Nghiên cứu tính chất vật liệu nano zno pha tạp eu3+

13 493 1
Nghiên cứu tính chất vật liệu nano zno pha tạp eu3+

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - - NÔNG NGỌC HỒI NGHIÊN CỨU TÍNH CHẤT VẬT LIỆU NANO ZnO PHA TẠP Eu3+ Chuyên ngành: Vật lí chất rắn Mã số: 60440104 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN: TS PHẠM NGUYÊN HẢI HÀ NỘI - 2015 Luận văn Thạc sĩ khoa học Nông Ngọc Hồi LỜI MỞ ĐẦU Khoa học công nghệ nano lĩnh vực đại liên ngành vật lý, hóa học sinh học Các vật liệu cấu trúc nano, có kích thước từ 1nm đến 100 nm, có vai trò hàng đầu ứng dụng thực tiễn như: công nghiệp linh kiện điện tử, công nghệ LED, công nghiệp sơn, thuốc, y dược học, công nghệ sinh học, … Cho đến nay, nhiều nghiên cứu vật liệu nano nói chung vật liệu nano phát quang nói riêng triển khai giới Việt Nam Ưu điểm trội vật liệu phát quang kích thước nano có độ mịn cao, có cường độ huỳnh quang mạnh với độ sắc nét lớn Trong đó, ion đất pha tạp oxit nhận ý nghiên cứu ứng dụng lĩnh vực khoa học công nghệ cao, đặc biệt lĩnh vực quang học tính chất phát quang mạnh, vạch hẹp, thời gian sống phát quang dài bền Đây đặc trưng quan trọng khác biệt với vật liệu phát quang khác chất mầu hữu cơ, vật liệu bột phát quang với ion kích hoạt ion kim loại chuyển tiếp, hay vật liệu phát quang bán dẫn ZnO oxit bán dẫn thuộc nhóm AIIBVI có tính chất vật lý quan trọng: Cấu trúc vùng lượng chuyển mức thẳng, độ rộng vùng cấm lớn (cỡ 3,37 eV nhiệt độ phòng), exciton tự có lượng liên kết lớn (cỡ 60 meV) nên có xác xuất chuyển mức quang học cao, độ bền nhiệt độ nóng chảy cao (1950oC), không độc, giá thành rẻ thân thiện môi trường Do đó, ZnO quan tâm nghiên cứu từ sớm có nhiều ứng dụng Đặc biệt pha tạp kim loại chuyển tiếp Mn, Co, Fe… hay kim loại đất hiếm, tương tác trao đổi hạt tải điện tự với ion kim loai chuyển tiếp/đất thay Zn2+, tính chất chất bán dẫn, ZnO có tính chất từ gọi vật liệu bán dẫn từ pha loãng Gần đây, nghiên cứu vật liệu ZnO, đặc biệt vật liệu ZnO có cấu trúc nano nghiên cứu cách rộng rãi, nhiều tính chất khả ứng dụng lĩnh vực quang điện tử, hóa học, sinh học, chế tạo hiệu ứng phát laser vật liệu cho linh kiện quang điện tử Các linh ki ện Luận văn Thạc sĩ khoa học Nông Ngọc Hồi phát quang này có chuy ển mức phát quang xảy với xác suất lớn, hiệu suất lượng tử phát quang đạt gần 100%, điện trở suất hay tính chất phát quang thay đổi tuỳ vào tạp chất pha vào ZnO Do tính chất quang vật liệu nano ZnO tiếp tục thu hút tập trung nghiên cứu nhà khoa học giới nhằm tìm tính chất Quá trình phát quang vật liệu chứa ion đất chuyển dời nội lớp điện tử 4f, che chắn lớp điện tử bên nên phụ thuộc vào môi trường tính chất phát quang ổn định Nhiệt độ tiến hành tổng hợp vật liệu nano phát quang thấp, khoảng từ 60°C 200°C Gần đây, công bố chế tạo vật liệu phát quang nano điện môi có khả phát huỳnh quang chưa làm sản phẩm phản ứng công bố với kết nghiên cứu thu tinh thể kích thước nano pha tạp ion đất với nồng độ cao vùng nhiệt độ thấp Do có nhiều tiń h chấ t và kh ả ứng dụng rộng rãi vật liệu ZnO, luận văn tập trung nghiên cứu vật liệu ZnO pha tạp ion đất Eu3+ với đề tài: “Nghiên cứu tính chất vật liệu nano ZnO pha tạp Eu3+” Bản luận văn trình bày phương pháp sol-gel chế tạo bô ̣t tinh thể nano ZnO ZnO pha tạp Eu3+ Các tính chất cấu trúc, tính chất hình thái tính chất quang vật liệu làm rõ việc sử dụng phép đo nhiễu xạ tia X, kính hiển vi điện tử quét, đo phổ huỳnh quang, kích thích huỳnh quang phép đo phổ tán xạ Raman Ngoài phần mở đầu, kết luận, tài liệu tham khảo phần phụ lục nội dung luận văn gồm chương: Chương 1: Tổng quan lý thuyết Chương 2: Các phương pháp chế tạo mẫu nghiên cứu tính chất vật liệu Chương 3: Kết thảo luận CHƯƠNG 1: TỔNG QUAN VẬT LIỆU ZnO PHA TẠP Eu3+ Luận văn Thạc sĩ khoa học Nông Ngọc Hồi Ôxít kẽm (ZnO) oxit bán dẫn thuộc nhóm AIIBVI bảng tuần hoàn nguyên tố hóa học Mendeleev Tinh thể ZnO không pha tạp chất điện môi, có cấu trúc lục giác Wurtzite bền vững điều kiện bình thường Chương trình bày tính chất vật lý quan trọng tinh thể ZnO, ion Eu3+, vật liệu ZnO pha tạp Eu3+, phương pháp chế tạo ứng dụng vật liệu ZnO pha tạp ion Eu3+ 1.1 Tinh thể ZnO 1.1.1 Cấu trúc tinh thể ZnO Cấu trúc tinh thể ZnO tồn ba dạng: Cấu trúc dạng lục giác Wurtzite điều kiện thường, cấu trúc dạng lập phương giả Kẽm nhiệt độ cao cấu trúc lập phương dạng tâm mặt NaCl xuất áp suất cao [17] a, Cấu trúc lập phương tâm mặt NaCl b, Cấu trúc lập phương giả kẽm c, Cầu trúc lục giác Wurtzite Hình 1.1 Các cấu trúc tinh thể khác ZnO [17] Trong đó, cấu trúc lục giác Wurtzite (Hình 1.1 c) cấu trúc ổn định bền vững nhiệt độ phòng áp suất khí Mạng tinh thể ZnO dạng hình thành sở hai phân mạng lục giác xếp chặt cation Zn2+ anion O2- lồng vào khoảng cách 3/8 chiều cao (Hình 1.2) Luận văn Thạc sĩ khoa học Nông Ngọc Hồi Hình 1.2 Cấu trúc tinh thể ZnO ô sở Mỗi ô sở có hai phân tử ZnO, hai nguyên tử Zn nằm vị trí (0,0,0); (1/3,2/3,1/3) hai nguyên tử O nằm vị trí (0,0,u); (1/3,2/3,1/3+u) với u~3/8 Mỗi nguyên tử Zn liên kết với nguyên tử O nằm đỉnh hình tứ diện gần Khoảng cách từ Zn đến nguyên tử u.c, ba khoảng cách khác [1/3a3 + c2(u – ½)2]1/2 [17] Tinh thể ZnO dạng lục giác Wurtzite tâm đối xứng nên tinh thể tồn trục phân cực song song với mặt (001) Khoảng cách mặt có số Miller (hkl) hệ lục giác tuân theo công thức (1.1): d hkl  (h  hk  k ) l2  a2 c2 (1.1) Trong đó: h, k, l số mặt Miller a, c số mạng Wurtzite Hằng số mạngtrong cấu trúc lục giác Wurtzite (JPCDS 36-1451) a=b=3,249 Å c=5,206 Å Tinh thể ZnO có điểm nóng chảy nhiệt độ cao (~1975oC) thăng hoa không phân huỷ bị đun nóng Luận văn Thạc sĩ khoa học Nông Ngọc Hồi a = 3,249 Å Hằng số mạng c = 5,206 Å Năng lượng vùng cấm 3,37 eV Khối lượng riêng 5,606 g/cm3 Điểm nóng chảy 19750C Năng lượng liên kết exciton 60 meV Khối lượng hiệu dụng điện tử 0.24 m0 Khối lượng hiệu dụng lỗ trống 0.59 m0 Độ linh động electron Khoảng 200 cm2/V.s Bảng 1.1 Một số thông số vật lý tinh thể ZnO 300K [20] Cấu trúc tinh thể kiểu lập phương giả kẽm (Hình 1.1 b) trạng thái cấu trúc giả bền ZnO xuất nhiệt độ cao, dạng tinh thể ZnO hình thành sở mạng lập phương tâm mặt cation Zn2+ anion O2- nằm vị trí tứ diện tọa độ (1/4, 1/4 1/4), (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4) [17].Cấu trúc mạng kiểu NaCl (Hình 1.1 a) xuất áp suất thủy tĩnh cao khoảng 9.7 GPa 1.1.2 Cấu trúc vùng lượng tinh thể ZnO Tinh thể ZnO có cấu trúc lượng vùng cấm thẳng, cực đại vùng hóa trị cực tiểu vùng dẫn nằm tâm vùng Brillouin k = (Hình 1.3) Vùng Brillouin mạng tinh thể ZnO lục giác Wurzite có hình khối bát diện Bằng phương pháp nhiễu loạn tính vùng lượng mạng lục giác từ vùng lượng mạng lập phương Sơ đồ vùng dẫn vùng hoá trị hợp chất nhóm AIIBVI với mạng tinh thể lục giác (Hình 1.4) Trạng thái 2s, 2p mức suy biến bội ba trạng thái 3d Zn tạo nên vùng hóa trị Trạng thái 4s suy biến bội hai trạng thái 3d Zn tạo nên vùng dẫn Từ cấu hình điện tử Luận văn Thạc sĩ khoa học Nông Ngọc Hồi phân bố điện tử quỹ đạo, Zn Zn2+ từ tính quỹ đạo lấp đầy điện tử, dẫn đến mômen từ điện tử không Năng lượng liên kết Exciton ZnO lớn (cỡ 60 meV) nên tồn nhiệt độ phòng Hình 1.3 Vùng Brillouin mạng tinh thể ZnO [2] Hình 1.4 Sơ đồ cấu trúc vùng lượng ZnO [2] 1.1.3 Tính chất quang vật liệu ZnO Tính chất quang vật liệu ZnO xác định thông qua phép đo huỳnh quang, kích thích huỳnh quang phép đo tán xạ Raman Ở nhiệt độ phòng, phổ huỳnh quang của vật liệu ZnO điển hình bao gồm hai đỉnh phát xạ: Một đỉnh vùng tử ngoại đỉnh vùng nhìn thấy Đỉnh phát xạ vùng nhìn thấy xuất vùng xanh, da cam đỏ Vùng tử ngoại: ZnO phát xạ mạnh vùng tử ngoại Ở nhiệt độ thường ta quan sát đỉnh gần bờ hấp thụ 380 nm ứng với tái hợp thông qua exciton (do lượng liên kết exciton ZnO lớn, lên tới 60 meV) Ngoài số vật liệu ZnO xuất đỉnh phổ tái hợp vùng Đặc điểm dải phổ dải phổ rộng, không đối xứng, chân sóng kéo dài tăng cường độ kích thích đỉnh phổ dịch chuyển phía bước sóng dài [2] Vùng xanh: Đỉnh phổ huỳnh quang ~500 nm nằm dải xuất chuyển mức điện tử xuống donor Đây tâm sai hỏng mạng Luận văn Thạc sĩ khoa học Nông Ngọc Hồi tạo nút khuyết Oxy thay nguyên tử Zn nguyên tố tạp chất mạng tinh thể ZnO [2] Vùng vàng cam: Bản chất dải phổ lân cận 620 nm mạng tinh thể ZnO tồn nút khuyết vị trí Zn hay ion O vị trí điền kẽ, tạo thành cặp donor-acceptor Nếu ZnO tồn tạp chất kim loại kiềm (Li, Na) dải tách thành vùng vàng cam [2] 1.2 Ion đất ion Eu3+ Các nguyên tố đất (RE) bao gồm nguyên tố hóa học thuộc họ Lanthan Actini tuần hoàn nguyên tố hóa học, có cấu hình dạng: 1s22s22p63s23p63d104s24p64d105s25p64fn5dm6s2 đặc trưng lớp điện tử chưa lấp đầy 4f Quỹ đạo 4f ion RE che chắn quỹ đạo lấp đầy bên 5s2 5p6, ảnh hưởng trường tinh thể mạng chủ lên dịch chuyển quang cấu hình 4fn nhỏ Trong oxit kim loại đất RE2O3, dịch chuyển hấp thụ bị cấm mạnh theo quy tắc chọn lọc chẵn-lẻ Do đó, oxit kim loại đất thường không màu Khi trường tinh thể, ảnh hưởng yếu trường tinh thể mà đặc biệt thành phần lẻ trường tinh thể, thành phần xuất ion RE chiếm vị trí tính đối xứng đảo Các thành phần lẻ trộn phần nhỏ hàm sóng có tính chẵn-lẻ ngược lại với hàm sóng 4f Các quy tắc chọn lọc chẵn-lẻ nới rộng nội cấu hình 4f, dẫn đến thực vài dịch chuyển quang [4] Hình 1.6 trình bày giản đồ cấu trúc mức lượng ion đất hóa trị RE3+ (giản đồ Dieke) Các mức lượng điện tử 4f đặc điểm tiêu biểu ion đất Do điện tử lớp 4f chưa lấp đầy nằm sâu bên so với lớp 5s, 5p, 5d 6s lấp đầy lớp che chắn nên điện tử lớp 4f nguyên tố đất tương tác yếu với mạng tinh thể chúng tương tác với mạnh Mặc dù nguyên tố đất nằm nút mạng tinh thể chúng có mức lượng xác định đặc trưng cho riêng Luận văn Thạc sĩ khoa học Nông Ngọc Hồi Các mức lượng chịu ảnh hưởng trường tinh thể, có chuyển dời điện tử mức lượng lớp 4f tao xạ nội nguyên tử Trong vùng lượng mức 4f có hai chuyển dời hấp thụ quang học: Chuyển dời điện tích: 4fn→4fn-1L-1, L trường ligan (ligan số anion bao quanh tạp), chuyển dời: 4fn→4fn-15d Các ion Eu nguyên tố đất thuộc họ Lanthanide cấy mạng rắn, có số hiệu nguyên tử Z=63, tồn hai trạng thái hóa trị Eu2+ (4f75s25p6) Eu3+ (4f65s25p6) Nguyên nhân chuyển dời quang học ion Eu3+ điện tử lớp 4f chưa lấp đầy che chắn lớp điện tử bên 5s 5p Khi Eu3+ kích thích lên mức lượng cao, nhanh chóng phát xạ lượng vùng khả kiến mức lượng thấp với dịch chuyển 5D0 → 7Fj (j = 0, 1, 2, 3, ) cấu hình 4f6 Mức 5D0 mức đơn (j = 0, 2j + = 1) Trường tinh thể địa phương ảnh hưởng yếu tạo tách mức lượng trạng thái 7Fj cho dịch chuyển phát xạ 5D0 → 7Fj Ion Eu3+ phát xạ huỳnh quang chủ yếu vùng ánh sáng đỏ, có chuyển dời xạ mạnh từ mức 5D0 → 7F2 lớp 4f bước sóng khoảng 610 - 620 nm Vạch có ứng dụng quan trọng chiếu sáng hiển thị hình ảnh Sự kích thích ion Eu3+ gián tiếp thông qua mạng chủ trực tiếp tới trạng thái điện tử 4f Trong trường hợp kích thích gián tiếp, mạng truyền Luận văn Thạc sĩ khoa học Nông Ngọc Hồi Hình 1.5 Giản đồ lượng ion RE3+ - Giản đồ Dieke [20] Hình 1.6 Giản đồ chuyển mức lượng ion Eu3+ [3] lượng cho tâm phát quang để sau chuyển dời nội 4f phát huỳnh quang vùng phổ mong muốn Thông thường, trình hấp thụ ánh sáng xảy 10 Luận văn Thạc sĩ khoa học Nông Ngọc Hồi TÀI LIỆU THAM KHẢO Tiếng Việt Ngô Xuân Đại, Nguyễn Ngọc Long, Nguyễn Thị Thục Hiền (2006), “Tính chất quang huỳnh quang vật liệu ZnO cấu trúc nano”, Những tiến Quang học, Quang tử, Quang phổ ứng dụng, Nhà xuất Khoa học kỹ thuật, 2007 Nguyễn Văn Hiếu (2012), Chế tạo nghiên cứu vật liệu ôxít kim loại có kích thước nanomét sử dụng pin mặt trời, Luận văn Thạc sỹ chuyên ngành vật lý Chất rắn; Trường Đại học khoa học Tự nhiên, ĐHQGHN Nguyễn Thị Hương (2012), Chế tạo nghiên cứu tính chất quang vật liệu nano ZnO, Luận văn thạc sĩ, chuyên ngành vật lý Chất rắn, Trường Đại học Khoa học Tự nhiên, ĐHQGHN Đinh Xuân Lộc (2013), Nghiên cứu chế tạo vật liệu nano YVO4:Eu3+; CePO4:Tb3+ khảo sát tính chất chúng, Luận án tiến sỹ khoa học, Viện Khoa học vật liệu, Viện Hàn lâm Khoa học Công nghệ Việt Nam Nguyễn Thị Thảo (2014), Nghiên cứu tính chất màng mỏng ZnO pha tạp nguyên tố đất hiếm, Luận văn thạc sĩ, Chuyên ngành Vật lý chất rắn, Đại học Khoa học Tự nhiên, ĐHQGHN Nguyễn Việt Tuyên (2011), Chế tạo, nghiên cứu tính chất màng mỏng, vật liệu cấu trúc nano sở oxit kẽm pha tạp khả ứng dụng, Luận án tiến sĩ, chuyên ngành vật lý Chất rắn, Đại học khoa học Tự nhiên, ĐHQGHN Tiếng Anh R Ayouchi, F Martin, D Leinen, J.R Ramos-Barrado (2003), Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon, Journal of Crystal Growth 247 (2003) 497–504 S Bachir, K Azuma, J Kossanyi, P Valat, J.C Ronfard-Haret (1997), “Photoluminescence of polycrystalline zinc oxideco-activated withtrivalent rareearth ions and lithium.Insertion of rare-earth ions into zinc oxide” Journal of Luminescence 75, 35-49 11 Luận văn Thạc sĩ khoa học Nông Ngọc Hồi Y Dimitriev, Y Ivanova, R Iordanova (2008), History of Sol-gel science and technology (review), Journal of the University of Chemical Technology and Metallurgy, 43, 181-192 10 Sebastian Geburt, Michael Lorke, Andreia L da Rosa, Thomas Frauenheim, Robert Roder, Tobias Voss,Uwe Kaiser, Wolfram Heimbrodt and Carsten Ronning (2014), Intense Intrashell Luminescence of Eu-Doped Single ZnO Nanowires at Room Temperature by Implantation Created Eu-Oi Complexes, Nano Letters 14, 2014 11 T Hanada (2009), “Basic Properties of ZnO, GaN, and Related Materials” in “Oxide and nitride semiconductors: Processing, Properties, and Applications”, Springer, 1-19 12 Y Hayashi, H Narahara, T Uchida, T Noguchi, S Ibuki (1995), “Photoluminescence of Eu-doped ZnO phosphors”, Jpn J Appl Phys 34, 18781882 13 A Ishizumi, Y Taguchi, A Yamamoto, Y Kanemitsu (2005), “Luminescence properties of ZnO and Eu3+-doped ZnO nanorods”, Thin Solid Films 486, 5052 14 Agnieszka Kołodziejczak-Radzimska and Teofil Jesionowsk (2014), “Zinc Oxide—From Synthesis to Application: A Review”, Materials 2014, 7, 28332881; doi:10.3390/ma7042833 15 Vinod Kumar, Vijay Kumar, S Som, M.M Duvenhage, O.M Ntwaeaborwa, H.C Swart (2014), “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications”, Applied Surface Science 308, 419-430 16 F J Manjon, B Mari, J Serrano, A H Romeno (2005), “Silent Raman modes in zinx oxide and nitrides”, J Appl Phys 97, 053516-1-053516-4 17 Hadis Morkoc and Umit Ozgur (2009), Zinc Oxide: Fundamentals, Materials and Device Technology, WILEY-VCH Verlag GmbH & Co KGaA, 12 Luận văn Thạc sĩ khoa học Nông Ngọc Hồi Weinheim 18 G Murugadoss, R Jayavel, M Rajesh Kumar (2015), “Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods”, Superlattices and Microstructures 82, 538–550 19 Nark-Eon Sung, Seen-Woong Kang, Hyun-Joon Shin, Han-Koo Lee, Ik-Jae Lee (2013), Cu doping effects on the electronic and optical properties of Cudoped ZnO thin films fabricated by radio frequency sputtering, Thin Solid Films 547 (2013) 285–288 20 G S Ofelt (1963), "Structure of the f6 configuration with applicatio to RareEarth Ions", J Chem Phys 38, 2171 21 U Ozgur, Ya I Alivov, C Liu, A Teke, M A Reshchikov, S Dogan, V Avrutin, S.-J Cho, and H Morkoc (2005), “A comprehensive review of ZnO materials and devices”, J Appl Phys 98, 041301-1–041301-103 22 Y.K Park, J.I Han, M.G Kwak, H Yang, S.H Ju (1998), Time-resolved spectroscopic study of energy transfer in ZnO:EuCl3 phosphors, J Lumin 78, 87-90 23 G.C Righini and M Ferrari (2005), “Photoluminescence of rare-earth–doped glasses”, Rivista del Nuovo Cimento 28 (12), 1-53 24 Ahmad Umar, Yoon-Bong Hahn (2010), Metal Oxide Nanostructures and Their Applications, Chapter 4, American Scientific Publishers 25 Chih-Cheng Yang, Syh-Yuh Cheng, Hsin-Yi Lee, San-Yuan Chen (2005), “Effects of phase transformation on photoluminescence behavior of ZnO:Eu prepared in different solvents”, Ceramics International 32, 37-41 26 L.L Yang (2008), “Synthesis and optical properties nanostructures”,Licentiate Thesis, Linkoping University, Sweden 13 of ZnO [...]... ngành vật lý Chất rắn; Trường Đại học khoa học Tự nhiên, ĐHQGHN 3 Nguyễn Thị Hương (2012), Chế tạo và nghiên cứu tính chất quang của vật liệu nano ZnO, Luận văn thạc sĩ, chuyên ngành vật lý Chất rắn, Trường Đại học Khoa học Tự nhiên, ĐHQGHN 4 Đinh Xuân Lộc (2013), Nghiên cứu chế tạo vật liệu nano YVO4 :Eu3+; CePO4:Tb3+ và khảo sát tính chất của chúng, Luận án tiến sỹ khoa học, Viện Khoa học vật liệu, ... nghệ Việt Nam 5 Nguyễn Thị Thảo (2014), Nghiên cứu tính chất màng mỏng ZnO pha tạp nguyên tố đất hiếm, Luận văn thạc sĩ, Chuyên ngành Vật lý chất rắn, Đại học Khoa học Tự nhiên, ĐHQGHN 6 Nguyễn Việt Tuyên (2011), Chế tạo, nghiên cứu tính chất của màng mỏng, vật liệu cấu trúc nano trên cơ sở oxit kẽm pha tạp và khả năng ứng dụng, Luận án tiến sĩ, chuyên ngành vật lý Chất rắn, Đại học khoa học Tự nhiên,... Thạc sĩ khoa học Nông Ngọc Hồi TÀI LIỆU THAM KHẢO Tiếng Việt 1 Ngô Xuân Đại, Nguyễn Ngọc Long, Nguyễn Thị Thục Hiền (2006), Tính chất quang huỳnh quang của vật liệu ZnO cấu trúc nano , Những tiến bộ trong Quang học, Quang tử, Quang phổ và ứng dụng, Nhà xuất bản Khoa học kỹ thuật, 2007 2 Nguyễn Văn Hiếu (2012), Chế tạo và nghiên cứu vật liệu ôxít kim loại có kích thước nanomét sử dụng trong pin mặt trời,... properties of ZnO and Eu3+- doped ZnO nanorods”, Thin Solid Films 486, 5052 14 Agnieszka Kołodziejczak-Radzimska and Teofil Jesionowsk (2014), “Zinc Oxide—From Synthesis to Application: A Review”, Materials 2014, 7, 28332881; doi:10.3390/ma7042833 15 Vinod Kumar, Vijay Kumar, S Som, M.M Duvenhage, O.M Ntwaeaborwa, H.C Swart (2014), “Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors... Luminescence of Eu-Doped Single ZnO Nanowires at Room Temperature by Implantation Created Eu-Oi Complexes, Nano Letters 14, 2014 11 T Hanada (2009), “Basic Properties of ZnO, GaN, and Related Materials” in “Oxide and nitride semiconductors: Processing, Properties, and Applications”, Springer, 1-19 12 Y Hayashi, H Narahara, T Uchida, T Noguchi, S Ibuki (1995), “Photoluminescence of Eu-doped ZnO phosphors”, Jpn... Chih-Cheng Yang, Syh-Yuh Cheng, Hsin-Yi Lee, San-Yuan Chen (2005), “Effects of phase transformation on photoluminescence behavior of ZnO: Eu prepared in different solvents”, Ceramics International 32, 37-41 26 L.L Yang (2008), “Synthesis and optical properties nanostructures”,Licentiate Thesis, Linkoping University, Sweden 13 of ZnO ... review of ZnO materials and devices”, J Appl Phys 98, 041301-1–041301-103 22 Y.K Park, J.I Han, M.G Kwak, H Yang, S.H Ju (1998), Time-resolved spectroscopic study of energy transfer in ZnO: EuCl3 phosphors, J Lumin 78, 87-90 23 G.C Righini and M Ferrari (2005), “Photoluminescence of rare-earth–doped glasses”, Rivista del Nuovo Cimento 28 (12), 1-53 24 Ahmad Umar, Yoon-Bong Hahn (2010), Metal Oxide Nanostructures... Rajesh Kumar (2015), “Structural and optical properties of highly crystalline Ce, Eu and co-doped ZnO nanorods”, Superlattices and Microstructures 82, 538–550 19 Nark-Eon Sung, Seen-Woong Kang, Hyun-Joon Shin, Han-Koo Lee, Ik-Jae Lee (2013), Cu doping effects on the electronic and optical properties of Cudoped ZnO thin films fabricated by radio frequency sputtering, Thin Solid Films 547 (2013) 285–288 20... oxit kẽm pha tạp và khả năng ứng dụng, Luận án tiến sĩ, chuyên ngành vật lý Chất rắn, Đại học khoa học Tự nhiên, ĐHQGHN Tiếng Anh 7 R Ayouchi, F Martin, D Leinen, J.R Ramos-Barrado (2003), Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon, Journal of Crystal Growth 247 (2003) 497–504 8 S Bachir, K Azuma, J Kossanyi, P Valat, J.C Ronfard-Haret (1997), “Photoluminescence of polycrystalline

Ngày đăng: 09/09/2016, 09:47

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan