    • 7.6 Homogenization

      • 7.6.1 Basic principles

      • 7.6.2 Homogenizers

    • References

  • 8. Filtration

    • 8.1 Introduction

    • 8.2 Depth Filtration

    • 8.3 Surface (barrier) Filtration

      • 8.3.1 Mechanisms

      • 8.3.2 Rate of filtration

      • 8.3.3 Optimization of the filtration cycle

      • 8.3.4 Characteristics offiltration cakes

      • 8.3.5 The role of cakes in filtration

    • 8.4 Filtration Equipment

      • 8.4.1 Depth filters

      • 8.4.2 Barrier (surface) filters

    • 8.5 Expression

      • 8.5.1 Introduction

      • 8.5.2 Mechanisms

      • 8.5.3 Applications and equipment

    • References

  • 9. Centrifugation

    • 9.1 Introduction

    • 9.2 Basic Principles

      • 9.2.1 The continuous settling tank

      • 9.2.2 From the settling tank to the tubular centrifuge

      • 9.2.3 The baffled settling tank and the disc-bowl centrifuge

      • 9.2.4 Liquid-liquid separation

    • 9.3 Centrifuges

      • 9.3.1 Tubular centrifuges

      • 9.3.2 Disc-bowl centrifuges

      • 9.3.3 Decanter centrifuges

      • 9.3.4 Basket centrifuges

    • 9.4 Cyclones

    • References

  • 10. Membrane Processes

    • 10.1 Introduction

    • 10.2 Tangential Filtration

    • 10.3 Mass Transfer Through MFand UF Membranes

      • 10.3.1 Solvent transport

      • 10.3.2 Solute transport; sieving coefficient and rejection

      • 10.3.3 Concentration polarization and gel polarization

    • 10.4 Mass Transfer in Reverse Osmosis

      • 10.4.1 Basic concepts

      • 10.4.2 Solvent transport in reverse osmosis

    • 10.5 Membrane Systems

      • 10.5.1 Membrane materials

      • 10.5.2 Membrane configurations

    • 10.6 Membrane Processes in the Food Industry

      • 10.6.1 Microfiltration

      • 10.6.2 Ultrafiltration

      • 10.6.3 Nanofiltration and reverse osmosis

    • 10.7 Electrodialysis

    • References

  • 11. Extraction

    • 11.1 Introduction

    • 11.2 Solid-Liquid Extraction (leaching)

      • 11.2.1 Definitions

      • 11.2.2 Material balance

      • 11.2.3 Equilibrium

      • 11.2.5 Stage efficiency

      • 11.2.6 Solid-liquid extraction systems

    • 11.3 Supercritical Fluid Extraction

      • 11.3.1 Basic principles

      • 11.3.2 Supercritical fluids as solvents

      • 11.3.3 Supercritical extraction systems

      • 11.3.4 Applications

    • 11.4 Liquid-Liquid Extraction

      • 11.4.1 Principles

      • 11.4.2 Applications

    • References

  • 12. Adsorption and Ion Exchange

    • 12.1 Introduction

    • 12.2 . Equilibrium Conditions

    • 12.3 Batch adsorption

    • 12.4 Adsorption in Columns

    • 12.5 Ion Exchange

      • 12.5.1 Basic principles

      • 12.5.2 Properties of ion exchangers

      • 12.5.3 Application: Water softening using ion exchange

      • 12.5.4 Application: Reduction of acidity in fruit juices

    • References

  • 13. Distillation

    • 13.1 Introduction

    • 13.2. Vapor-Liquid Equilibrium (VLE)

    • 13.3 Continuous Flash Distillation

    • 13.4 Batch (Differential) Distillation

    • 13.5 Fractional Distillation

      • 13.5.1 Basic concepts

      • 13.5.2 Analysis and design of the column

      • 13.5.3 Effect of the reflux ratio

      • 13.5.4 Tray configuration

      • 13.5.5 Column configuration

      • 13.5.6 Heating with live steam

      • 13.5.7 Energy considerations

    • 13.6 Steam Distillation

    • 13.7 Distillation of Wines and Spirits

    • References

  • 14. Crystallization and Dissolution

    • 14.1 Introduction

    • 14.2 Crystallization Kinetics

      • 14.2.1 Nucleation

      • 14.2.2 Crystal growth

    • 14.3 Crystallization in the Food Industry

      • 14.3.1 Equipment

      • 14.3.2 Processes

    • 14.4 Dissolution

      • 14.4.1 Introduction

      • 14.4.2 Mechanism and kinetics

    • References

  • 15. Extrusion

    • 15.1 Introduction

    • 15.2 The Single-screw Extruder

      • 15.2.1 Structure

      • 15.2.2 Operation

      • 15.2.3 Flow models, extruder throughput

      • 1 5.2.4 Residence time distribution

    • 15.3. Twin-screw extruders

      • 1 5.3.1 Structure

      • 15.3.2 Operation

      • 15.3.3 Advantages and shortcomings

    • 15.4 Effect on Foods

      • 15.4.1 Physical effects

      • 15.4.2 Chemical effect

    • 15.5 Food Applications of Extrusion

      • 15.5.1 Forming extrusion of pasta

      • 15.5.2 Expanded snacks

      • 15.5.3 Ready-to-eat cereals

      • 15.5.4 Pellets

      • 15.5.5 Other extruded starchy and cereal products

      • 15.5.6 Texturized protein products

      • 15.5.7 Confectionery and chocolate

      • 15.5.8 Petfoods

    • References

  • 16. Spoilage and Preservation of Foods

    • 16.1 Mechanisms of Food Spoilage

    • 16.2 Food Preservation Processes

    • 16.3 Combined Processes (the 'hurdle effect')

    • 16.4 Packaging

  • 17. Thermal Processing

    • 17.1 Introduction

    • 17.2 The Kinetics of Thermal Inactivation of Microorganisms and Enzymes

      • 17.2.1 The concept of decimal reduction time

      • 17.2.2 Effect ofthe temperature on the rate of thermal destruction/inactivation

    • 17.3 Lethality of Thermal Processes

    • 17.4 Optimization of Thermal Processes with Respect to Quality

    • 17.5 Heat Transfer Considerations in Thermal Processing

      • 17.5.1 In-package thermal processing

      • 17.5.2 In-flow thermal processing

    • References

  • 18. Thermal Processes, Methods and Equipment

    • 18.1 Introduction

    • 18.2 Thermal Processing in Hermetically Closed Containers

      • 18.2.1 Filling into the cans

      • 18.2.2 Expelling air from the head-space

      • 18.2.3 Sealing

      • 18.2.4 Heat processing

    • 18.3 Thermal Processing in Bulk, before Packaging

      • 18.3.1 Bulk heating - hot filling - sealing - coolingin container

      • 18.3.2 Bulk heating - holding - bulk cooling - coldfilling - sealing

      • 18.3.3 Aseptic processing

    • References

  • 19. Refrigeration, Chilling and Freezing

    • 19.1 Introduction

    • 19.2 Effect of Temperature on Food Spoilage

      • 19.2.1 Temperature and chemical activity

      • 19.2.2 Effect of low temperature on enzymatic spoilage

      • 19.2.3 Effect of low temperature on microorganisms

      • 19.2.4 Effect of low temperature on biologically active(respiring) tissue

      • 19.2.5 The effect of low temperature on physical properties

    • 19.3 Freezing

      • 19.3.1 Phase transition, freezing point

      • 19.3.2 Freezing kinetics, freezing time

      • 19.3.3 Effect of freezing and frozen storage on product quality

    • References

  • 20. Refrigeration, Equipment and Methods

    • 20.1 Sources of Refrigeration

      • 20.1.1 Mechanical refrigeration

      • 20.1.2 Refrigerants

      • 20.1.3 Distribution and delivery of refrigeration

    • 20.2 Cold Storage and Refrigerated Transport

    • 20.3 Chillers and Freezers

      • 20.3.1 Blast cooling

      • 20.3.2 Contact freezers

      • 20.3.3 Immersion cooling

      • 20.3.4 Evaporative cooling

    • References

  • 21. Evaporation

    • 21.1 Introduction

    • 21.2 Material and energy balance

    • 21.3 Heat Transfer

      • 21.3.1 The overall coefficient of heat transfer U

      • 21.3.2 The temperature difference Ts — Tc (AT)

    • 21.4 Energy management

      • 21.4.1 Multiple-effect evaporation

      • 21.4.2 Vapor recompression

    • 21.5 Condensers

    • 21.6 Evaporators in the Food Industry

      • 21.6.1 Open pan batch evaporator

      • 21.6.2 Vacuum pan evaporator

      • 21.6.3 Evaporators with tubular heat exchangers

      • 21.6.4 Evaporators with external tubular heat exchangers

      • 21.6.5 Boiling film evaporators

    • 21.7 Effect of Evaporation on Food Quality

      • 21.7.1 Thermal effects

      • 21.7.2 Loss of volatile flavor components

    • References

  • 22. Dehydration

    • 22.1 Introduction

    • 22.2 Thermodynamics of Moist Air(Psychrometry)

      • 22.2.1 Basic principles

      • 22.2.2 Humidity

      • 22.2.3 Saturation, Relative Humidity (RH)

      • 22.2.4 Adiabatic saturation, wet-bulb temperature

      • 22.2.5 Dew point

    • 22.3 Convective Drying ( Air Drying)

      • 22.3.1 The drying curve

      • 22.3.2 The constant rate phase

      • 22.3.3 The falling rate phase

      • 22.3.4 Calculation of drying time

      • 22.3.5 Effect of external conditions on the drying rate

      • 22.3.6 Relationship between film coefficients inconvective drying

      • 22.3.7 Effect of radiation heating

      • 22.3.8 Characteristic drying curves

    • 22.4 Drying Under Varying External Conditions

      • 22.4.1 Batch drying on trays

      • 22.4.2 Through-flow batch drying in a fixed bed

      • 22.4.3 Continuous air drying on a belt or in a tunnel

    • 22.5 Conductive (boiling) Drying

      • 22.5.1 Basic principles

      • 22.5.2 Kinetics

      • 22.5.3 Systems and applications

    • 22.6 Dryers in the Food Processing Industry

      • 22.6.1 Cabinet dryers

      • 22.6.2 Tunnel dryers

      • 22.6.3 Belt dryers

      • 22.6.4 Belt-trough dryers

      • 22.6.5 Rotary dryers

      • 22.6.6 Bin dryers

      • 22.6.7 Grain dryers

      • 22.6.8 Spray dryers

      • 22.6.9 Fluidized bed dryer

      • 22.6.10 Pneumatic dryer

      • 22.6.11 Drum dryers

      • 22.6.12 Screw conveyor and mixer dryers

      • 22.6.13 Sun drying, solar drying

    • 22.7 Issues in Food Drying Technology

      • 22.7.1 Pre-drying treatments

      • 22.7.2 Effect of drying conditions on quality

      • 22.7.3 Post-drying treatments

      • 22.7.4 Rehydration characteristics

      • 22.7.5 Agglomeration

    • 22.8 Energy Consumption in Drying

    • 22.9 Osmotic Dehydration

    • References

  • 23. Freeze Drying( lyophilization ) and Freeze Concentration

    • 23.1 Introduction

    • 23.2 Sublimation of Water

    • 23.3 Heat and Mass Transfer in Freeze Drying

    • 23.4 Freeze Drying, in Practice

      • 23.4.1 Freezing

      • 23.4.2 Drying conditions

      • 23.4.3 Freeze drying, commercial facilities

      • 23.4.4 Freeze dryers

    • 23.5 Freeze Concentration

      • 23.5.1 Basic principles

      • 23.5.2 The process of freeze concentration

    • References

  • 24. Frying, Baking, Roasting

    • 24.1 Introduction

    • 24.2 Frying

      • 24.2.1 Types of frying

      • 24.2.2 Heat and mass transfer in frying

      • 24.2.3 Systems and operation

      • 24.2.4 Health aspects of fried foods

    • 24.3 Baking and Roasting

    • References

  • 25. Ionizing Irradiation and Other Non - thermal Preservation Processes

    • 25.1 Preservation by Ionizing Radiations

      • 25.1.1 Introduction

      • 25.1.2 Ionizing radiations

      • 25.1.3 Radiation sources

      • 25.1.4 Interaction with matter

      • 25.1.5 Radiation dose

      • 25.1.6 Chemical and biological effects of ionizing irradiation

      • 25.1.7 Industrial applications

    • 25.2 High Hydrostatic Pressure Preservation

    • 25.3 Pulsed Electric Fields (PEF)

    • 25.4 Pulsed intense light

    • References

  • 26. Food Packaging

    • 26.1 Introduction

    • 26.2 Packaging Materials

      • 26.2.1 Introduction

      • 26.2.2 Materials for packaging

      • 26.2.3 Transpotrt properties of packging materials

      • 26.2.4 Optical properties

      • 26.2.5 Mechanical properties

      • 26.2.6 Chemical reactivity

    • 26.3 The Atmosphere in the Package

      • 26.3.1 Vacuum packaging

      • 26.3.2 Controlled atmosphere packaging (CAP)

      • 26.3.3 Modified atmosphere packaging (

      • 26.3.4 Active packaging

    • 26.4 Environmental Issues

    • References

  • 27. Cleaning, Disinfection, Sanitation

    • 27.1 Introduction

    • 27.2 Cleaning kinetics and mechanisms

      • 27.2.1 Effect of the contaminant

      • 27.2.2 Effect of the support

      • 27.2.3 Effect of the cleaning agent

      • 27.2.4 Effect of the temperature

      • 27.2.5 Effect of mechanical action (shear)

    • 27.3 Kinetics of Disinfection

    • 27.4 Cleaning of Raw Materials

    • 27.5 Cleaning of Plants and Equipment

      • 27.5.1 Cleaning out of place ( COP)

      • 27.5.2 Cleaning in place (CIP)

    • 27.6 Cleaning of Packages

    • 27.7 Odor Abatement

    • References

  • Appendix

  • Index

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan