Introduction to polymer science and chemistry a problem solving approach, second edition chanda, manas

754 765 0
Introduction to polymer science and chemistry a problem solving approach, second edition   chanda, manas

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Polymer Science S e c o n d A Problem-Solving Approach S e c o n d E d i t i o n Industry and academia remain fascinated with the diverse properties and applications of polymers However, most introductory books on this enormous and important field not stress practical problem solving or include recent advances, which are critical for the modern polymer scientist-to-be Updating the popular first edition of “the polymer book for the new millennium,” Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition seamlessly integrates exploration of the fundamentals of polymer science and polymer chemistry See what’s new in the second edition: • Chapter on living/controlled radical polymerization, using a unique problem-solving approach • Chapter on polymer synthesis by “click” chemistry, using a unique problem-solving approach • Relevant and practical work-out problems and case studies • Examples of novel methods of synthesis of complex polymer molecules by exciting new techniques • Figures and schematics of the novel synthetic pathways described in the new examples Author Manas Chanda takes an innovative problem-solving approach in which the text presents worked-out problems or questions with answers at every step of the development of a new theory or concept, ensuring a better grasp of the subject and scope for self study Containing 286 text-embedded solved problems and 277 end-of-chapter home-study problems (fully answered separately in a Solutions Manual), the book provides a comprehensive understanding of the subject These features and more set this book apart from other currently available polymer chemistry texts Introduction to Polymer Science and Chemistry Introduction to Polymer Science and Chemistry E d i t i o n Introduction to Polymer Science and Chemistry A Problem-Solving Approach Manas Chanda Second Edition K15289 ISBN-13: 978-1-4665-5384-2 90000 781466 553842 K15289_Cover_mech.indd 11/9/12 2:22 PM Introduction to Polymer Science and Chemistry A Problem-Solving Approach K15289_FM.indd 11/16/12 3:48 PM This page intentionally left blank S e c o n d e d i t i o n Introduction to Polymer Science and Chemistry A Problem-Solving Approach Manas Chanda Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business K15289_FM.indd 11/16/12 3:48 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by © 2013 by © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S Government works Version Date: 20130109 International Standard Book Number-13: 978-1-4665-5385-9 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedicated to the memory of my beloved father and mentor Narayan Chandra Chanda This page intentionally left blank Contents Preface xvii Author xxi Introductory Concepts 1.1 Basic Definitions 1.1.1 Polymer 1.1.2 Monomer 1.1.3 Molecular Weight and Molar Mass 1.1.4 End Groups 1.1.5 Degree of Polymerization 1.1.6 Copolymers 1.2 Polymerization and Functionality 1.3 Polymerization Processes 1.3.1 Addition or Chain Polymerization 1.3.2 Step Polymerization 1.3.3 Supramolecular Polymerization 1.4 Molecular Architecture 1.5 Classification of Polymers 1.5.1 Thermoplastics and Thermosets 1.6 Plastics, Fibers, and Elastomers 1.7 Polymer Nomenclature References Exercises 1 3 4 7 11 13 18 22 22 26 29 31 31 Chain Dimensions, Structures, and Transitional Phenomena 2.1 Introduction 2.2 Polymer Chains: Structures and Dimensions 2.2.1 Conformational Changes 2.2.1.1 Polyethylene 2.2.1.2 Polyisobutylene 2.2.1.3 Polypropylene 2.2.2 Polymer Conformations in Crystals 2.2.3 Polymer Size in the Amorphous State 2.2.3.1 Freely Jointed Chains 2.2.3.2 Real Polymer Chains 35 35 35 35 38 39 40 40 42 43 44 vii viii Contents 2.3 Constitutional and Configurational Isomerism 2.3.1 Constitutional Isomerism 2.3.2 Configurational Isomerism 2.3.2.1 Geometrical Isomerism 2.3.2.2 Stereoisomerism 2.4 Crystallinity in Polymers 2.4.1 Structure of Bulk Polymers 2.4.1.1 Spherulites 2.5 Thermal Transitions in Polymers 2.5.1 Tg and Tm 2.5.2 First- and Second-Order Transitions 2.6 Regions of Viscoelastic Behavior 2.7 Factors Affecting Tg 2.8 Factors Affecting Tm 2.9 Relation Between Tm and Tg 2.10 Theoretical Treatment of Glass Transition 2.10.1 Quantitative Effects of Factors on Tg 2.11 Chain Movements in Amorphous State 2.11.1 The Reptation Model 2.12 Thermodynamics of Rubber Elasticity 2.12.1 Stress-Strain Behavior of Crosslinked Elastomers 2.12.2 Nonideal Networks 2.12.2.1 Network Defects 2.12.2.2 Elastically Active Chain Sections References Exercises Polymers in Solution 3.1 Introduction 3.2 Thermodynamics of Liquid Mixtures 3.2.1 Low-Molecular-Weight Mixtures: van Laar Model 3.2.2 Polymer-Solvent Mixtures: Flory-Huggins Model 3.2.2.1 Flory-Huggins Expressions for Thermodynamic Functions 3.2.2.2 Colligative Properties and Interaction Parameter Χ 3.2.2.3 Virial Coefficients 3.2.2.4 Modification of Flory-Huggins Theory 3.2.2.5 Flory-Krigbaum Theory 3.2.2.6 Excluded Volume Theory 3.3 Phase Equilibria in Poor Solvents 3.3.1 Upper and Lower Critical Solution Temperatures 3.4 Solubility Behavior of Polymers 3.5 Swelling of Crosslinked Polymers 3.5.1 Determination of Χ from Swelling 3.6 Frictional Properties of Polymer Molecules in Dilute Solution 3.6.1 Viscosity of Dilute Polymer Solutions 3.6.1.1 Determination of Polymer Molecular Dimensions from Viscosity References 47 47 50 50 50 57 59 59 61 61 63 64 66 68 68 69 74 80 81 83 85 91 91 91 93 94 101 101 101 104 107 111 113 117 119 121 122 126 129 131 138 142 143 145 148 151 Contents ix Exercises 152 Polymer Molecular Weights 4.1 Introduction 4.2 Molecular Weight Averages 4.2.1 Arithmetic Mean 4.2.2 Number-Average Molecular Weight 4.2.3 Weight-Average Molecular Weight 4.3 Molecular Weights in Terms of Moments 4.3.1 Ratio of First and Zeroth Moments 4.3.2 Ratios of Higher Moments 4.4 Molecular Weight Determination 4.4.1 End-Group Analysis 4.4.2 Colligative Property Measurement 4.4.2.1 Ebulliometry (Boiling Point Elevation) 4.4.2.2 Cryoscopy (Freezing Point Depression) 4.4.2.3 Membrane Osmometry 4.4.2.4 Vapor-Phase Osmometry 4.4.3 Light-Scattering Method 4.4.3.1 Rayleigh Ratio 4.4.3.2 Turbidity and Rayleigh Ratio 4.4.3.3 Turbidity and Molecular Weight of Polymer 4.4.3.4 Dissymmetry of Scattering 4.4.3.5 Zimm Plots 4.4.4 Dilute Solution Viscometry 4.4.4.1 Calibration of the Mark-Houwink-Sakurada Equation 4.4.4.2 Measurement of Intrinsic Viscosity 4.4.5 Gel Permeation Chromatography 4.4.5.1 Data Interpretation and Calibration References Exercises 159 159 159 159 160 162 163 164 165 166 167 168 168 169 169 176 180 181 183 184 188 191 194 196 197 200 202 208 208 Condensation (Step-Growth) Polymerization 5.1 Introduction 5.2 Rates of Polycondensation Reactions 5.2.1 Irreversible Polycondensation Kinetics 5.2.2 Reversible Polycondensation Kinetics 5.3 Number-Average Degree of Polymerization 5.4 Control of Molecular Weight 5.4.1 Quantitative Effect of Stoichiometric Imbalance 5.5 Molecular Weight Distribution (MWD) 5.5.1 Breadth of MWD 5.6 Nonlinear Step Polymerization 5.6.1 Branching 5.6.2 Crosslinking and Gelation 5.6.2.1 Statistical Approach 5.6.2.2 Model for Gelation Process 5.6.2.3 Molecular Size Distribution 213 213 214 216 222 224 227 228 232 234 241 241 243 246 255 255 Polymer Synthesis by Click Chemistry 717 Figure 12.33 Divergent synthesis of a fourth generation hydroxyl-terminated dendrimer with triazine core via thiol-ene click chemistry (From Killops et al., 2008 With permission from American Chemical Society.) rapidly under nucleophilic catalysis with primary and secondary amines Consequently, the amine used for the reductive aminolysis can also facilitate addition of the thiol to the activated ene Moreover, the orthogonal nature of reductive aminolysis and TEC reactions allows the two processes to be conducted in one pot Chan et al (2008) demonstrated the applicability of the aforesaid one-pot concept by performing a novel convergent synthesis of 3-arm star polymers in which a RAFT-prepared homopolymer was subjected to sequential reduction of the thiocarbonylthio end group to a thiol functional group followed by TEC reaction to yield the target star polymers Thus, a homopolymer of N,N-diethylacrylamide, poly(DEA), was prepared under standard RAFT conditions employing 1-cyano-1-methylethyldithiobenzoate, as the RAFT agent in conjunction with AIBN in DMF at 70 C with a target molar mass of 4500 g/mol at quantitative conversion For one-pot synthesis of 3-arm star polymer (Fig 12.34), the poly(DEA) homopolymer was mixed with trimethylolpropane triacrylate (TMPTA), hexylamine (C6 H13 NH2 ), and dimethylphenylphosphine (Me2 PPh) 718 Chapter 12 Figure 12.34 Formation of 3-arm star polymers by RAFT polymerization and TEC reactions [Adapted from Chan et al (2008) and Sumerlin and Vogt (2010).] combination at a molar ratio of –SH : ene of 1.5 : (to favor star formation) Since the reaction involves a macromolecular secondary thiol, the primary amine-phosphine combination, as opposed to only amine, was employed (Me2 PPh being an extremely potent catalyst for such thiol-ene reactions) The amine-phosphine combination is also beneficial since the phosphine serves a second, important role of eliminating the formation of the polymeric disulfide species that can form after end-group reduction to –SH and often readily occurs in the presence of only amines under a normal air atmosphere (Chan et al., 2008) From FT-IR spectroscopy and H NMR analysis of the products it was established that the macromolecular thiol-ene reaction is both fast and quantitative enough to be described as a click reaction Employing a similar approach as above, thiol-terminated RAFT polymers have also been reacted with a variety of low and high molecular weight acrylate species for efficient end functionalization (Spruell et al., 2009) and immobilized onto ene-decorated microspheres of poly(divinyl benzene) (Goldmann et al., 2009) Considering the abundance of commercially available activated alkene substrates amenable to nucleophilic addition (e.g., acrylates and maleimides) and the simplicity-cum-robustness of the aforesaid approach, the RAFT/thiol-ene combination can be expected to remain as a valuable tool for macromolecular synthesis (Sumerlin and Vogt, 2010) Polymer Synthesis by Click Chemistry 719 REFERENCES Akeroyd, N., Pfukwa, R., and Klumperman, B., Macromolecules, 42, 3014 (2009) Altintas, O., Hizal, G., and Tunca, U., J Polym Sci., Part A: Polym Chem., 44, 5699 (2006) Altintas, O., Yankul, H., Hizal, G., and Tunca, U., J Polym Sci., Part A: Polym Chem., 45, 3588 (2007) Altintas, O., Yankul, B., Hizal, G., and Tunca, U., J Polym Sci., Part A: Polym Chem., 46, 1218 (2008) Appakkuttan, P., Dehaen, W., Fokin, V V., and van der Eyken, E., Org Lett., 6, 4223 (2004) Bakbak, S., Leech, P J., Carson, B E., Saxena, S., King, W P., and Bunz, U H., Macromolecules, 39, 6793 (2006) Baum, M and Brittain, W J., Macromolecules, 35, 610 (2002) Becer, C R., Hoogenboom, R., and Schubert, U S., Angew Chem Int Ed., 48, 4900 (2009) Binder, W H., Gloger, D., Weinstabl, H., Allmaier, G., and Pittenauer, E., Macromolecules, 40, 3097 (2007) Binder, W H and Kluger, C., Curr Org Chem., 10, 1791 (2006) Binder, W H and Sachsenhofer, R., Macromol Rapid Commun., 28, 15 (2007) Campos, L M., Killops, K L., Sakai, R., Paulusse, J M J., Damiron, D., Drockenmuller, E., Messmore, B W., and Hawker, C J., Macromolecules, 41, 7063 (2008) Canadell, J., Fischer, H., De With, G., and van Benthem, R A T M., J Polym Sci., Part A: Polym Chem., 48, 3456 (2010) Carioscia, J A., Lu, H., Stanbury, J W., and Bowman, C N., Dent Mater., 21, 1137 (2005) Chan, T R., Hilgraf, R., Sharpless, K B., and Fokin, V V., Org Lett., 6, 2853 (2004) Chan, J W., Yu, B., Hoyle, C E., Lowe, A B., Chem Commun., 4959 (2008) Chan, J W., Hoyle, C E., and Lowe, A B., J Am Chem Soc., 131, 5751 (2009) Chan, J W., Zhou, H., Hoyle, C E., and Lowe, A B., Chem Mater., 21, 1579 (2009) Chen, X., Wudl, F., Mal, A K., Shen, H., and Nutt, S R., Macromolecules, 36, 1802 (2003) Chujo, Y., Sada, K., and Saegusa, T., Macromolecules, 23, 2636 (1990) Codelli, J A., Baskin, J M., Agard, N J., and Bertozzi, C R., J Am Chem Soc., 130, 11486 (2008) Dag, A., Durmaz, H., Hizal, G., and Tunca, U., J Polym Sci., Part A: Polym Chem., 46, 302 (2008) Dag, A., Durmaz, H., Tunca, U., and Hizal, G., J Polym Sci., Part A: Polym Chem., 47, 178 (2009) David, R L A and Kornfield, J A., Macromolecules, 41, 1151 (2008) Diaz, D D., Punna, S., Holzer, P., McPherson, A K., Sharpless, K B., Fokin, V V., and Finn, M G., J Polym Sci., Part A: Polym Chem., 42, 4392 (2004) Dandoni, A., Angew Chem Int Ed., 47, 2, 8995 (2008) Durmaz, H., Colakoglu, B., Tunca, U., and Hizal, G., J Polym Sci., Part A: Polym Chem., 44, 1667 (2006) Durmaz, H., Karatas, F., Tunca, U., and Hizal, G., J Polym Sci., Part A: Polym Chem., 44, 499, 3947 (2006) Englert, B C., Bakbak, S., and Bunz, H F., Macromolecules, 38, 5868 (2005) Erdogan, M., Hizal, G., Tunca, U., Hyrabetyan, D., and Pekcan, O., Tetrahedron, 43, 1925 (2002) Eugene, D M and Grayson, S M., Macromolecules, 41, 5082 (2008) Fairbanks, B D., Scott, T F., Kloxin, C J., Anseth, K S., and Bowman, C N., Macromolecules, 42, 211 (2009) Fleischmann, S., Komber, H., and Voit, B., Macromolecules, 41, 5255 (2008) Gacal, B., Akat, H., Balta, D K., Arsu, N., and Yagci, Y., Macromolecules, 41, 2401 (2008) Gacal, B., Durmaz, H., Tasdelen, M A., Hizal, G., Tunca, U., Yagci, Y., and Demirel, A L., Macromolecules, 39, 5330 (2006) Gao, H., Louche, G., Sumerlin, B S., Jahed, N., Golas, P., and Matyjaszewski, K., Macromolecules, 38, 8979 (2005) Gao, H and Matyjaszewski, K., Macromolecules, 39, 4960 (2006) Gao, H., Min, K., and Matyjaszewski, K., Macromol Chem Phys., 208, 1370 (2007) 720 Chapter 12 Ge, Z., Zhou, Y., Xu, J., Liu, H., Chen, D., and Liu, S., J Am Chem Soc., 131, 1628 (2009) Gheneim, R., Berumen, C P., and Gandini, A., Macromolecules, 35, 7246 (2002) Golas, P L., Tsarevsky, N V., and Matyjaszewski, K., Macromol Rapid Commun., 29, 1167 (2008) Goldman, A S., Walther, A., Nebhani, L., Joso, R., Ernst, D., Loos, K., Barner-Kowollik, C., Barner, L., and Muller, A H E., Macromolecules, 42, 3707 (2009) Gondi, S R., Vogt, A P., and Sumerlin, B S., Macromolecules, 40, 474 (2007) Gotsmann, B., Duerig, U., Frommer, J., and Hawker, C J., Adv Funct Mater., 16, 1499 (2006) Gress, A., Volkel, A., and Schlaad, H., Macromolecules, 40, 7928 (2007) Gungor, E., Cote, G., Erdogan, T., Durmaz, H., Demirel, A L., Hizal, G., and Tunca, V., J Polym Sci., Part A: Polym Chem., 45, 1055 (2007) Hadjichristidis, N., Pitsikalis, M., Pispas, S., Iatrou, H., Chem Rev., 101, 3747 (2001) Haller, M., Luo, J., Li, H., Kim, T.-D., Liao, Y., Robinson, B H., Dalton, L R., and Jen, A K.-Y., Macromolecules, 37, 688 (2004) Himo, F., Demko, Z P., Noodleman, L., and Sharpless, K B., J Am Chem Soc., 124, 12210 (2002) Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V V., Noodleman, L., Sharpless, K B., and Fokin, V V., J Am Chem Soc., 127, 210 (2005) Imai, Y., Itoh, H., Naka, K., and Chujo, Y Macromolecules, 33, 4343 (2000) Inglis, A J., Sinnwell, S., Davis, T P., Barner-Kowollik, C., and Stenzel, M, Macromolecules, 41, 4120 (2008) Inglis, A J., Sinwell, S., Stenzel, M H., and Barner-Kowollik, C., Angew Chem Int Ed., 48, 2411 (2009) Johnson, J A., Finn, M G., Koberstein, J T., and Turro, N J., Macromol Rapid Commun., 29, 1052 (2008) Johnson, J A., Lewis, D R., Diaz, D D., Finn, M G., Koberstein, J T., and Turro, N J., J Am Chem Soc., 128, 6564 (2006) Jones, J R., Liotta, C L., Collard, D M., and Schiraldi, D A., Macromolecules, 32, 5786 (1999) Joralemon, M J., O’Reilly, R K., Hawker, C J., and Wooley, K L., J Am Chem Soc., 127, 16892 (2005) Joralemon, M J., O’Reilly, R K., Matson, J B., Nugent A K., Hawker, C J., and Wooley, K L., Macromolecules, 38, 5436 (2005) Justyuska, J and Schlaad, H., Macromol Rapid Commun., 25, 1478 (2004) Kamahori, K., Tada, S., Ito, K., and Itsuno, S., Macromolecules, 32, 541 (1999) Killops, K L., Campos, L M., Hawker, C J., J Am Chem Soc., 130, 5062 (2008) Kim, T.-D., Luo, J D., Tian, Y Q., Ka, J W., Tucker, N M., Haller, M., Kang, J W., and Jen, A K Y Macromolecules, 39, 1676 (2006) Kolb, H C., Finn, M G., and Sharpless, K B., Angew Chem Int Ed., 40(11), 2004 (2001) Kose, M M., Yesilbag, G., and Sanyal, A., Org Lett., 10, 2353 (2008) Kwart, H and King, K., Chem Rev., 68, 415 (1968) Kyeremateng, S O., Amado, E., Blume, A, and Kressler, J., Macromol Rapid Commun., 29, 1140 (2008) Ladmiral, V., Mantovani, G., Clarkson, G J., Cauet, S., Irwin, J L., and Haddleton, D M., J Am Chem Soc., 128, 4823 (2006) Laurent, B A and Grayson, S M., J Am Chem Soc., 128, 4238 (2006) Lecomte, P., Riva, R., Schmeits, S., Rieger, J., Van Butsele, K., Jerome, C., and Jerome, R., Macromol Symp., 240, 157 (2006) Lei, X and Porco, J A., Org Lett., 6, 795 (2004) Li, Y and Benicewicz, B C., Macromolecules, 41, 7986 (2008) Li, M., De, P., Gondi, S R., and Sumerlin, B S., J Polym Sci., Part A: Polym Chem., 46, 5093 (2008) Li, M., De, P., Gondi, S R., and Sumerlin,B S., Macromol Rapid Commun., 29, 1172 (2008) Li, H., Riva, R., Jerome, R., and Lecomte, P., Macromolecules, 40, 824 (2007) Lutz, J.-F and Boerner, H G., Prog Polym Sci., 33, (2008) Lutz, J.-F., Boerner, H G and Weichenhan, K., Macromol Rapid Commun., 26, 514 (2005) Luxenhofer, R and Jordan, R., Macromolecules, 39, 3509 (2006) Polymer Synthesis by Click Chemistry 721 Magenau, A J D., Martinez-Castro, N., and Storey, R F., Macromolecules, 42, 2353 (2009) Mantovani, G., Lecolley, F., Tao, L., Haddleton, D M.,Clerx, J., Cornelissen, J J L M., and Velonia, K., J Am Chem Soc., 127, 2966 (2005) Matyjaszewski, K., Miller, P J., Pyun, J., Kickelbick, G., and Diamanti, S., Macromolecules, 32, 6526 (1999) McElhanon, J R., Russick, E M., Wheeler, D R., Loy, D A., and Aubert, J H., J Appl Polym Sci., 85, 1496 (2002) McElhanon, J R and Wheeler, D R., Org Lett., 3, 2681 (2001) McElhanon, J R., Zifer, T., Kline, S R., Wheeler, D R., Loy, D A., Jamson, G M., Long, T M., Rahimian, K., and Simmons, B A., Langmuir, 21, 3259 (2005) Mespouille, L., Coulembier, O., Paneva, D., Degee, P., Rashkov, I., and Dubois, P., J Polym Sci., Part A: Polym Chem., 46, 4997 (2008) Molteni, G., Bianchi, C L., Marinoni, G., Santo, N., and Ponti, A., New J Chem., 30, 1137 (2006) Morgenroth, F., Reuther, E., and Măullen, K., Angew Chem Int Ed., 36, 631 (1997) Murphy, J J., Nomura, K., and Paton, R M., Macromolecules, 39, 3147 (2006) Nandivada, H., Jiang, X., and Lahann, J., Adv Mater., 19, 2197 (2007) Oishi, T and Fujimoto, M., J Polym Sci., Part A: Polym Chem., 30, 1821 (1992) Opsteen, J A and Van Hest, J M., J Polym Sci., Part A: Polym Chem., 45, 2913 (2007) O’Reilly, R K., Joralemon, M J., Hawker, C J., and Wooley, K L., J Polym Sci., Part A: Polym Chem., 44, 5203 (2006) Pachon, L D., van Maarseveen, J H., and Rothenberg, G., Adv Synth Catal., 347, 811 (2005) Parrish, B., Breitenkamp, R B., and Emrick, T., J Am Chem Soc., 127, 7404 (2005) Proupin-Perez, M., Cosstick, R., Liz-Marzan, L M., Salgucirino-Maccira, V., and Brust, M., Nuleosides, Nucleotides, Nucleic Acids, 24, 1075 (2005) Qiu, X.-P., Tanaka, F., and Winnik, F M., Macromolecules, 40, 7069 (2007) Qiu, X.-P and Winnik, F M., Macromol Rapid Commun., 27, 1648 (2006) Ranjan, R and Brittain, W J., Macromolecules, 40, 6217 (2007) Ranjan, R and Brittain, W J., Macromol Rapid Commun., 29, 1104 (2008) Rissing, C and Son, D Y., Organometallics, 27, 5394 (2008) Rissing, C and Son, D Y., Organometallics, 28, 3167 (2009) Riva, R., Schmeits, S., Stoffelbach, F., Jerome, C., Jerome, R., and Lecomte, P., Chem Commun., 5334 (2005) Rostovtsev, V V., Green, L G., Fokin, V V., and Sharpless, K B., Angew Chem Int Ed., 41, 2596 (2002) Sanyal, A., Macromol Chem Phys., 211, 1417 (2010) Shintai, R and Fu, G C., J Am Chem Soc., 125, 10778 (2003) Sinwell, S., Inglis, A J., Davis, T P., Stenzel, M H., and Barner-Kowollik, C., Chem Commun., 2052 (2008) Sinnwell, S., Inglis, A J., Stenzel, M H., and Barner-Kowollik, C., Macromol Rapid Commun., 29, 1090 (2008) Sinnwell, S., Lammens, M., Stenzel, M H., Du Prez, F E., and Barner-Kowollik, C., J Polym Sci., Part A: Polym Chem., 47, 2213 (2009) Sletten, E M and Bertozzi, C R., Org Lett., 10, 3097 (2008) Sletten, E M and Bertozzi, C R., Angew Chem Int Ed., 48, 6974 (2009) Sumerlin, B S., Tsarevsky, N V., Loucho, G., Lee, R Y., and Matyjaszewski, K., Macromolecules, 38, 7540 (2005) Sumerlin, B S and Vogt, A P., Macromolecules, 43, (2010) Szlai, M., McGrath, D V., Wheeler, D R., Zifer, T., and McElhanon, J R., Macromolecules, 40, 818 (2007) Takizawa, K., Nulwala, H., Thibault, R J., Lowenhielm, P., Yoshimaga, K., Wooley, K L., and Hawker, C J., J Polym Sci., Part A: Polym Chem., 46, 2897 (2008) Tasdelen, M A., Van Camp, W., Goethals, E., Dubois, P., Du Prez, F., and Yagen, Y., Macromolecules, 41, 6035 (2008) 722 Chapter 12 Thang, S H., Chong, B., Mayadunne, R T A., Moad, G., and Rizzardo, E., Tetrahedron Lett., 40, 2435 (1999) Thibault, R J., Takizawa, K., Lowenhielm, P., Helms, B., Mynar, J L., Frech´et, J M J., and Hawker, C J., J Am Chem Soc., 128, 12084 (2006) Thomsen, A D., Malmstroem, E E., and Hvilsted, S., J Polym Sci., Part A: Polym Chem., 44, 6360 (2006) Tolstyka, Z P., Kopping, J T., Maynard, H D., Macromolecules, 41, 599 (2008) Tonga, M., Cengiz, N., Kose, M M., Dede, T., and Sanyal, A., J Polym Sci., Part A: Polym Chem., 48, 410 (2010) Topham, P D., Sandon, N., Read, E S., Modsen, J., Rayan, A J., and Armes, S P., Macromolecules, 41, 9542 (2008) Tornoe, C W., Christensen, C., and Meldal, M., J Org Chem., 67, 3057 (2002) Tsarevsky, N V., Sumerlin, B S., and Matyjaszewski, K., Macromolecules, 38, 3558 (2005) Tunca, U., Ozyurek, Z., Erdogan, T., and Hizal, G., J Polym Sci., Part A: Polym Chem., 42, 4228 (2004) Urbani, C N., Bell, C A., Lonsdale, D E., Whittaker, M R., and Monteiro, M J., Macromolecules, 40, 7056 (2007) Urbani, C N., Bell, C A., Lonsdale, D., Whittaker, M R., and Monteiro, M J., Macromolecules, 41, 76 (2008) Urbani, C N., Bell, C A., Whittaker, M R., and Monteiro, M J., Macromolecules, 43, 1057 (2008) Van Steenis, D J V C., David, O R P., van Strijdonck, G P F., van Maarseveen, J H., and Reek, J N H., Chem Commun., 4333 (2005) Vargas, M., Kriegel, R M., Collard, D M., and Schiraldi, D A., J Polym Sci., Part A: Polym Chem., 40, 3256 (2002) Vogt, A P and Sumerlin, B S., Macromolecules, 39, 5286 (2006) Vogt, A P and Sumerlin, B S., Macromolecules, 41, 7368 (2008) Wang, G., Liu, C., Pan, M., and Huang, J., J Polym Sci., Part A: Polym Chem., 47, 1308 (2009) Whittaker, M R., Urbani, C N., and Monteiro, M J., J Am Chem Soc., 128, 11360 (2006) Wu, P., Feldman, A K., Nugent, A K., Hawker, C J., Sheel, A., Voit, B., Pyun, J., Frech´et, J M J., Sharpless, K B., and Fokin, V V., Angew Chem Int Ed., 43, 3928 (2004) Xia, Y., Verduzco, R., Grubbs, R H., and Kornfield, J A., J Am Chem Soc., 130, 1735 (2008) Xu, J., He, J., Fan, D., Wang, X., and Yang, Y., Macromolecules, 39, 8616 (2006) Xu, J., He, J., and Liu, S., Macromolecules, 40, 9103 (2007) Yang, L.-P., Dong, X.-H., and Pan, C.-Y., J Polym Sci., Part A: Polym Chem., 46, 7757 (2008) Yang, S K and Weck, M., Macromolecules, 41, 346 (2008) Yeo, M N., Yousaf, M N., Mrksich, M J., J Am Chem Soc., 125, 14994 (2003) Yu, B., Chan, J W., Hoyle, C E., and Lowe, A B., J Polym Sci., Part A: Polym Chem., 47, 3544 (2009) Zeng, Q., Li, T., Cash, B., Li, S., Xie, F., and Wang, Q., Chem Commun., 1453 (2007) EXERCISES 12.1 Describe the main criteria that should be satisfied for a reaction to be called a “click reaction” ? How would you justify the inclusion of the following reactions into the pantheon of click reactions : (a) Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions; (b) strain-promoted azide-alkyne coupling (SPAAC) reactions; (c) Diels-Alder (DA) cycloaddition reactions; (d) thiol-ene (TE) reactions; and (e) thiol-yne (TY) reactions ? 12.2 The majority of polymer structures today are based on polymerization or functionalization of vinyl monomers derived from a limited range of families, such as styrenic, acrylate, or Α-olefin-based Polymer Synthesis by Click Chemistry 723 systems The development of a new vinyl monomer family that combines the attractive features of thermal and chemical stability besides having functional handles similar to traditional vinyl systems would represent a significant advance in the area of functionalized materials [Thibault, R J., Takizawa, K., Lowenheilm, P., Helms, B., Mynar, J L., Fr´echet, J M J., and Hawker, C J., J Am Chem Soc., 128, 12084 (2006)] In this respect, 4-vinyl-1,2,3-triazole monomers, which can be easily synthesized by click chemistry techniques, are expected to possess many of the outstanding features of traditional vinyl monomers Considering this perspective, (a) identify structural similarities between 4-vinyl-1,2,3-triazole (VTZ) monomers and the most commonly used vinyl monomers, such as styrenics, vinyl pyridines, and acrylates; (b) suggest preparation methodologies for two such VTZ derivatives, which can be considered as functional equivalents of styrene and methacrylate, starting from 1-trimethylsilyl-2-vinyl acetylene and 2-methylbut-3-yn-2-ol using click chemistry 12.3 While in a fairly large number of cases, RAFT-mediated polymerization is used to conduct the controlled polymerization of vinyl monomers, to link such a vinyl polymer to a substrate, esterification via the leaving group of the RAFT agent is used in most cases, though this induces a hydrolyzable link, which is not always desirable To mitigate this problem, a new RAFT agent with leaving group based on a triazole moiety : was introduced by Akeroyd et al (2009) [Akeroyd, N., Pfukwa, R., and Klumperman, B., Macromolecules, 42, 3014 (2009)] Besides playing an active role in the stabilization of the intermediate radical in RAFT polymerization, comparable to the phenyl group in a benzyl leaving group, triazole provides a link which is aromatic in nature and is therefore extemely stable Suggest a click procedure to synthesize the above RAFT agent with R H, R1 phenyl, and Z O-ethyl, i.e., How can additional stabilization of the leaving group radical be provided ? 12.4 Suggest a procedure combining ATRP and CuAAC for “one-pot” synthesis of (HEMA)10 methacrylate macromonomer (HEMA hydroxyethyl methacrylate.) 12.5 Suggest a route, via combination of ATRP and CuAAC reaction, for efficient synthesis of polystyreneb-poly(n-butyl acrylate)-methacrylate macromonomer, where each block in the copolymer chain has a degree of polymerization of about 30 12.6 Α,Ω-Dibromo-terminated homo-telechelic polystyrene (DBPSt) was prepared [Tsarevsky, N V., Sumerlin, B S., and Matyjaszewski, K., Macromolecules, 38, 3558 (2005)] by ATRP of styrene(St) with a difunctional initiator, dimethyl 2,6-dibromoheptadioate (DM-2,6-DBHD) with the following conditions: [St]/[DM-2,6-DBHD]/[CuBr]/[PMDETA] 74 : : 0.5 : 0.5, 40 vol% toluene, 80 C, 140 min, 20% monomer onversion The resulting homotelechelic polymer (DBPSt) was isolated, purified, and reacted with NaN3 in DMF solvent at room temperature to Α,Ω-diazide-terminated polystyrene (DAPSt) After purification and isolation, this product was subjected to step-growth click coupling with equimolar amount of propargyl ether in DMF at room temperature using a CuBr catalyst (a) Show equations for the sequence of reactions in the above process (b) Calculate the molar mass of DBPSt (c) Given that the macromonomer conversion in the step-growth polymerization was 90%, calculate the number average molecular weight (Mn ) of the polymeric product obtained [Ans (b) 1903 g mol ; (c) 20,933.] 12.7 Various end-functionalized polymers can be synthesized by reacting alkynes with azide-derivatized polymers prepared by ATRP Accordingly, suggest a synthetic strategy to prepare Α,Ω-dihydroxyterminated polystyrene by a combination of ATRP and subsequent modification via CuAAC reactions 724 Chapter 12 12.8 Using a combination of ATRP and CuAAC reactions, suggest an efficient route for the synthesis of narrow-disperse cyclic poly(N-isopropylacrylamide) with an average of 80 monomer residues in the polymer ring 12.9 Suggest a modular strategy for the synthesis of the inverse star block copolymer, [poly(Ε-caprolactone)b-polystyrene]2 -core-[poly(Ε-caprolactone)-b-polystyrene]2 12.10 Discuss feasible routes for the synthesis of narrow-disperse (a) four-armed star polymer, core-(PCL50 )4 (where CL caprolactone) and (b) four-armed star diblock copolymer, core-(PCL50 -b-PSt50 )4 (where PSt polystyrene) Calculate the theoretical molecular weights of the star (co)polymers [Ans (a) 22,936; (b) 44,332.] 12.11 Describe, in broad outline, synthetic strategies to make the following dendrimer-like miktoarm star terplymers, using a combination of CuAAC click chemistry and controlled/living polymerization methods : (a) core-[PtBA-bp-(PSt)(PCL)]3 and (b) core-[PSt-bp-(PEG)(PtBA)]3 (Note: St styrene; tBA tert-butyl acrylate; CL caprolactone; EG ethylene glycol.) 12.12 Describe a synthetic strategy for preparation of cyclic poly(N-isopropylacrylamide) of polymerization degree approximately 100, based on RAFT polymerization and click chemistry 12.13 Devise a methodology to synthesize Α,Ω-dihydroxy telechelic poly(N-isopropylacrylamide) by combining click chemistry with (a) ATRP and (b) RAFT polymerization 12.14 It is proposed to prepare, by combined use of RAFT polymerization and click chemistry, high-density polystyrene-b-poly(methyl acrylate) brushes on silica nanopartiles To this end, discuss an optimum synthetic strategy and give an outline for synthesis 12.15 Polymers of acrylamide (PAAm) represent an important class of materials because of applications such as in coatings, flocculants, paper making, mining, electrophoresis, and biology While RAFT polymerization and click chemistry can be used for surface modification by both “grafting to” and “grafting from” approaches, surface modification using the “grafting to” approach is more challenging in achieving higher grafting densities Considering these points, devise a “grafting to” approach based on RAFT polymerization and click chemistry for surface modification of silica nanoparticles with polymer brushes of tethered PAAm chains 12.16 Briefly outline the methods of synthesis of (a) the functional initiators (XVIII) - (XXI) and (b) the post-polymerization functionalizing agents (XXII) and (XXIII), referring to Fig 12.22 12.17 Hizal and coworkers [Durmaz, H., Karatas, F., Tunca, U., and Hizal, G., J Polym Sci., Part A: Polym Chem., 44, 499 (2006)] synthesized a compound, (XXI) (Fig 12.22), having an anthracene functionality as also a NMP site and an ATRP site Show how through combination of the DA click reaction, ATRP, and NMP, a heteroarm H-shaped terpolymer (PSt)(PtBA)-bp-(PEO)-bp-(PtBA)(PSt), containing PEO as a backbone and PSt and PtBA as side arms via a branch point (bp) at either end of PEO [where PSt is polystyrene, PtBA is poly(tert-butyl acrylate), and PEO is poly(ethylene oxide)] can be synthesized 12.18 Make a suitable choice of click reactions to enable efficient one-pot synthesis of the following ABC triblock copolymers : (a) PEG-b-PSt-b-PMMA and (b) PMMA-b-PSt-b-PCL [where PEG is poly(ethylene glycol), PSt is polystyrene, PMMA is poly(methyl methacrylate), and PCL is poly(Ε-caprolactone)] 12.19 Diels-Alder click reactions have been successfully used for the preparation of well-defined star polymers Devise methodologies using this route to prepare 3-arm star polymers with uniform arms, core-A3 , where A is (a) poly(ethylene glycol), (b) poly(methyl methacrylate), and (c) poly(tert-butyl acrylate) 12.20 How can click chemistry techniques be combined with LRP/CRP methods to carry out surface modification of silica nanoparticles ? 12.21 (a) How will you make polystyrene, poly(methyl methacrylate), and polycaprolactone with multiple alkene functional groups along the backbone chain ? (b) How will you utilize these functional sites to Polymer Synthesis by Click Chemistry 725 introduce –CO2 H groups on the backbone ? (Note: By introducing –CO2 H groups in this way a significant change in solubility and associated increase in ability to modify the surface of nanoparticles, etc., can be effected.) 12.22 The protected amino acid, N-(9-fluorenylmethoxycarbonyl) cysteine (Fmoc-C) is a building block/model for the attachment of peptide fragments to synthetic materials Devise a stratgy to synthesize low polydispersity polystyrene with multiple Fmoc units along the backbone 12.23 How can Diels-Alder and retro-Diels-Alder reactions be used for the preparation of thermoresponsive dendrimers and dendronized hyperbranched polymers ? 12.24 Discuss a possible method of synthesizing an asymmetric telechelic polymer based on poly(methyl methacrylate) (DP 50) with a carboxylic group at one end and a hydroxyl group at the other, using combined thiol-ene and CuAAC click reactions 12.25 Describe the synthesis of a third generation vinyl-terminated dendrimer in a divergent fashion by alternating thiol-ene and Grignard reaction sequence, using tetravinyl silane for forming the core, 3mercaptopropyl trimethoxysilane for branching, and vinyl magnesium bromide (Grignard reagent) for vinylation of dendrimer ends This page intentionally left blank Appendix A Conversion of Units SI UNITS AND CONVERSION FACTORS Physical quantity Length Mass Time Force Pressure Energy Power Name of SI unit Meter Kilogram Second Newton Pascal Joule Watt Symbol for SI unit m kg s N Pa J W Definition of SI unit Basic unit Basic unit Basic unit kg m s ( J m ) kg m s ( N m ) kg m2 s kg m2 s ( J s ) Physical quantity Length Mass Force Customary unit in lb dyne kgf lbf SI unit m kg N N N To convert from customary unit to SI units multiply by 2.54 10 4.535 923 10 1 10 9.806 65 4.448 22 Pressure dyne/cm2 atm mm Hg lbf/in.2 or psi Pa or N m Pa or N m Pa or N m Pa or N m 2 2 10 1.013 25 105 1.333 22 102 6.894 76 103 727 728 Appendix A SI UNITS AND CONVERSION FACTORS Physical quantity Energy Customary unit erg Btu ft-lbf cal eV SI unit J J J J J To convert from customary unit to SI units multiply by 10 1.055 056 103 1.355 82 4.187 1.602 10 19 Area in.2 ft2 m2 m2 6.451 10 9.290 304 10 Density lb/ft3 kg m s/cm2 ) 1.601 846 10 kg m s Nsm 10 Viscosity poise (dyne Viscosity, kinematic Stoke (cm2 /s) m2 s 10 lbf/ft dyne/cm Nm Nm 1 14.59 10 Surface tension Additional Conversion Units 10 ˚ 1A 10 atm 76 cm Hg (at C) 14.696 psi eV 1.602 10 1Μ 10 cm cm 10 12 10 erg m m kgf/cm2 9.807 104 N/m2 HP 550 ft lbf/s 746 W t C 1.8t to F 32 o F t 32 C 2545 Btu/h Appendix B Fundamental Constants Constant Acceleration of gravity (g) (standard value) CGS system SI system 980.665 cm s 9.8066 m s Normal atmospheric pressure 1,013,250 dyne cm Volume of mole of ideal gas at at atm and C 22.4136 litre Avogadro’s number 6.0220 1023 mole Atomic mass unit 1.6604 10 24 g Universal gas constant (R) 1.9872 cal deg Boltzmann constant (k) 1.3807 10 16 erg deg molecule 2 1.01325 105 N m2 22.41136 10 1 27 8.3143 J deg mole 1 96,487.0 Coulomb mole 27 Planck constant (h) 6.6262 10 erg s Velocity of light in vacuum (c) 2.99792 1010 cm s Electronic charge (e) 4.80325 10 Electron rest mass 9.1095 10 10 28 g esu 6.6262 10 34 9.1095 10 19 31 Js 2.99792 108 m s 1.60219 10 kg 1.3807 10 23 J deg molecule Faraday constant m3 mole 6.0220 1023 mole 1.6604 10 mole Coulomb kg 729 730 Appendix B FUNDAMENTAL CONSTANTS (continued) Constant CGS system SI system Proton rest mass 1.67265 10 24 g 1.67265 10 27 kg Neutron rest mass 1.67482 10 24 g 1.67482 10 27 kg Debye (D) Bohr magneton (BM) 3.336 10 9.2731 10 21 erg gauss 30 Coulomb m Permeability of vacuum (Μs zp) 12.566 10 Permittivity of vacuum Μ0 c2 8.85419 10 NA 12 Source: E R Cohen and B N Taylor, J Phys Chem Ref Data, 2, 663 (1973) Fm Polymer Science S e c o n d A Problem-Solving Approach S e c o n d E d i t i o n Industry and academia remain fascinated with the diverse properties and applications of polymers However, most introductory books on this enormous and important field not stress practical problem solving or include recent advances, which are critical for the modern polymer scientist-to-be Updating the popular first edition of “the polymer book for the new millennium,” Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition seamlessly integrates exploration of the fundamentals of polymer science and polymer chemistry See what’s new in the second edition: • Chapter on living/controlled radical polymerization, using a unique problem-solving approach • Chapter on polymer synthesis by “click” chemistry, using a unique problem-solving approach • Relevant and practical work-out problems and case studies • Examples of novel methods of synthesis of complex polymer molecules by exciting new techniques • Figures and schematics of the novel synthetic pathways described in the new examples Author Manas Chanda takes an innovative problem-solving approach in which the text presents worked-out problems or questions with answers at every step of the development of a new theory or concept, ensuring a better grasp of the subject and scope for self study Containing 286 text-embedded solved problems and 277 end-of-chapter home-study problems (fully answered separately in a Solutions Manual), the book provides a comprehensive understanding of the subject These features and more set this book apart from other currently available polymer chemistry texts Introduction to Polymer Science and Chemistry Introduction to Polymer Science and Chemistry E d i t i o n Introduction to Polymer Science and Chemistry A Problem-Solving Approach Manas Chanda Second Edition K15289 ISBN-13: 978-1-4665-5384-2 90000 781466 553842 K15289_Cover_mech.indd 11/9/12 2:22 PM

Ngày đăng: 02/12/2016, 12:46

Từ khóa liên quan

Mục lục

  • Front Cover

  • Dedication

  • Contents

  • Preface

  • Author

  • 1. Introductory Concepts

  • 2. Chain Dimensions, Structures, and Transitional Phenomena

  • 3. Polymers in Solution

  • 4. Polymer Molecular Weights

  • 5. Condensation (Step-Growth) Polymerization

  • 6. Free Radical Polymerization

  • 7. Chain Copolymerization

  • 8. Ionic Chain Polymerization

  • 9. Coordination Addition Polymerization

  • 10. Ring-Opening Polymerization

  • 11. Living/Controlled Radical Polymerization

  • 12. Polymer Synthesis by Click Chemistry

  • Appendix A: Conversion of Units

  • Appendix B: Fundamental Constants

Tài liệu cùng người dùng

Tài liệu liên quan