tuyen chon 500 bai tap toan 10 nxb ha noi 2005 2 885

72 413 0
tuyen chon 500 bai tap toan 10 nxb ha noi 2005 2 885

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

tuyển chọn,chọn lọc các bài toán toán lớp 10 dành cho học sinh khá giỏi.Với 500 bài tập từ dễ đến khó .nhà xuất bản hà nội . sản xuất năm 2005. giúp các em có thể vận dụng vào bài tập nâng cao kĩ năng học toán

B a i 287 (Cfiu hoi trftc nghi^m) b) , FhiTdng trinh (1) » Phi^cfng trinh nao sau day c6 hai nghi$m X i , X2 thoa m a n bit't d^n thii-c xi < < X2 < a) 3x^ - 5x + = b) 3x - X t = x^ - 2x + (x' - 2x + 2)^ - 4{x'' - 2x + 2) + (2m + 4) = (dieu k i ^ n : t > 1) - t + ( m + 2) = c) Sx"* - 2x - = (*) D a t fit) = t^ - 4t + 2(m + 2) d) 3x - 5x - = +4 =0 PhUOng t r i n h da cho c6 n g h i e m x c=> Phifcfng t r i n h (*) c6 n g h i e m t > • HUdng dan D a t f(x) = ve t r a i phuong t r i n h bac h a i Ta p h a i c6 : B i e n d6'i phuong trinh (1) f3.f(0) < ff(0) < 3.f(2) > f(2) > Trifdng h S • - ^ V, , -2 t2 Dap so : 3x^ - 2x - = (Cau c) B a i 8 (Cau hoi trie nghi^m) Vdi nhffng gia tri nao ciia a thi phi^c^ng trinh 3x^ - ax + a = c6 hai nghi^m X i , X2 thoa man - < X i < < X hoSc a ) a < - V a > c) d) A' = - ( m + 2) = - m S l.f(l) > l.f(1) = 2m + > I Xi Sau d6 g i a i gio'ng b a i 289 Dap so : b) max(y) = v i y = - (x" + 4x^) < (Dfi'u = xdy r a o R , GlAl a) T a c6 y = x^ - 2x + = (x - 1)^ + > 1, Vx £ R Dau = xay r a o x = Dap so : m i n ( y ) = k h i x = R 166 ) c) Phucfng t r i n h da cho o> x = 0) • t = - x"* - x ^ + (t < 5) t^ + 2t + m - 10 - (*) * T i e p tuc g i o n g b ^ i 289, t a c6 : - 25 < m < 11 V m < - 25 m < 11 167 E KI^M TRA CAC KIEN THLfC VE TAM THUTC BAC HAI a i 294 (Cau hoi trac nghiem) Gia silf tam thtfc bgc hai f(x) = (1 - m)x^ + 2mx + c6 bang xet dau : B a i 291 (Cau h6i trSc nghiem) (xi, X2 la hai nghiem ciia f(x)) Tam thtfc bglc hai f(x) = (m^ - 3)x^ + 2mx c6 bang xet dau + +00 f(x) - + c) m = d) m = - b)ml d)|m| k h i x e ( x i ; X2) n e n a = l - m < c:>m>l Dap so': m > (cau a) TU bang xet dau t a c6 f(l) = - > B a i 295 (Cau hoi t r i e nghiem) Tam thiJc f(x) = 2x^ - ax - c6 hai nghiem X i , Xg thoa man dieu Dap so : m = - (cau d) ki^n — + — B a i 292 (Cau hoi trfic nghi^m) Xac dinh cac gia tri cua m de bat phifoTng trinh x^ - 4x + 2m - < (I CO t^p nghi^m S = ? a)ml b) m = - + 00 X2 - f(x) Hay tinh m ? a) m = — 00 X - 00 X b)m>— c)m — a) a = 15 = Tinh a ? b) l a I = 15 c) a = - 15 d) MOt gia tri khac * HUdng ddn 1 X-^ X2 S P Xj •X2 Dap so : a = - 15 (cau c) * HUdng dan Bat phifcfng t r i n h da cho v6 n g h i e m X., - 4x + m - > d n g h i e m diing vdi m o i x E R A' < B a i 296 (Cau hoi trac nghiem) Tam thii-c f(x) = x^ - 2mx + c6 gia tri nho nhat bSng T i n h m ? Dap so': m > — (cau b) a) m = c) I m b)m = - l I = d) I m I >1 * Hudng ddn B a i 293 (Cau hoi tr&c nghiem) • T|lp nghiem cua b a t phufoTng t r i n h _ 2x - >0 1a : (x + l)(-x^ + 4x - 6) a) S = (- ; ^ ) b) S = [- ; 1] c) [- ; ^ ) D a p s o : S = (- 1[ ^] (cau d) > - Vay minff(x)] = - = Dap so : I m d) (- ; ^ ] • HUdng ddn Vi {- x^ + 4x - 6) < 0, Vx e R n e n bat phiTcfng t r i n h da cho tiTOng 2x — 1 duong vdri O v a a + b > c , b + c > a , GlAl • f(x) = (b + c)x^ - 2(a + b + c)x + 2(a + b + c) A' = (a + b + c)^ - 2(b + c)(a + b + c) = (a + b + c)[(a + b + c) - 2(b + c)] = (a + b + c)(a - b - c) , V i a, b, c la dai ba canh ciia m o t t a m gidc nen a, b, c > A' < a < b + ( f(x) > 0, Vx € R B a i 300 T u y theo m.'tim t§p xac dinh cua ham s6' y = ^x'^ + 4x - m + (1) • HUdng d&n • H a m so (1) xac d i n h o x^ + > • D a t f(x) = x^ + 4x - m + 2, t i n h xet dau A' GlAl • H a m so (1) xac d i n h o x^ + 4x - m + > (G9i D la t a p xac dinh cua ham so) • D a t f(x) = x^ + 4x - m + 2, t a "5, CO m + -2 - 00 170 : A' = - (- m + 2) + 171 VECTO Chu^'oii d o I Kicn I) t h i f c coT c) * -> Do dai cua vecta AB la dp dai ciia doan thang AB, ki hieu |AB| CO dai bang ( = ) 3) Hai vector bang Dinh nghla Hai vecta bang nnau chiing ciing hudng va c6 dp dai b&ng Chii y : • a va b bang nhau, ki hieu a = b ban - > C a c djnh nghTa 1) Vector Dinh nghla Vecta la doan thSng da dinh hirdng, nghla la da chon mot diem mut lam diem dau, diem mut lai la diem cuoi • Vdi hai diem phan biet A va B, ta c6 hai vecta khac : AB va BA • Vecta CO diem dau va di§m cuoi trung nhau, chang han: AA , MM , goi la "vector - khong", ki hieu , ' 2) Phifofng, hi^oTng, dp dai ciia vectof a) Dinh nghla Hai vecta goi la ciing phuang hai vecta Ian liicrt nhm tren hai dUcJng thang song song hoac trung H$ qua : Hai vecta cung phuang vdi mot vecta thuT ba thi hai vecta cung phi/ang b) Hai vectcf a va b cung phifcfng thi a va b c6 the cung hxidng hoac ngUdc hi^drng Chii y : • cung hudrng vdi moi vecta • hirdrng Hai vecta cung hudng vdri mot vecta thiJ ba thi hai vecta cung —> 172 a = b va b = c doan th^ng vecta Vecta CO diem dau la A, diem cuoi la B, ki hieu : AB • Dinh nghla > a = c • Cho san a va mot diem O, ta c6 nhat mot diĐm A : OA = a ã Mpi vecta deu bang II) Phep cpng c a c vectd 1) Dinh nghla tong cac vectof Cho hai vecta a va b Tii diem A y, ve AB = a va BC = b Vector AC dUdc goi la tong hai vector a va b , ki hi^u : AC = a + b Chii y : • Tong a + b khong phu thuoc vao vi tri diem A • Quy tac ba diem : AC = AB + BC (ba diem A, B, C y) (hinh 1) • Quy tac dudng cheo hinh binh hanh ABCD la hinh binh hanh =5 AB + AD = AC (hinh 2) A D B^ (Hinh 1) 2) Tinh chat -> ^ a) V6i moi a t a c d : a + = + a= b) V d i m o i a , b , ta c6: a + b = b + a c) Vdi moi a , b, c,tac6:(a (giao hoan) V e c t d d o i c i i a mpt vectof a) Dinhli a + b) X = b) k a = neu k = hoac a = + b) + c = a + (b + c) (ket hcfp) c) Do dai ciia k a la |k a | = i k | | a | 2) Tinh chat cho trUdc, lu6n c6 m^ot vecto x n h a t cho Dinh nghia a) k ( l ) = (k.l) a b) (k + 1) a = k a + a c) k( a + b ) = k a + k b d) a = a ; a = ; k = 3) Dinhli -> Neu vecto a + b = —» t h i vectof b dirge goi la vector doi cua so' thiTc k cho b = k a d a + (- a ) = M i vector c6 m p t vector doi n h a t • -» -> k > • k < Dinh nghia Cho h a i d i e m j h a n biet A va B b) , M chia doan t h ^ n g A B theo t i so' o c) = a+(-b) 1-k OA - ^ k.OB K h i k = - t h i M la t r u n g d i e m ciia doan t h i n g A B Vay : - OM = (k / 1) H§ qua Phep t i m hieu a - b goi l a phep trir hai vectcr > cx> M A = k M B Dinh li Dinh nghia - ' D i e m M chia doan t h ^ n g A B theo t i so k Cho d i e m O tCiy y va k ?i , ta c6 : > > , ' H i ? u c i i a h a i vectof - o a v a b cung hddng -* —> o a va b ngupc h d d n g a) Chiiy: 1) • D i e m c h i a d o a n t h a n g theo ti so' cho trifdfe N e u b l a vector doi cua a t h i a la vector d o i ciia b n e n : va vectd doi cua vector b nghia l a : a - b IV) -> t h i t o n t a i n h a t 4) -» Hi#u cua vector a va vectcf b , k i hi^u a - b , la tong cua vectcf a • M la t r u n g d i e m ciia doan thSng A B o > OM = If OA + OB ( la d i e m y ) Cho ba d i e m bat k i : A, B, C, ta c6 : AC = BC - B A Phep nhan vectd v6l mpt so Dinh nghia T i c h ciia vectcr a v d i so thuc k la m o t vectcr, k i hieu k a , dxxac xac d i n h nhir sau : , -> a va b la h a i vector doi • -> —> _> 2) ^Z", -> Chii y : • ' ;• - Neu h a i vecta a va b ciing phddng va a vector a va k i hieu l a - a • u V d i m o i vectd a , b va m o i so thdc k, 1, ta c6 : 1) a k a cung hudrng v d i vectcr a neu k > ngugc hirdng v d i vectd a neu k < a III) Phep trii hai vectd Vdi m6i a) 5) T r o n g t a m c i i a tarn g i a c • Dinh li • G la t r o n g t a m ciia t a m giac A B C o GA + GB + GC = Q • G la t r o n g t a m ciia t a m gidc A B C o OG = OA + OB + OC Toan K la t r o n g t a m t a m giac Q S U nen K Q + K S + K U = B a i Cho tam giac A B C , goi A' la diem doi xii'ng \6i B qua A, B' la diem doi xxjfng vdri C qua B, C la diem doi xii'ng vofi A qua C G K + ( Q P + S R va phu y OA = OA' + A"A • TiTcfng t u doi v d i OB • AB + BC + CA = va A'A = AB Ta l a i c6 : = OB' (3) Q C UT = - A E SR Tuongtu- OB d = -CA QP : OA = OA' + A'A = OA' + AB CO + UT ) = OC GIAI Ta (2) G K + ( Q K + K P ) + ( sk + K R ) + ( U K + K T ) = (D OA + OB + O C = OA' + O B ' + O C ' • = Cong (1) va (2) ta c6 : Chu'ng minh rang vdti mpt diem O bat ki ta c6 : * HUdng QK + B'B = OB' (1) (vi A"A = AB ) QP (2) + BC (3) OC = OC' + C'C = OC' + CA + UT + SR = (3) va (4) Cong (1), (2) va (3) ta CO : = -EC =:> G K - CA + A E + EC = o GK = = (4) ci> G = K (dpcm) Bai Cho ti? giac A B C D Goi M, N Ian lUgft la trung diem cac canh A B , OA + 013 + OC = OA' + OB' + OC' + AB + BI: + CA C D Chu'ng minh MN = A C + BD = AD + B C GIAI ChiJCng minh = OA' + OB' + O C (dpcni) • B a i Cho luc giac A B C D E F Goi P, Q, R, S, T, U Ian li^grt la trung diem cac canh AB, B C , C D , D E , E F , FA Chu'ng minh rdng hai tam giac P R T va Q S U c6 cung tam • HUdng dan Goi G va K Ian lucft la t r o n g t a m A P R T va A Q S U , ta chu'ng m i n h n - ' u - - G K = bang each chu y • GP + GR + GT = |KQ + KS + KU = M N = AC + B D Ta CO : • AC = A M + M N + N C • BD = BM + M N + N D ' ' • ' \ Cong ve, ta difcfc: AC + B1) = A M + M N + N C + B M + NT) = A M + B M + M N + N C + N D (1) GIAI • G la t r o n g t a m t a m giac P R T nen G P + G R + G T = GK G K + KP + (KP + GK + KR + KR + GK + KT) = + KT (1) = 177 GIAI M l a t r u n g d i e m ciia A B n e n A M + B M = Mk N • l a t r u n g d i e m cua CD n e n N C + N D = L a y d i e m O t u y y , t a c6 : A^i Do d6, (1) t r d t h a n h : AC + BD = M N • + + + A \ (dpcm) - O A j ) + ( OB2 - OA2 ) + = ( OBj = ( O B i + OB2 + + (0B„ - 0A„ ) , T L r o n g t u t a c : AX) + BC = M N T m l a i , t a c6 : M N = AC + B a i Mpt gia d9 dUpc gSn v a c B1) tvCdng = A D + BC nhvC • hinh l a Tam giac A B C vuong V i n d i e m B i , B2, B„ cung Ih n d i e m A i , A2, hieu m p t each khac, cho n e n t a c6 : -> OBj c a n cf diem C Ngifori ta treo vao diem A mpt v|it nang 5N Hoi C O nhang Itfc nao tac dpng vao buTc tvTdng tai hai diem B va C ? + B „ ) - ( O A i + OA2 + -> + OB2 + Tir (1) va (2) AjBi , An nhitog ducfc k i ^ -> + A2B2 + + A^B,, = + B „ = O A j + OA2 + + A „ ) (1) -> + 0A„ (dpcm) B a i Cho ba diem phan bipt A, B, C a) Chiing minh rSng neu c6 mpt diem I nao va mpt so thiic t > > > • cho l A = t I B + (1 - t ) l C thi vofi mpi diem I ' ta deu c6 : • / I-A = t.I-B + ( - t ) l ' C b) diem A, B, C thSng hang Hinh l b Hinh l a Chu-ng to rfing l A = t I B + ( l - t ) l C la dieu k i ^ n o^n va dii de ba GIAI GIAI a) T a i d i e m A , liTc keo F hi/dng t h i n g dijfng xuong difcJi c6 ci^cfng dp Theo gia t h i e t : l A = t I B + ( - t ) I C , t h i v d i m o i die"m I ' , t a c6 : IF + I'A = t N , t a c6 t h e x e m F l a t d n g cua h a i vector Fj va F2 I a n lufcft n&m t r e n h a i dir6ng t h i n g A C v a A B D i thay : f- ir + I'B +( i - t ) i r + rc = t i ' B + ( i - t ) r c + ir | Fj I = | F | va | F2 I = I F | x/2 (do t a m gidc A B C b) vuong can t a i C) I'A = t i ' B + ( i - t ) r c N e u t a chon I ' t r u n g vdi A t h i c6 = t A B + (1 - t ) A C , l a dieu k i e n can va du de ba d i e m A , B , C t h i n g hang Vay : C6 m p t luc 6p vuong goc vdi biJc tirdng t a i diem C v d i ciTdng N , v ^ m p t life keo biJc tifcrng t a i d i e m B theo hi/dng B A v d i cudng dp "5 V2 N (Xem h i n h l b ) —> Chiing minh rfing : A j B j + AjBg + vi tri ciia diem G cho GA + G B + G C + G D = B a i Cho n diem tren mSt ph^ng B a n Minh k i h i ^ u chiing l a A i , A2, An- B a n Mai k i hipu chiing la B i , B2, a i Cho tii giac A B C D a) H a y xac d}nh , B„ + A„'B„ b) Chiing minh rSng vdri mpi diem O, vectof O G l a trung binh cpng ciia bon vectcf O A , O B , OC , OD , ttfc la = OG = - OA + OB + OC + OD (Diem G nhii the' gpi la tam ciia tii giac A B C D ) 17« 179 • Hudng a i dan Siif d u n g c o i i g thufc M A + MB = 2MO (Ola trung diem AB) 3) GA Tiiih + GB GC = +^ G D = OA e) HA + H E + H C = H O f) Du-ofng thflng H O d i q u a t r o n g t a m G c u a t a m g i a c A B C Vi tri cua G OH + GB = 2GI (I la t r u n g d i e m • GG + GD = (J la t r u n g d i e m 2GJ a) AB) ChuTng m i n h t i r a n g t\i t a c u n g co C H // B ' A GA + GB + GC + G D = GI + GA + GB + GC + G D = (gt) ( i ) v a (j) GJ nen GI + GJ = Tir GA + G B = Vay GA + GB + GC + G D b) + GC + G D Ta CO + OA OG = + GO + OB + GO + OC + GO + OD = c) OA + O B + OC + O D - A B ' C H la h i n h b i n h h a n h AH =2 00 OA = OH + HA = OH = OH - 200 = •• =:> A H = B'C B'C =2 00 (dpcm) - OH AH - (OB + OC) = , t a co : « GO ^ (i) (j) O D l a d U d n g t r u n g b i n h cua t a m g i a c B B ' C n e n V a y , G l a t r u n g d i e m ciia I J Chii-ng m i n h G O G o i B ' l a d i e m do'i x i J n g v d i B qua O, t a co B ' C B C V i H l a t r i r c t a m t a m g i a c A B C n e n A H B C V a y A H // B ' C CD) C o n g ve ciia (1) v a (2), t a co : Ma (difcfng GIAI CO : GA o + OC = t h d n g goi l a di^dng t h i i n g - Ic c i i a t a m g i a c A B C ) • b) + OB —> d) (2) GIAI Ta AH = 0D (1) C o n g (1) v a (2) r i sU d u n g g i a t h i e t ) a) C h o t a m g i a c A B C n p i t i e p t r o n g d t T o T n g t r o n (O), H l a trii'c t a m t a m g i a c v a D l a t r u n g d i e m c a n h B C Chiifng m i n h r S n g : OA + OB + OC = OH (dpcm) G l a t r o n g t a m t a m g i a c A B C , t a co : HA + HB + HC = HG = 3( H O = HO B a i C h o d i e m O co d i n h v a difofng t h S n g d d i q u a h a i d i e m A , B co d i n h + OG ) = H O + OA + OB + OG + OC K e t h o p v d i k e t qua ciia cau b t a co : Chiirng m i n h r S n g d i e m M thuQC dUcfng t h ^ n g d k h i v a c h i k h i co s*> HA a s a o c h o O M = a O A + (1 - a) O B d) Vdri d i e u k i ^ n n a o c u a a t h i M t h u Q c d o a n t h a n g A B ? GIAI Ta OM -> ' -> = uOA + (1 - a ) O B < o O M - O B = a { O A - O B ) • 180 = 3Hb + OH = H0 - HO = HO Vi G la t r o n g t a m t a m giac A B C nen 0G = O H , do ba d i e m H , , G t h a n g tCr k e t qua (dpcm) cau b t a co hang CO : -> • + HB + HC Vi B M = a BA -> OM - > - > • - > = u( O A o B M = a B A a i 10 C h o t a m g i a c A B C v a d i e m O t u y y ~ OB ) + OB _ a) H a y x a c d i n h v i t r i d i e m M c h o O M = — B b) Vdri d i e m M d a dtfgfc x a c d i n h d c a u a , t i n h A M theo A B v a + OC o M e d n e n M thuoc d o a n t h S n g A B k h i va chi k h i < a AC ^ 181 : • HUdng a) b) V$y F \k dinh thu- tiT cua hinh binh hknh C B (xem hinh ve) d&n T i n h B M theo B C (can ciJ gia t h i e t ) Cho O = A t a CO k e t qua Ta da c6 : CD = A B ; A E GlAl a) = ^ 30B + OC o OB + B M cj B + B M = B + BC = SOB + b) M So sanh MA + MB + MC va MD + M E + M F = M D + M E + M F = ( M A + AD ) + ( M B + BE ) + ( M C OB + BC = (MA B M Vay d i e m M a t r e n doan t h i n g BC b) Chon d i e m = A t a di/oc : A M • - = BC B M = AE -BC • = - SAB + AC 4( = MC + ' Tifcfng tir : B la t r u n g d i e m D F • 2F'C AB; (1) ' : ' vi CBFA la hinh binh hanh • =>AE = - A F = : > A l a t r u n g d i e m EF C la t r u n g d i e m D E n e n : ; = DE + DF = FD + F"E E B = ED + M E = MA + B C ; M F = MB + C A E"F Cong ve theo vf, t a ducfc : Chu'ng minh rfing cac diem D, E , F khong phu thupc vao vi tri ciia diem M, b) = C"B A E + A F = B1: + C B = - > - > - > MD = BC chufng m i n h t r e n => 2DA Hay xac dinh cac diem D, E , F cho + M B + M C ) + ( A D + B E + CF ) >; AF B M = - B C ( h i n h ve) -> + C¥ ) Ta l a i CO : < B a i 11 Cho tam giac A B C va diem M y, a) va B F = CA n e n D, E, F k h o n g phu thuoc vao v i t r i cua M V i t r i cua M Ta CO : Q M = BI: ve tren hai canh C A v^ 2(D'A + ¥C + E'B) So sanh hai tong vectcf MA + MB + MC va MD + M E + M F o D A + F C = (D'E + ED) + (DF + FD) + (FE + EF) + EB = ( ) o A b + B E = ' + CF = ( ) v GIAI a) • T i r ( l ) va (2) Xac dinh diem D Ta CO: M D = M C + A B o M D - MC = AB o a i 12 • Xac dinh diem E TLforng tir, t a c6 : M E = M A + BC o AE = « 182 dan Ta CO : CH AB C H // A B ' AB' ± AB Tuong tir A H / / C B ' (2) TCr (1) va (2) t a co A H C B ' la h i n h b i n h h a n h Xac diuh diem F Tucfng t y , t a c6 : M F = M B + CA Cho tam giac A B C npi tiep difoTng tron (O) HiCdng B"C Vay : E la d i n h thu" t\i ciia h i n h b i n h h a n h ve t r e n h a i can'' BA va B C (xem h i n h ve) (dpcm) Gpi H la trUc tam tam giac A B C va B' la diem doi xrfng vdfi B qua tam O -> -> -> Hay so sanh cac vector A H va B ' C , A B ' va H C CD = A B Vay : D la d i n h thu" tir ciia h i n h b i n h h a n h ve t r e n h a i caul' A B va AC (xem h i n h ve) => M D + M E + M F = M A + M B + M C o Bli' = CA A H = B'C va A B ' = H C • ' • ' ' 183 Bai 13 C h o h a i h i n h b i n h h a n h A B C D v a A B ' C ' D ' c6 c h u n g d i n h A K h i u = - O M va do Chufng m i n h r g n g : a) BB' + C'C + DD' = b) H a i tarn g i a c B C D v a B ' C D ' c6 c u n g t r p n g tarn Chu y : Cucli chgn dicin O cho v = ' V = ( A B ' - A B ) + ( AC - A C ' ) + ( A D ' - A D ) A B ' f A D ' = A C ( V i A B ' C ' D ' la h i n h b i n h h a n h ) B B ' + C'C + D D ' = A C ' - A C ' - A C + AC = AM = ^ • •• • , • ^ GIAI , Goi , O' I a n luat la t r u n g diem ciia A D va BC, ta c6 : = ( G B ' + B'B ) + ( G C + C C ' ) + ( G D ' + D ' D ) = ( G B ' + GC + G D ' ) + ( B'B + CC' + D'b ) ^ ( G B ' + GC + G D ' ) - ( B B ' + C'C + D D ' ) 00' = OA + A B + BO' 00' = ob Neu G la t r o n g t a m t a m giac B C D t h i GIB + G C + G D til (*) ta cung c6 G B ' + GC + G D ' = 0, i u c OA Ma G cung la t r o n g t a m tam giac B ' C D ' (dpcm) + D C + CO' 0 ' = ( OA + = G B ' + GC + G D ' - = G B ' + GC + G D ' ) ( ) Nen + ob 0"b ) + ( A'B + D C ) + ( B O ' + C O ' ) = (vi O la t r u n g di§m A D ) BO' + CO' = (vi O' la t r u n g d i e m BC) 0 ' = A B + DC o 00' = Vay t r o n g t a m hai t a m giac B C D va B ' C D ' t r i i n g 14 C h o t a m g i a c A B C v a di^ofng t h S n g d T i m d i e m M t r e n dufong > ^ t h A n g d cho vectof u + GC k A B va D N = k D C T i m t a p hdp c a c t r u n g d i e m c i i a d o a n thfing M N (dpcm)' Vdi diem G bat k i ta c6 : Bai • v = ta chon diem O cho GO = —GC H a i t a m g i a c B C D v a B ' C D ' c6 c u n g t r o n g t a m G"B + GC' + 0 ' i 15 C h o til" g i a c A B C D Vdri so k y, l a y c a c d i e m M v a N c h o AIB + A D = AC ( V i A B C D la h i n h b i n h h a n h ) b) '' = (OA + OB + OC) + OC = 3OG + OG + GC = 40G Vay dc = ( A B ' + A D ' ) - A C ' - ( A B + A D ) + AC Nen , G la trpng tam tam giac ABC, ta c6 : B B ' + CC' + D D ' Ma u | = 40M Do d l i vectcf u nho n h a t k h i va chi k h i M nho n h a t hay M la h i n h chieu vuong goc ciia O t r e n d GIAI a) I - > = - > -> M A + M B + M C c6 dp d a i n h o n h a t GIAI Vdi m o i d i e m O ta c6 : u = M A + M B + M C = OA - O M + 013 ~ O M + ( C - O M ) - A B + DC (1) Tuang t\i : va I la t r u n g diem ciia A D va M N nen ta cung c6 : 01 = f I > J AM + DN k.AB Tir (1) va (2) => = k 0 ' + k.DC = O f k i A B + DC (2) => I e dir6ng thSng ( 0 ' ) Vay k h i k thay doi, tap hop cac d i e m I la dUcfng t h i n g M 00' B = OA + OB + C - M Ta chon d i e m cho v = OA + O B + OC = 184 185 GlAl =f Hit&ng d&n T i n h cosA = b^+c^-a^ 2bc Theo cong thufc t r u n g tuyen : b^ng cdch suf d u a g h§ thuTc da cho b^ + c^ GIAI Ta CO : a^ = b^+c^-a^ b +c- a « a^(b + c - a) = b-* + c - a-" o a^b + c) = b^ + « a^ = b^ + c^ - be « b^ + c^ - a^ = be b^ + c ^ - a ^ • 2bc Vay A = 60 = (b + c)(b^ + c - be) , COSA = — 2 2c^ + 2a^ - b^ = m^ = 4(4)^ = 64 (2) • 2a^ + 2b^ - c^ = m,^ = 4(3)^ = 36 (3) 100 b^ 208 b = —9 4%/l3 b= — , , 292 c = - — 2V73 c= B a i 189 Tinh dp dai cac canh a, b, c cua tam giac A B C theo cac goo A, B, C va chu v i 2p ciia tam giac A B C (2) • HUdng dan • HUctng dan * Theo d i n h l i s i n , t a c6 : • Tir (1), chvJng m i n h B = ° (giong b a i 186) • TCr (2) va B = 60°, churng m i n h b = c (dung d i n h h' cosin : c^ = cosC = ' 2b T h a y cosC d (4) v^o (3) t a eo : c^ = a^ + b^ - 2ab a ) (3) (4) sin A Vay K2h) c^ = b^ b = cc::> T a m giac A B C can t a i A Dap so : T a m giac A B C 1^ t a m giac deu B a i 188 D a i hpc ngoai ngff H a Npi - 2000 bdng 5m, 4m, 3m b _ sinB c _ a +b+c sinC sin A + s i n B + s i n C a 2p sin A sin A + sin B + s i n C b 2p sinB sin A + s i n B + s i n C c 2p sinC sin A + sin B + s i n C a = o b = e= 2p.sin A sin A + sin B + sin C 2p.sinB sin A + sin B + sin C 2p.sinC sin A + sin B + s i n C ChuTng minh rSng b -f- c = 2a o sinB -f sinC = 2sinA • HUdng dan T i n h dp dai cac canh cua tam giac A B C Theo d i n h l i s i n t a c6 : i D u n g cong thuTc trung tuyen b^ + c^ = m f + — _ B a i 190 Cho tam giac A B C (BC = a, C A = b, A B = c) C a c di^dng trung tuyen A M , B E , C F c u a tam giac A B C tifcfng vLng hay a = 2R.sinA , Vay b + c = 2a 2b^ + 2c^ - a^ = m^ de lap he phtfong trinh ba an la a^, b^, c^ 280 , (1) Chti'ng minh A B C la tam giac deu • HUdng d&n , t a c6 (1) , y - b a = 2b.cosC o • ^ 10 D a p s6 : a = a + c - b B a i 187 Cho tam giac A B C thoa m a n Theo gia t h i e t t a c6 : a = 2b.cosC 2b^ + 2c^ -a^ = 4(5)^ = 100 + c 2b^ + 2c^ - a^ = ã a = a ô G i a i he (1), (2) va (3) ta duoc : = — m^ + ^ b = 2R.sinB , c = 2R.sinC 2R.sinB + 2R.sinC = 2.2R.sinA o s i n B + sinC = 2sinA (dpcm) 281 B a i C h o t a m g i a c A B C v u o n g t a i A ( B C = a , C A = b, A B = c ) Chtfng m i n h rfing c Bai C h o di^dng t r o n ( C ) c tfim O v a b a n k i n h R = T i ^ d i e m M cy n g o a i ( C ) , v e t i e p tuyd'n M T v a c a t tuye'n M A B vdfi ( C ) ( T , A , B e ( C ) ) = a ~ b + cotgC B i e t M T = 12 v a A B = ( M B > M A ) T i n h O M v a M A , M B sinC • HvCctng ddn • Hiic/ng ddn D u n g d i n h l i s i n va chu y : A = 90° n e n sinA = 1, B + C = 90° n e n sinB = cosC v a sinC = cosB ã ^ , ^Tô/(C) = MT^ =ã M A M B = OM^ - R^ GIAI GIAI b Theo d i n h l i s i n , t a c6 : a = 2R.sinA = = sin A sinB b = 2R.sinB , , c Vay a-b Tinh OM c = 2R hay sinC c = 2R.sinC Ta Vay • 2R.sinC sinC 2R.sin A - R s i n B sin A - s i n B a-b sinC sinC s i n C ( l + cosC) 1-sinB 1-cosC - cos^ C s i n C ( l + cosC) _ + cosC _ sin^C a-b sinC cosC sinC sinC hay > M A ( M A + A B ) = 144 o M A ( M A + 7) = 144 o MA^ + M A - 144 = B a i 194 Cho tam giac A B C c6 trtfc tam H Chu'ng minh rfing cac tam giac H B C , HCA, H A B , A B C c6 b a n kinh dvfdng tron ngoai tiep hkng • HU&ng ddn D u n g cong thiJc O^/^c} = - • L a y d i e m M(xo; yo) e (d) : y = 2x - t a c6 : yo = 2xo - ^ / ( C ) = IM^ - = (xo + D u n g d i n h l i s i n doi v d i t a m giac ABC va t a m giac HBC va chii y BITC = 180° - BXC GIAI ' O M = 13 T i n h M A va M B c=> =f Hii&ng ddn • + (5f = 169 o Vay M A M B = 144 R = >/2 Tim nhijfng diem M tren diicfng th^ng (d) : y = 2x - M/(C) OM^ = (Uf Dap so': M A = va M B = M A + A B = 16 B a i 192 Trong mp(Oxy), cho diiofng tron (C) c6 tam I ( - 5; 2) va b a n kinh cho £P = MT^ = OM^ - R^ c> OM^ - MT^ + R^ M A = - 16 (loai) V M A = (nhan) + cotgC (dpcm) sin C ^I/(C) T a CO : £7^/,c, = M T ^ = M A M B V i t a m giac A B C vuong t a i A n e n sinA = 90° = va sinB = cosC c CO : + (yo - f - 50 • TiTcfng tir doi v d i t a m giac HBC va ABC A = (xo + 5)^ + (2x0 - - ) ^ - = (xo + 5f + (2x0 - 5)^ - 50 = x^ - lOxo ' • ^lliAC) >0 » X o - lOxo > 'M(Xo;yo) e ( d ) : y = 2x - Ket luan o XQ < V XQ > ,^^/(C 282 xo2 > 283 GIAI Goi R , Ra, Rb, Rc Ifin luot la bdn kinh dudng tron ngoai tiep ciia tarn gidc ABC, HBC, HCA, HAB = 2R va sin BAG Ta CO : sin BHC = 2R B a i 196 tam giac ABC c6 di^n tich S, ban kinh di^dng tron ngoai tiep la thoa man h^ thu-c 3S = 2R^(sin^A + sin^B + sin^C) ChuTng minh ABC la tam giac deu • HUdng ddn Dung cong thiJc S = abc vk dinh li sin de tim mgt h$ thuTc giQa BITC = B l i C ' = 180° - BAG (tiJ giac AB'HC' noi tiep) nen a, b, c sin BAG = sin BHC Vay • Siif dung bat d&ng thiJc Cosi (dau = xay ra) R = Ra v^' GIAI Tirmig ty ta cung c6 R = Rb (tarn giac ABC va tam giac HCA) va 9, b , sinA = — , sinB = — , 4R 2R 2R Vay 3S = 2R^(sin^A + sin^B + sin^C) 3.1DC Ta CO S = R = Rc (tam giac ABC va tam giac HAB) Vay Ra = Rb = Rc = R (dpcm) ^ 4R 3ai 195 Cho tam giac ABC vuong tai A : CA = b, AB = c Ve phan giac AD(D e BC) Tinh AD theo b va c Ơ HU&ng dan ã Dung Dung cong thvJc SAABC giac ACD = - bc.sinA doi vdi tam giac ABD va tam = 2R^ ^ „3 a 8R^ b K 33 8R^ c + —- + ,3 ^ 8R^ • Theo bat d^ng thufc Cosi : a^ + b^ + • D i n g thufc ( D o o sinC = c — 2R 3abc = a^ + b^ + c^ (1) > 3^^aVc^ = 3abc (2) Dau "=" of (2) xay 3 o a = b = c o a = b = c (dpcm) B a i 197 (Cau hoi trSc nghi^m) Trong mp(Oxy), cho A(- 2; 0) va B(0; 6) Tinh phi/cmg tich cua M(- 1; 5) doi vdfi dtfofng tron tSm A va qua B B' a) 14 D GIAI Ta CO SAABc = DLr6ng SAABC = - AB.AC.sinA = - be (vi sinA = sin90° = 1) 2 • SAABD = - AB.AD.sinBAD = -c.AD.sin45° = - c A D — 2 2 • SAACD= B a i 198 (Cau hoi trdc nghi^m) Cho goc xOy = 60" va diem M of goc xOy Ve MH Ox va MK Oy (hinh ve) Diet OM = 12 N/S Tinh HK ? - A C A D - s i n C M ) = i b.AD.sin45''= - b A D — 2 2 2bc a) 13N/3 -7= V2(b + c) b) , hay tron (C) tam A va qua B c6 ban kinh R = AB Dap so : iJ^i/io = - 14 (cau b) Vay - b c = i c A D ^ + - b A D ^ 2 2 J84 d) - 26 Vay ^ / , c ) = MA^ - R^ = MA^ - AB^ • _, AD = c) 26 • HU&ng dan SAABD + S^ACD An^K ^ >/2 AD(b + c) — = be b) - 14 AD = J2.hc b+c c) ^ 18 d) 12 285 HUcfng • HU&ng d&n dan sin AIB TJTZ B'inh li 4n,doi v(Ji tam giac OHK : : AIB = 180° - ( A i + B i ) = 180° - (45° + 15°) = 180° - 60° AB => Dudng trdn ngoai tiep tam gide OHK c6 dufdng kinh = OM • CO Ap dung dinh l i sin cho tam gidc AIB, ta c6 : tr6n difdng kinh OM ^ = OM = 2R (R la ban kinh dudng trbn ngoai tiep tam gidc lAB) AB = 2R.sinAIB = x 12 x sin(180° - 60°) sinO = 24sin60° = 24 x ^ Bai 198 (Cau hoi trSc nghi^m) Tinh ban kinh dufcfng tron ngoai tiep tam giac ABC biet BC = a, B a i 201 (Cau hoi trfic nghi^m) Cho tam giac ABC c6 chu vi bSng 12 va sinA + sinB + sinC = — B = 75° va C = 60" ằ)R = a72 Ơ HU&ng b)R=-^ c)R=Đ 72 Tinh ban kinh difoTng kinh di^dng tron ngoai tiep tam giac ABC ? d) R = 2a a ) R = ^ ddn * Hiidng Dap s6': R = - = 72 sin A = 2R o R = sin A sin 45" (cau b) c npi tiep tam giac ABC (hinh ve) Biet ban kinh dtfoTng tron ngoai tiep tam giac lAB b^ng Tinh AB ? 12 d)R=5 ^ = ^ = c ^ a + b+c _ 12 _ g sinA sinB sinC sin A + sinB + sin C 12 , R=^ Dap so : Cau c Cho tam giac ABC vuong tai A va ABC = 30" I la tSm dtfdng tron b) AB = c)R=2 d&n 2R = 3ai 200 (Cau hoi t r i e nghifm) a) AB = 12 73 b)R=— • 12 Dimg dinh l i sin : A = 180° - (B + C ) = 45° Dinh l i sin : = 12 73 Dap so : Cau a H K = OM.sinO = 12 73 sin60° = 12N/3 —- = 18 3ap so : Cau c i86 Ta Vi ( H M = K M - 90° nen tuT giac OHMK npi tiep dudng c) AB = 24 d) AB = 73 B a i 202 (Cau hoi trfic nghi^m) Trong dtfotng tron (C) tam O, ban kinh R, ve goc n$i tiS'p 12cm BAC = 30° Tinh ban kinh AvCiSng tron ngoai tiep tam giac OBC ? a) ^ b)R7S ^ c ) ^ d) ô 7i 24 7i ã HUdng ã d&n BOG = BAG (BOG v^ BAG Ian lugt la g6c tSm goc noi tiep cung ch^n cung BG ) ^ BOC = 60° OBC 1^ tam giac deu BG = R 87 • A p duiiR d i n h l i s i n cho tarn g i a c O B C t a c6 : b d n kin"h d u n g t r b n ngoai tiep tarn g i a c - R „ = 2R' « R ' s i n 60° Vay = R s i n 60',0 BC =^ sin H O C = R ' (R' la OBC) TinhP= R 73 D a p s ' : C a u d B a i 203 (Cau h o i t r i e nghi^m) T a r n g i a c A B C v u o n g t a i A G p i O l a t r u n g d i e m A B , diiitng C O di^cfng k i n h A B c S t dUdng tron (V) t h S n g (CO) t ^ i I v a J a) P = 100 b) P = 50 c) P = 40 d) P = 20 * HU&ng ddn (C,) • L/^,c,= BH.BC c) a)

Ngày đăng: 09/09/2016, 09:11

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan