Redox student part4 pourbaix diagrams fe

27 816 0
Redox student part4 pourbaix diagrams  fe

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Pourbaix diagrams Plots of E vs pH We will, as an example, derive the Pourbaix diagram for iron Two Latimer diagrams pertain In acid ([H+] = M): Fe3+ 0.77 V -0.44 V Fe(OH)2 Fe In alkali ([OH-] = M) -0.56 V Fe3+ -0.887 V Fe(OH)2 Fe Pourbaix diagrams: •correlate Latimer diagrams at pH and pH 14 •take into account speciation or oxidation state of the element Fe3+ 0.77 V -0.44 V Fe(OH)2 The half reaction Fe3+ + e → Fe2+ Eo = 0.77 V does not involve a proton so Eo is independent of pH Fe Fe3+ + e → Fe2+ Fe3+ will precipitate out of solution as pH is increased We can calculate the pH at which this will occur from the KSP for Fe(OH)3 Fe(OH)3(s) Ý Fe3+ + 3OH– KSP = 4.11 x 10-37 M4 At what pH will [Fe3+] = 1.00 M? KSP = 4.11 x 10-37 M4 = [Fe3+][OH–]3 [OH–] = (4.11 x 10-37/1)0.333 = 7.43 x 10-13 M So [H+] = 10-14/7.43 x 10-13 = 1.35 x 10-2 M hence pH = 1.87 Fe(OH)3 Ý Fe3+ + 3OH- Vertical lines in a Pourbaix diagram indicate where two species of an element in the same oxidation state are in equilibrium To calculate the Fe(OH)3|Fe2+ line Fe3+ + e → Fe2+ Eo = 0.77 V 3OH- + 3H+ → 3H2O ∆Go = -74.3 kJ mol-1 -239.7 kJ mol-1 Fe(OH)3 → Fe3+ + 3OHFe(OH)3 + 3H+ + e → Fe2+ + 3H2O 207.6 kJ mol-1 ∆Go = -nFEo -106.4 kJ mol-1 = -1 x 96485 x 0.77 ∆Go = -RT ln KSP = -8.315 x 298 x ln (4.11 x 10-37) ∆Go = -nFEo Eo = -∆Go /nF = 106400/1 x 96485 = 1.10 V Fe(OH)3 + 3H+ + e → Fe2+ + 3H2O Eo = 1.10 V E = Eo – RT/nF ln Q E = 1.10 – x 0.0592 x pH This must cross the Fe3+/Fe(OH)3 line when 0.77 = 1.10 – 3(0.0592)pH or pH = 1.87 which confirms the result we got from the KSP calclation Fe3+ 0.77 V -0.44 V Fe(OH)2 Fe 1.1 Fe(OH)3 + 3H+ + e → Fe2+ + 3H2O 1.1 Fe(OH)2 Ý Fe2+ + 2OH- The half reaction Fe2+ + 2e → Fe Eo = -0.44 V does not involve a proton so Eo is independent of pH 1.1 Fe2+ + 2e → Fe An expression for the potential for the Fe(OH)3|Fe(OH)2 couple can be derived from the following data Fe(OH)3 + 3H+ + e → Fe2+ + 2H2O Eo 1.10 V ∆Go -106.4 kJ mol-1 3H2O → 3H+ + 3OH- 239.7 kJ mol-1 Fe2+ + 2OH- → Fe(OH)2 -84.4 kJ mol-1 Fe(OH)3 + e → Fe(OH)2 + OH- Eo -0.51 V ∆Go 48.9 kJ mol-1 E = Eo – RT/nF ln Q E = -0.51 + 0.0592 x pOH E = -0.51 + 0.0592 x (14 – pH) E = 0.316 – 0.0592 x pH 1.1 0.316 Fe(OH)3 + e → Fe(OH)2 + OH- .and finally the value of Fe(OH)2|Fe couple can be found by similar considerations, and the Nernst equation applied E = -0.060 – 0.0592 x pH Overlaying Pourbaix diagrams The feasibility of a reaction can be predicted by overlaying the relevant Pourbaix diagrams stability field for As(V) stability field for As(III) At pH < 5.5 and at pH > 9, Fe3+ has the potential to oxidise As3+ to As5+ 5.5 For example 0.65 0.45 Fe(OH)3 + e + 3H+ → Fe2+ + 3H2O E = 0.65 As3+ → As5+ + 2e E = -0.45 As3+ + 2Fe(OH)3 + 6H+ → 2Fe2+ + 6H2O + As5+ E = 0.20 V For 5.5 < pH < As5+ will oxidise Fe2+ to Fe3+ The effect of complex formation on Eo values The Eo value of a metal ion is very dependent on the ligands of the ion Example, for the Fe3+|Fe2+ couple Ligand phenanthroline H2O CN- Eo /V 1.14 0.77 0.36 Ligand phenanthroline H2O CN- N N N N N N N Fe Fe N N N π back bonding from metal to phen ligand stabilises Fe(II) Eo /V 1.14 0.77 0.36 Ligand phenanthroline H2O CN- CN - Eo /V 1.14 0.77 0.36 - NC CN - Fe - NC CN CN - - Negatively charged ligands favour the higher positive charge of Fe(III) NH H 3N Co3+|Co2+ NH Co H 3N 0.11 V NH NH3 is a better σ donor ligand than H2O and so stablises Co(III) NH OH H 2O OH Co H 2O OH OH 1.84 V [...]...1.1 Fe( OH)3 + 3H+ + e → Fe2 + + 3H2O From the KSP for Fe( OH)2 Fe( OH)2 Ý Fe2 + + 2OH– KSP = 1.61 x 10-15 M3 At what pH will [Fe2 +] = 1.00 M? KSP = 1.61 x 10-15 M3 = [Fe2 +][OH–]2 [OH–] = (1.61 x 10-15/1)0.5 = 4.01 x 10-8 M So [H+] = 10-14/4.01 x 10-8 = 2.49 x 10-7 M hence pH = 6.61 1.1 Fe( OH)2 Ý Fe2 + + 2OH- The half reaction Fe2 + + 2e → Fe Eo = -0.44 V does not involve a... Eo = -0.44 V does not involve a proton so Eo is independent of pH 1.1 Fe2 + + 2e → Fe An expression for the potential for the Fe( OH)3 |Fe( OH)2 couple can be derived from the following data Fe( OH)3 + 3H+ + e → Fe2 + + 2H2O Eo 1.10 V ∆Go -106.4 kJ mol-1 3H2O → 3H+ + 3OH- 239.7 kJ mol-1 Fe2 + + 2OH- → Fe( OH)2 -84.4 kJ mol-1 Fe( OH)3 + e → Fe( OH)2 + OH- Eo -0.51 V ∆Go 48.9 kJ mol-1 E = Eo – RT/nF ln Q E = -0.51... x pH 1.1 0.316 Fe( OH)3 + e → Fe( OH)2 + OH- .and finally the value of Fe( OH)2 |Fe couple can be found by similar considerations, and the Nernst equation applied E = -0.060 – 0.0592 x pH Overlaying Pourbaix diagrams The feasibility of a reaction can be predicted by overlaying the relevant Pourbaix diagrams stability field for As(V) stability field for As(III) At pH < 5.5 and at pH > 9, Fe3 + has the potential... oxidise As3+ to As5+ 5.5 9 For example 0.65 0.45 Fe( OH)3 + e + 3H+ → Fe2 + + 3H2O E = 0.65 2 As3+ → As5+ + 2e E = -0.45 As3+ + 2Fe( OH)3 + 6H+ → 2Fe2 + + 6H2O + As5+ E = 0.20 V For 5.5 < pH < 9 As5+ will oxidise Fe2 + to Fe3 + The effect of complex formation on Eo values The Eo value of a metal ion is very dependent on the ligands of the ion Example, for the Fe3 + |Fe2 + couple Ligand phenanthroline H2O CN- Eo... phenanthroline H2O CN- Eo /V 1.14 0.77 0.36 Ligand phenanthroline H2O CN- N N N N N N N Fe Fe N N N π back bonding from metal to phen ligand stabilises Fe( II) Eo /V 1.14 0.77 0.36 Ligand phenanthroline H2O CN- CN - Eo /V 1.14 0.77 0.36 - NC CN - Fe - NC CN CN - - Negatively charged ligands favour the higher positive charge of Fe( III) NH 3 H 3N Co3+|Co2+ NH 3 Co H 3N 0.11 V NH 3 NH3 is a better σ donor ligand

Ngày đăng: 01/12/2016, 21:50

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan