Nghiên cứu gen mã hóa enzyme tham gia thủy phân cellulose từ khu hệ vi khuẩn ruột mối bằng kỹ thuật metagenomics

27 397 1
Nghiên cứu gen mã hóa enzyme tham gia thủy phân cellulose từ khu hệ vi khuẩn ruột mối bằng kỹ thuật metagenomics

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

I HC QUC GIA H NI TRNG I HC KHOA HC T NHIấN Nguyn Th Tho NGHIấN CU GEN M HểA ENZYME THAM GIA THY PHN CELLULOSE T KHU H VI KHUN TRONG RUT MI BNG K THUT METAGENOMICS LUN N TIN S SINH HC H Ni - Nm 2015 I HC QUC GIA H NI TRNG I HC KHOA HC T NHIấN Nguyn Th Tho NGHIấN CU GEN M HểA ENZYME THAM GIA THY PHN CELLULOSE T KHU H VI KHUN RUT MI BNG K THUT METAGENOMICS LUN N TIN S SINH HC Chuyờn ngnh: Di truyn hc Mó s: 62 42 01 21 NGI HNG DN KHOA HC: GS TS Trng Nam Hi TS Th Huyn H Ni - Nm 2015 LI CAM OAN Tụi xin cam oan: õy l cụng trỡnh nghiờn cu ca tụi v mt s kt qu cựng cng tỏc vi cỏc cng s khỏc Cỏc s liu v kt qu trỡnh by lun ỏn l trung thc, mt phn ó c cụng b trờn cỏc khoa hc chuyờn ngnh vi s ng ý v cho phộp ca cỏc ng tỏc gi Phn cũn li cha c tỏc gi no cụng b bt kỡ cụng trỡnh no khỏc H Ni, ngy thỏng nm 2015 Tỏc gi Nguyn Th Tho LI CM N Tụi xin by t lũng bit n sõu sc ti GS.TS Trng Nam Hi v TS Th Huyn phũng K thut di truyn, Vin Cụng ngh sinh hc, Vin Hn lõm Khoa hc v Cụng ngh Vit Nam ó thu nhn, hng dn tn tỡnh, quan tõm ht mc v to mi iu kin cho tụi hon thnh lun ỏn ny Lun ỏn c thc hin ti phũng K thut di truyn Phũng Thớ nghim trng im Cụng ngh Gen, Vin Cụng ngh sinh hc, Vin Hn lõm Khoa hc v Cụng ngh Vit Nam v c h tr bi ti Ngh nh th vi Nht Bn: Phõn lp h gen mó húa cho enzyme thy phõn lignocellulose t khu h vi sinh rut mi Vit Nam bng k thut Metagenomics Trong thi gian hc v nghiờn cu ti phũng K thut di truyn, tụi ó nhn c s giỳp v s ch bo tn tỡnh v chuyờn mụn ca th cỏn b nghiờn cu ca phũng Tụi xin chõn thnh cm n s giỳp quý bỏu ú! Tụi xin by t lũng cm n sõu sc n cỏc thy cụ giỏo Khoa Sinh hc, i hc Khoa hc T nhiờn, i hc Quc gia H Ni ó ging dy v ch bo cho tụi nhng kin thc chuyờn mụn v k nng cn thit hon thnh lun ỏn, tụi ó nhn c nhiu s giỳp quý bỏu v nhit tỡnh ca cỏc ng nghip cụng tỏc ti khoa Sinh hc, Trng i hc Vinh, tụi xin chõn thnh cm n s giỳp quý bỏu ú! Vi tt c lũng bit n, tụi xin dnh cho gia ỡnh, b m, chng v con, nhng ngi thõn ó thụng cm, ng viờn, to iu kin v chia s khú khn cựng tụi thi gian qua! Nguyn Th Tho MC LC M U 14 Tớnh cp thit ca ti 18 Mc tiờu ca ti 20 i tng v phm vi nghiờn cu 20 Ni dung nghiờn cu 20 í ngha khoa hc v thc tin ca ti 20 úng gúp mi ca ti 20 Chng TNG QUAN TI LIU 21 1.1 GII THIU CHUNG V LIGNOCELLULOSE 21 1.1.1 Cellulose 22 1.1.2 Hemicellulose 23 1.1.3 Lignin 24 1.2 GII THIU CHUNG V CELLULASE 24 1.2.1 C ch hot ng ca cellulase v s thy phõn cellulose 24 1.2.2 Cu trỳc ca cellulase 26 1.2.2.1 Cu trỳc chung ca cellulase 26 1.2.2.2 Cellulosome thy phõn cellulose 27 1.3 CELLULASE CA VI KHUN 28 1.3.1 S lc v h cellulase 28 1.3.2 Cellulase ca vi khun v vi khun c 30 1.3.2.1 Cellulase vi khun v vi khun c a m 30 1.3.2.2 Cellulase vi khun v vi khun c a nhit 31 1.3.3 ng dng ca cellulase 31 1.3.3.1 ng dng ca cellulase cụng ngh sn xut bia, ru vang, ch bin thc phm v thc n 32 1.3.3.2 ng dng cellulase dt may 33 1.3.3.3 ng dng cellulase ch bin bt giy v giy 33 1.3.3.4 ng dng ca cellulase sn xut cn sinh hc 34 1.4 MI V H VI SINH VT RUT MI LIấN QUAN N S THY PHN LIGNOCELLULOSE 35 1.4.1 S lc v mi v a dng mi Vit Nam 35 1.4.2 H vi sinh vt rut mi bc thp 36 1.4.3 S tiờu húa lignocellulose ca mi 38 1.4.4 Tỡnh hỡnh nghiờn cu gen mó húa cellulase ca sinh vt ng rut mi bc thp 39 1.5 KHI QUT CHUNG V METAGENOMICS 41 1.5.1 Phng phỏp tip cn tỡm gen mi bng Metagenomics 42 1.5.2 Phõn lp gen t th vin DNA a h gen 43 1.5.3 Khai thỏc v phõn lp gen t d liu trỡnh t DNA a h gen 45 1.5.3.1 Phng phỏp gii trỡnh t ca mt s h thng mỏy th h mi 45 1.5.3.2 Tp hp cỏc read thnh contig 47 1.5.4 ng dng ca Metagenomics 50 1.5.4.1 ng dng ca Metagenomics khai thỏc gen mi v ỏnh giỏ s a dng vi sinh vt 50 1.5.4.2 Tim nng ng dng ca Metagenomics 53 Chng I TNG V PHNG PHP NGHIấN CU 55 2.1 I TNG, VT LIU, HểA CHT V THIT B MY MểC 55 2.1.1 i tng v vt liu 55 2.1.2 Húa cht v thit b mỏy múc 56 2.2 PHNG PHP NGHIấN CU 58 2.2.1 Cỏc phng phỏp vi sinh 59 2.2.2 Cỏc phng phỏp sinh hc phõn t 59 2.2.2.1 Tỏch chit DNA h gen ca mi 59 2.2.2.2 Phng phỏp thu nhn vi khun rut mi v tỏch chit DNA a h gen ca chỳng 59 2.2.2.3 Tinh sch DNA a h gen bng phng phỏp mỏng n (troughing) 60 2.2.2.4 Gii trỡnh t DNA a h gen bng mỏy gii trỡnh t th h mi HiSeq2000 ca Illumina 61 2.2.2.5 Phng phỏp bin np DNA plasmid vo vi khun E coli bng sc nhit 62 2.2.2.6 Phng phỏp tỏch chit DNA plasmid t t bo vi khun E coli 63 2.2.2.7 Phng phỏp ct v ghộp ni gen 63 2.2.2.8 Phng phỏp tinh sch DNA t gel agarose bng QIAquick Gel Extraction kit 64 2.2.2.9 K thut PCR 64 2.2.2.10 Thit k vector biu hin pET22b(+) mang gen egc 66 2.2.2.11 in di DNA trờn gel agarose 66 2.2.2.12 Phng phỏp biu hin gen 66 2.2.2.13 in di bin tớnh protein trờn gel polyacrylamide-SDS 67 2.2.2.14 in di protein trờn gel polyacrylamide khụng SDS 68 2.2.3 Cỏc phng phỏp húa sinh protein 68 2.2.3.1 Phng phỏp tinh ch protein bng sc kớ ỏi lc his-tag 68 2.2.3.2 nh lng protein bng phng phỏp Bradford 69 2.2.3.3 nh lng ng kh bng phng phỏp DNS 69 2.2.3.4 Phng phỏp xỏc nh hot tớnh endoglucanase 70 2.2.3.5 Phng phỏp xỏc nh hot tớnh -glucosidase v -xylosidase 71 2.2.3.6 Xỏc nh nh hng ca nhit , pH, cỏc ion kim loi v mt s húa cht lờn hot tớnh endoglucanase 72 2.2.3.7 Xỏc nh bn ca enzyme 72 2.2.3.8 Xỏc nh thụng s ng hc ca enzyme 72 2.2.4 Cỏc phng phỏp tin sinh hc v x lý s liu bng phn mm sinh hc 73 2.2.4.1 Phõn tớch trỡnh t DNA a h gen vi khun rut mi 73 2.2.4.2 So sỏnh trỡnh t ORF ca d liu DNA a h gen vi CSDL ca NCBI 74 2.2.4.3 Thit k mi bng phn mm FastPCR 75 2.2.4.4 Kim tra v trớ ca cỏc enzyme hn ch trờn gen quan tõm bng phn mm trc tuyn RestrictionMapper 75 2.2.4.5 Chuyn mó trỡnh t DNA sang trỡnh t axit amin bng chng trỡnh dch mó ExPASy 75 2.2.4.6 Xõy dng cõy phỏt sinh loi ca loi mi nghiờn cu vi cỏc loi mi khỏc bng phn mm Genedoc v MEGA5 75 2.2.4.7 D oỏn cu trỳc ca EGC bng phn mm Phyre2 76 Chng KT QU V THO LUN 77 3.1 KT QU NH LOI MI NGHIấN CU BNG PHNG PHP PHN T 77 3.1.1 Tỏch chit DNA h gen ca mi 79 3.1.2 PCR khuch i on DNA ca gen mó húa RNA ribosome 16S ti th mi 79 3.1.3 Phõn tớch sn phm PCR 76 3.2 TCH CHIT, C V PHN TCH TRèNH T DNA A H GEN VI KHUN RUT MI C gestroi 86 3.2.1 Tỏch chit v tinh sch DNA a h gen vi khun rut mi C gestroi 86 3.2.2 c v phõn tớch trỡnh t DNA a h gen vi khun rut mi C gestroi 87 3.2.2.1 Tp hp trỡnh t v xỏc nh gen 87 3.2.2.2 a dng vi sinh vt rut mi C gestroi 90 3.3 GEN M HểA ENZYME THU PHN CELLULOSE CA VI KHUN RUT MI C gestroi 96 3.3.1 D oỏn chc nng gen ca DNA a h gen vi khun rut mi C gestroi 96 3.3.2 Gen mó húa enzyme phõn hy cellulose 98 3.3.3 La chn ORF cellulase biu hin 100 3.4 TCH DếNG GEN egc 104 3.4.1 Trỡnh t ORF GL0130684 105 3.4.2 Khuch i gen egc 105 3.4.3 Ghộp ni sn phm khuch i gen egc vo vector tỏch dũng pJET1.2/blunt 106 3.4.4 Bin np sn phm ghộp ni vo t bo E coli DH10b 107 3.4.5 Ct kim tra plasmid tỏi t hp bng enzyme hn ch 108 3.4.6 Phõn tớch trỡnh t gen wegc phõn lp c t DNA a h gen vi khun rut mi C gestroi 108 3.4.7 Khuch i gen egc khụng cha tớn hiu tit t khuụn pJET-wegc 111 3.4.8 Thit k vector biu hin gen egc 111 3.4.8.1 Ghộp ni gen egc vo vector biu hin 111 3.4.8.2 Ct kim tra plasmid tỏi t hp pET22-egc 113 3.5 BIU HIN GEN egc TRONG VI KHUN E coli BL21(DE3) 114 3.5.1 Chn dũng biu hin gen egc t bo E coli BL21(DE3) 114 3.5.2 nh hng ca nhit n s biu hin gen egc t bo E coli BL21(DE3) 116 3.5.3 nh hng ca nng IPTG n hiu qu cm ng 117 3.5.4 in di v kim tra hot tớnh endoglucanase ca EGC 119 3.5.5 Tinh ch protein EGC bng ct sc kớ ỏi lc His-tag 120 3.5.6 Tớnh c hiu c cht ca EGC 124 3.5.7 nh hng ca nhit n hot tớnh endoglucanase ca EGC 126 3.5.8 nh hng ca pH n hot tớnh ca EGC 127 3.5.9 bn nhit ca EGC 128 3.5.10 nh hng ca mt s ion kim loi v húa cht lờn hot tớnh ca EGC 128 3.5.11 c im ng hc ca EGC 132 KT LUN V KIN NGH 135 TI LIU THAM KHO 138 DANH MC K HIU V CH VIT TT Tờn vit tt BglB BglF BglG Tờn ting Anh Beta-glucosidase B Beta-glucosidase F Beta-glucosidase G BLAST Basic Local Alignment Search Tool bp BSA Base pair Bovine serum albumin BWA Burrows-Wheeler Aligner CD Carbohydrate binding domain Catalytic domain cDNA Complementary DNA CBD Cel12A Cel45A (EGV) Cel48A Cel5A Cel6A (CBHII) Cel6B (EGVI) Cel7A (CBHI) Tờn ting Vit Beta-glucosidase B Beta-glucosidase F Beta-glucosidase G Cụng c so sỏnh mc tng ng v trỡnh t nucleotide/axit amin trc tuyn ca NCBI Cp base Albumin huyt bũ Phn mm kim tra cỏc sai lch nh quỏ trỡnh gii trỡnh t cỏc on DNA, cng nh quỏ trỡnh hp so vi h gene tham kho ln Vựng liờn kt vi carbohydrate Vựng xỳc tỏc DNA c tng hp t khuụn mRNA nh enzyme phiờn mó ngc reverse transcriptase Endoglucanase glycoside hydrolase family 12 Endoglucanase glycoside hydrolase family 45 Exoglucanase glycoside hydrolase family Endoglucanase glycoside hydrolase family cellobiohydrolase cel6A (cellobiohydrolase II) Endoglucanase thuc h 12 Endoglucanase thuc h 45 Exoglucanase thuc h 48 Endoglucanase thuc h GH Cellobiohydrolase II (exoglucanase II) thuc h GH6 Endoglucanase EGVI Endoglucanase thuc h GH Cellobiohydrolase cel7A (Cellobiohydrolase I) Cellobiohydrolase I (exoglucanase II) thuc h GH7 10 degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes", Appl Environ Microbiol 76(12), pp 38183824 [18] Carson M., Johnson D.H., McDonald H., Brouillette C and Delucas L.J (2007), "His-tag impact on structure", Acta Crystallogr D Biol Crystallogr 63(Pt 3), pp 295301 [19] Chien-Huang L., Hsing-Ren W and Tsong-Rong Y (2012), "Cloning, purification, and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494", Molecules 17, pp 97749789 [20] Cho M.-J., Kim Y.-H., Shin K., Kim Y.-K., Kim Y.-S and Kim T.-J (2010), "Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: low endo-beta-1,4-glucanase activity", Biochem Biophys Res Commun 395(3), pp 432435 [21] Cole J.R., Wang Q., Cardenas E., Fish J., Chai B., Farris R.J., Kulam-SyedMohideen A.S., McGarrell D.M., Marsh T., Garrity G.M and Tiedje J.M (2009), "The ribosomal database project: improved alignments and new tools for rRNA analysis", Nucleic Acids Res 37(Database issue), pp D141145 [22] Coleman J., Inukai M and Inouye M (1985), "Dual functions of the signal peptide in protein transfer across the membrane", Cell 43(1), pp 351360 [23] Costa-Leonardo A.M and Haifig I (2014), Termite communication during different behavioral activities Biocommunication of Animals G Witzany, ed Springer Netherlands, pp 161190 [24] Culligan E.P., Sleator R.D., Marchesi J.R and Hill C (2014), "Metagenomics and novel gene discovery: promise and potential for novel therapeutics" Virulence 5(3), pp 399412 [25] Dai X., Zhu Y., Luo Y., Song L., Liu D., Liu L., Chen F., Wang M., Li J., Zeng X., Dong Z., Hu S., Li L., Xu J., Huang L and Dong X (2012), "Metagenomic insights into the fibrolytic microbiome in yak rumen", PLoS ONE, 7(7), pp e40430 [26] Dashtban M., Maki M., Leung K.T., Mao C and Qin W (2010), "Cellulase activities in biomass conversion: measurement methods and comparison", Crit Rev Biotechnol 30(4), pp 302309 [27] Dietrich C., Kohler T and Brune A (2014), "The cockroach origin of the termite gut microbiota: Patterns in bacterial community structure reflect major evolutionary events", Appl Environ Microbiol 80(7), pp 22612269 140 [28] Dimitriu (2005), Hydolysis of celulose and hemicellulose Polysaccharides structural diversity and fuctionnal versatility second edition Marcel Dekker [29] Doi R.H and Kosugi A (2004), "Cellulosomes: plant-cell-wall-degrading enzyme complexes", Nat Rev Microbiol 2(7), pp 541551 [30] Do T.H., Nguyen T.T., Nguyen T.N., Le Q.G., Nguyen C., Kimura K and Truong N.H (2014), "Mining biomass-degrading genes through Illuminabased de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam", J Biosci Bioeng 118(6), pp 665671 [31] Duan C.-J., Xian L., Zhao G.-C., Feng Y., Pang H., Bai X.-L., Tang J.-L., Ma Q.-S and Feng J.-X (2009), "Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens", J Appl Microbiol 107(1), pp 245256 [32] Eichhorn S.J., Dufresne A., Aranguren M., Marcovich N.E., Capadona J.R., Rowan S.J., Weder C., Thielemans W., Roman M., Renneckar S., Gindl W., Veigel S., Keckes J., Yano H., Abe K., Nogi M., Nakagaito A.N., Mangalam A., Simonsen J., Benight A.S., Bismarck A., Berglund L.A and Peijs T (2010), "Review: current international research into cellulose nanofibres and nanocomposites", J Mater Sci 45(1), pp 133 [33] Estela R and Luis J (2013), Hydrolysis of biomass mediated by cellulases for the production of sugars Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization A Chandel, ed InTech [34] Feng Y., Duan C.-J., Pang H., Mo X.-C., Wu C.-F., Yu Y., Hu Y.-L., Wei J., Tang J.-L and Feng J.-X (2007), "Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases", Appl Microbiol Biotechnol 75(2), pp 319328 [35] Fujita A., Hojo M., Aoyagi T., Hayashi Y., Arakawa G., Tokuda G and Watanabe H (2010), "Details of the digestive system in the midgut of Coptotermes formosanus Shiraki" J Wood Sci 56(3), pp 222226 [36] Georgiou G and Valax P (1996), "Expression of correctly folded proteins in Escherichia coli" Curr Opin Biotechnol 7(2), pp 190197 141 [37] Ge W., Xiaowen Z., Keke W., Fanglin P and Linsong W (2012), "The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals", Adv Biol Chem 2(4), pp 390395 [38] Gill S.R., Pop M., DeBoy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M and Nelson K.E (2006), "Metagenomic analysis of the human distal gut microbiome", Science 312(5778), pp 13551359 [39] Gớrio F.M., Fonseca C., Carvalheiro F., Duarte L.C., Marques S and Bogelukasik R (2010), "Hemicelluloses for fuel ethanol: A review", Bioresour Technol 101(13), pp 47754800 [40] Glenn T.C (2011), "Field guide to next-generation DNA sequencers", Mol Ecol.Resour 11(5), pp 759769 [41] Guo Y., Zhu N., Zhu S and Deng C (2007), "Molecular phylogenetic diversity of bacteria and its spatial distribution in composts", J Appl Microbiol 103(4), pp 13441354 [42] Haft D.H., Selengut J.D and White O (2003), "The TIGRFAMs database of protein families", Nucl Acids Res 31(1), pp 371373 [43] Hahn-Họgerdal B., Galbe M., Gorwa-Grauslund M.F., Lidộn G and Zacchi G (2006), "Bio-ethanol the fuel of tomorrow from the residues of today", Trends Biotechnol 24(12), pp 549556 [44] Handelsman J (2004), "Metagenomics: Application of genomics to uncultured microorganisms", Microbiol Mol Biol Rev 68(4), pp 669685 [45] Hanh T.V., Hien N.T., Yen N.H and Huyen T.T (2010), Diversity of termite species in Vietnam In: The seventh conference of the pacific rim termite research group Singapore [46] Harnpicharnchai P., Thongaram T., Sriprang R., Champreda V., Tanapongpipat S and Eurwilaichitr L (2007), "An efficient purification and fractionation of genomic DNA from soil by modified troughing method", Lett Appl Microbiol 45(4), pp 387391 [47] Henne A., Daniel R., Schmitz R.A and Gottschalk G (1999), "Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate", Appl Environ Microbiol 65(9), pp 39013907 142 [48] He S., Ivanova N., Kirton E., Allgaier M., Bergin C., Scheffrahn R.H., Kyrpides N.C., Warnecke F., Tringe S.G and Hugenholtz P (2013), "Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites", PLoS ONE 8(4), pp e61126 [49] Hess M., Sczyrba A., Egan R., Kim T.-W., Chokhawala H., Schroth G., Luo S., Clark D.S., Chen F., Zhang T., Mackie R.I., Pennacchio L.A., Tringe S.G., Visel A., Woyke T., Wang Z and Rubin E.M (2011), "Metagenomic discovery of biomass-degrading genes and genomes from cow rumen", Science 331(6016), pp 463467 [50] Hogan M.E., Schulz M.W., Slaytor M., Czolij R.T and OBrien R.W (1988), "Components of termite and protozoal cellulases from the lower termite, Coptotermes lacteus froggatt", Insect Biochem 18(1), pp 4551 [51] Hongoh Y (2010), "Diversity and genomes of uncultured microbial symbionts in the termite gut", Biosci Biotechnol Biochem 74(6), pp 11451151 [52] Hongoh Y., Deevong P., Inoue T., Moriya S., Trakulnaleamsai S., Ohkuma M., Vongkaluang C., Noparatnaraporn N and Kudo T (2005), "Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host", Appl Environ [53] [54] [55] [56] Microbiol 71(11), pp 65906599 Hongoh Y., Ohkuma M and Kudo T (2003), "Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae)", FEMS Microbiol Ecol 44(2), pp 231242 Hongoh Y., Yuzawa H., Ohkuma M and Kudo T (2003), "Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment", FEMS Microbiol Lett 221(2), pp 299304 Huson D.H., Auch A.F., Qi J and Schuster S.C (2007), "MEGAN analysis of metagenomic data" Genome Res 17(3), pp 377386 Huson D.H., Richter D.C., Mitra S., Auch A.F and Schuster S.C (2009), "Methods for comparative metagenomics" BMC Bioinformatics 10(Suppl 1), pp S12 [57] Iida T., Ohkuma M., Ohtoko K and Kudo T (2000), "Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists" FEMS Microbiol Ecol 34(1), pp 1726 143 [58] Immanuel G., Dhanusha R and Palavesam P.P and A (2006), "Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment", IJEST 3(1), pp 2534 [59] Inoue T., Moriya S., Ohkuma M and Kudo T (2005), "Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus", Gene 349, pp 6775 [60] Jabbar A., Rashid M.H., Javed M.R., Perveen R and Malana M.A (2008), "Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition", J Ind Microbiol Biotechnol 35(6), pp 515524 [61] Jứrgensen H., Kristensen J.B and Felby C (2007), "Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities", Biofuels Bioprod Bioref 1(2), pp 119134 [62] Joshi B., Bhatt M.R., Sharma D., Joshi J., Malla R and Sreerama L (2011), "Lignocellulosic ethanol production: current practices and recent developments", Biotechnol Mol Biol Rev 6(8), pp 172182 [63] Jurkowski A., Reid A.H and Labov J.B (2007), "Metagenomics: A Call for Bringing a New Science into the Classroom (While Its Still New)", CBE Life Sci Educ 6(4), pp 260265 [64] Kambhampati S and Smith P.T (1995), "PCR primers for the amplification of four insect mitochondrial gene fragments", Insect Mol Biol, 4(4), pp 233236 [65] Kato S., Haruta S., Cui Z.J., Ishii M and Igarashi Y (2004), "Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria" FEMS Microbiol Ecol 51(1), pp 133142 [66] Kato S., Haruta S., Cui Z.J., Ishii M., Yokota A and Igarashi Y (2004), "Clostridium straminisolvens sp nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community", Int J Syst Evol Microbiol 54(6), pp 20432047 [67] Kennedy J., Marchesi J.R and Dobson A.D (2008), "Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments", Microb Cell Fact 7, pp 27 144 [68] Kửnig H and Varma A (2006), Cellulose digestion in the termite gut Intestinal Microorganisms of Termites and Other Invertebrates Springer Science & Business Media, pp 225227 [69] Kudo T (2009), "Termite-microbe symbiotic system and its efficient degradation of lignocellulose", Biosci Biotechnol Biochem 73(12), pp 25612567 [70] Kuhad R.C., Gupta R and Singh A (2011), "Microbial cellulases and their industrial applications", Enzyme Res 2011, pp e280696 [71] Kumar S., Mishra B.K and Subramania P (2011), Biotechnological applications of microbial cellulases Cellulase: Types and action, mechansim, and use Nova Science Pub Inc [72] van der Lelie D., Taghavi S., McCorkle S.M., Li L.-L., Malfatti S.A., Monteleone D., Donohoe B.S., Ding S.-Y., Adney W.S., Himmel M.E and Tringe S.G (2012), "The metagenome of an anaerobic microbial community decomposing poplar wood chips", PLoS ONE 7(5), pp e36740 [73] Li C.-H., Wang H.-R and Yan T.-R (2012), "Cloning, purification, and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494", Molecules 17(8), pp 97749789 [74] Li L., Frửhlich J and Kửnig H (2006), Cellulose digestion in the termite gut Intestinal microorganisms of termites and other invertebrates P.D.H Kửnig and P.D.A Varma, eds Springer Berlin Heidelberg 221241 [75] Lineweaver H and Burk D (1934), "The determination of enzyme dissociation constants", J Am Chem Soc 56(3), pp 658666 [76] Lin L., Kan X., Yan H and Wang D (2012), "Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains", Electron J Biotechnol 15(3) [77] Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L and Law M (2012), "Comparison of next-generation sequencing systems", Biomed Res Int 2012,pp e251364 [78] Lu S.-C and Lin S.-C (2012), "Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers", Enzyme Microb Technol 50(1), pp 6570 145 [79] Mahmoud Y.A.-G and Mohamed T.M (2011), Cellulases uses or application cellulase: Types and action, mechansim, and use Nova Science Pub Inc, pp.211231 [80] Maki M., Leung K.T and Qin W (2009), "The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass", Int J Biol Sci 5(5), pp 500516 [81] Marston F.A (1986), "The purification of eukaryotic polypeptides synthesized in Escherichia coli", Biochem J 240(1), pp 112 [82] Martớnez-Alonso M., Gonzỏlez-Montalbỏn N., Garcớa-Fruitús E and Villaverde A (2009), "Learning about protein solubility from bacterial inclusion bodies", Microb Cell Fact 8(1), pp [83] Martớnez-Alonso M., Gonzỏlez-Montalbỏn N., Garcớa-Fruitús E and Villaverde A (2008), "The functional quality of soluble recombinant polypeptides produced in Escherichia coli is defined by a wide conformational spectrum", Appl Environ Microbiol 74(23), pp 74317433 [84] Martins L.F., Antunes L.P., Pascon R.C., de Oliveira J.C.F., Digiampietri L.A., Barbosa D., Peixoto B.M., Vallim M.A., Viana-Niero C., Ostroski E.H., Telles G.P., Dias Z., da Cruz J.B., Juliano L., Verjovski-Almeida S., da Silva A.M and Setubal J.C (2013), "Metagenomic analysis of a tropical composting operation at the Sóo Paulo zoo park reveals diversity of biomass degradation functions and organisms", PLoS ONE, 8(4), pp e61928 [85] Mattộotti C., Haubruge E., Thonart P., Francis F., De Pauw E., Portetelle D and Vandenbol M (2011), "Characterization of a new -glucosidase/xylosidase from the gut microbiota of the termite (Reticulitermes santonensis)", FEMS Microbiol Lett 314(2), pp 147157 [86] Mattộotti C., Thonart P., Francis F., Haubruge E., Destain J., Brasseur C., Bauwens J., De Pauw E., Portetelle D and Vandenbol M (2011), "New glucosidase activities identified by functional screening of a genomic DNA library from the gut microbiota of the termite Reticulitermes santonensis", Microbiol Res 166(8), pp 629642 [87] McGavin M and Forsberg C.W (1988), "Isolation and characterization of endoglucanases and from Bacteroides succinogenes S85", J Bacteriol 170(7), pp 29142922 146 [88] Miller G.L (1959), "Use of dinitrosalicylic acid reagent for determination of reducing sugar", Anal Chem 31(3), pp 426428 [89] Miller G.L., Blum R., Glennon W.E and Burton A.L (1960), "Measurement of carboxymethylcellulase activity", Anal Biochem 1(2), pp 127132 [90] Mitra S., Rupek P., Richter D.C., Urich T., Gilbert J.A., Meyer F., Wilke A and Huson D.H (2011), "Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG", BMC Bioinformatics 12(Suppl 1), pp S21 [91] Morana A., Maurelli L., Ionata E., La Cara F and Ross M (2011), Cellulose from fungi and bacteria and their biotechnological applications Cellulase: types and action, mechansim, and use Nova Science Pub Inc, pp 180 [92] Nakashima K.I., Watanabe H and Azuma J.I (2002), "Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus", Cell Mol Life Sci 59(9), pp 15541560 [93] Noguchi H., Taniguchi T and Itoh T (2008), "MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes", DNA Res 15(6), pp 387396 [94] Ohkuma M (2008), "Symbioses of flagellates and prokaryotes in the gut of lower termites", Trends Microbiol 16(7), pp 345352 [95] Pang H., Zhang P., Duan C.-J., Mo X.-C., Tang J.-L and Feng J.-X (2009), "Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase", Curr Microbiol 58(4), pp 404408 [96] Partanen P., Hultman J., Paulin L., Auvinen P and Romantschuk M (2010), "Bacterial diversity at different stages of the composting process", BMC Microbiology 10(1), pp 94 [97] Pol D., Laxman R.S and Rao M (2012), "Purification and biochemical characterization of endoglucanase from Penicillium pinophilum MS 20", Indian J Biochem Biophys 49(3), pp 189194 [98] Powell S., Szklarczyk D., Trachana K., Roth A., Kuhn M., Muller J., Arnold R., Rattei T., Letunic I., Doerks T., Jensen L.J., von Mering C and Bork P (2012), "eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges", Nucleic Acids Res 40(D1), pp D284D289 147 [99] Prado H.F.A., Ribeiro Leite R.S., Bocchini Martins D.A., Gomes E and da Silva R (2011), Cellulolytic enzymesisolated from Brazilian areas: Production, characterization and applications Nova Science Pub Inc pp.183210 [100] Price N.C (1985), "The determination of Km values from lineweaver-burk plots", Biochem Educ 13(2), pp 8181 [101] Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.-M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Dorộ J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., Antolin M., Artiguenave F., Blottiere H., Borruel N., Bruls T., Casellas F., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Forte M., Friss C., Guchte M van de, Guedon E., Haimet F., Jamet A., Juste C., Kaci G., Kleerebezem M., Knol J., Kristensen M., Layec S., Roux K.L., Leclerc M., Maguin E., Minardi R.M., Oozeer R., Rescigno M., Sanchez N., Tims S., Torrejon T., Varela E., Vos W de, Winogradsky Y., Zoetendal E., Bork P., Ehrlich S.D and Wang J (2010), "A human gut microbial gene catalogue established by metagenomic sequencing", Nature 464(7285), pp 5965 [102] Radek R (1999), "Flagellates, bacteria, and fungi associated with termites: Diversity and function in nutrion - A review", Ecotropica 5, pp 183196 [103] Ratanakhanokchai K., Waeonukul R., Pason P., Tachaapaikoon C., Lay K., Sakka K., Kosugi A and Mori Y (2013), Paenibacillus curdlanolyticus strain B-6 multienzyme complex: A novel system for biomass utilization Biomass Now - Cultivation and Utilization M.D Matovic, ed InTech [104] Ray R.C (2011), Solid-state fermentation for production of microbial cellulase: An overview Cellulase: Types, actions, mechanisms and uses Nova Science Pub Inc, pp.135158 [105] Reece J.B., Urry L.A., Cain M.L., Wasserman steven B., Minorsky P.V and Jackson R.B (2011), Campbell biology Benjamin Cummings / Pearson [106] Rho M., Tang H and Ye Y (2010), "FragGeneScan: predicting genes in short and error-prone reads", Nucl Acids Res 38(20), pp e191e191 148 [107] Rubin E.M (2008), "Genomics of cellulosic biofuels", Nature 454(7206), pp 841845 [108] Sadhu S and Maiti T.K (2013), "Cellulase production by bacteria: A review", Br Microbiol Res J 3(3), pp 235258 [109] Sadhu S., Saha P., Sen S.K., Mayilraj S and Maiti T.K (2013), "Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung", SpringerPlus 2(1), pp 10 [110] Sambrook J and Russell D (2001), Molecular cloning: a laboratory manual Cold Spring Harbor Laboratory Press I (5.45.17) [111] Scharf M.E and Tartar A (2008), "Termite digestomes as sources for novel lignocellulases", Biofuels Bioprod Bioref 2(6), pp 540552 [112] Schiffmann R., Heine A., Klebe G and Klein C.D.P (2005), "Metal ions as cofactors for the binding of inhibitors to methionine aminopeptidase: a critical view of the relevance of in vitro metalloenzyme assays", Angew Chem Int Ed Engl 44(23), pp 36203623 [113] Sethi S., Datta A., Gupta B.L and Gupta S (2013), "Optimization of cellulase production from bacteria isolated from soil", ISRN 2013, pp e985685 [114] Shinzato N., Muramatsu M., Matsui T and Watanabe Y (2005), "Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus", Biosci Biotechnol Biochem 69(6), pp 11451155 [115] Shuangqi T., Zhenyu W., Ziluan F., Lili Z and Jichang W (2011), "Determination methods of cellulase activity", AJB, 10(37), pp 71227125 [116] Simon C., Storrs C., Frati F., Beckenbach A., Crespi B., Liu H and Flook B (1994), "Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers", Ann Ent Soc Am (87), pp 651701 [117] Singh P., Sharma L., Kulothungan S.R., Adkar B.V., Prajapati R.S., Ali P.S.S., Krishnan B and Varadarajan R (2013), "Effect of signal peptide on stability and folding of Escherichia coli thioredoxin", PLoS ONE 8(5), pp e63442 [118] Siqueira G., Bras J and Dufresne A (2010), "Cellulosic bionanocomposites: A review of preparation, properties and applications", Polymers 2(4), pp 728765 [119] Sleator R d., Shortall C and Hill C (2008), "Metagenomics", Lett Appl Microbiol 47(5), pp 361366 149 [120] Smith H.D (1937), "Structure of Cellulose", Ind Eng Chem 29(9), pp 10811084 [121] Streit W.R and Schmitz R.A (2004), "Metagenomics the key to the uncultured microbes", Curr Opin Microbiol 7(5), pp 492498 [122] Sukumaran R.K., Singhania R.R and Pandey A (2005), "Microbial cellulases -productions, applicatons and challenges", JSIR, 64(11), pp 832844 [123] Sun Y and Cheng J (2002), "Hydrolysis of lignocellulosic materials for ethanol production: a review", Bioresour Technol 83(1), pp 111 [124] Sydney O U and Shireesh P A (2004), Effect of buffer on protein comformational stability Phamaceutial Technology, pp 86113 [125] Szalanski A.L., Austin J.W., Scheffrahn R.H and Messenger M.T (2004), "Molecular diagnostics of the Formosan subterranean termite (Isoptera: Rhinotermitidae)", Fla Entomol 87, pp 145151 [126] Talebnia F., Karakashev D and Angelidaki I (2010), "Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation", Bioresour Technol 101(13), pp 47444753 [127] Tamaru Y and M A (2013), Lignocellulosic biomass utilization toward biorefinery using meshophilic Clostridial species Cellulose - biomass conversion J Kadla, ed InTech [128] Tamerler C.Y., ệnsan Z. and Kirdar B (1998), "Optimization of starting time and period of induction and inducer concentration in the production of the restriction enzyme EcoRI from recombinant Escherichia coli 294", Turk J Chem 22(3), pp 221226 [129] Tartar A., Wheeler M.M., Zhou X., Coy M.R., Boucias D.G and Scharf M.E (2009), "Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes", Biotechnol Biofuels 2(1), pp 25 [130] Tatusov R.L., Fedorova N.D., Jackson J.D., Jacobs A.R., Kiryutin B., Koonin E.V., Krylov D.M., Mazumder R., Mekhedov S.L., Nikolskaya A.N., Rao B.S., Smirnov S., Sverdlov A.V., Vasudevan S., Wolf Y.I., Yin J.J and Natale D.A (2003), "The COG database: an updated version includes eukaryotes", BMC Bioinformatics, 4(1), pp 41 150 [131] Tatusov R.L., Galperin M.Y., Natale D.A and Koonin E.V (2000), "The COG database: a tool for genome-scale analysis of protein functions and evolution", Nucleic Acids Res 28(1), pp 3336 [132] Terpe K (2003), "Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems", Appl Microbiol Biotechnol 60(5), pp 523533 [133] Thomas T., Gilbert J and Meyer F (2012), "Metagenomics - a guide from sampling to data analysis", Microb, Inform, Exp 2(1), pp [134] Thompson C.E., Beys-da-Silva W.O., Santi L., Berger M., Vainstein M.H., Guima raes J.A and Vasconcelos A.T.R (2013), "A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves", AMB Express 3, pp 65 [135] Tipayarom D and Oanh N.T.K (2007), "Effects from open rice straw burning emission on air quality in the Bangkok Metropolitan region", 33, pp 339345 [136] Todaka N., Moriya S., Saita K., Hondo T., Kiuchi I., Takasu H., Ohkuma M., Piero C., Hayashizaki Y and Kudo T (2007), "Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus", FEMS Microbiol Ecol 59(3), pp 592599 [137] Tokuda G and Watanabe H (2007), "Hidden cellulases in termites: revision of an old hypothesis", Biol Lett 3(3), pp 336339 [138] Tolia N.H and Joshua-Tor L (2006), "Strategies for protein coexpression in Escherichia coli", Nat Meth 3(1), pp 5564 [139] Trimble W.L., Keegan K.P., DSouza M., Wilke A., Wilkening J., Gilbert J and Meyer F (2012), "Short-read reading-frame predictors are not created equal: sequence error causes loss of signal", BMC Bioinformatics 13, pp 183 [140] Tripodi A.D., Austin J.W., Szalanski A.L., McKern J., Carroll M.K., Saran R.K and Messenger M.T (2006), "Phylogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) in California inferred from mitochondrial DNA sequences", Annals of the Entomological Society of America 99(4), pp 697 706 [141] Tyson G.W., Chapman J., Hugenholtz P., Allen E.E., Ram R.J., Richardson P.M., Solovyev V.V., Rubin E.M., Rokhsar D.S and Banfield J.F (2004), 151 "Community structure and metabolism through reconstruction of microbial genomes from the environment", Nature 428(6978), pp 3743 [142] Valenzuela L., Chi A., Beard S., Orell A., Guiliani N., Shabanowitz J., Hunt D.F and Jerez C.A (2006), "Genomics, metagenomics and proteomics in biomining microorganisms", Biotechnol Adv 24(2), pp 197211 [143] Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.-H and Smith H.O (2004), "Environmental genome shotgun sequencing of the Sargasso sea", Science 304(5667), pp 6674 [144] Vera A., Gonzỏlez-Montalbỏn N., Garcia-Fruitús E., Arớs A and Villaverde A (2006), "Low growth temperatures improve the conformational quality of aggregation prone recombinant proteins in both soluble and insoluble E coli cell fractions", Microb Cell Fact 5(Suppl 1), pp P7 [145] Wang C., Zhou X., Li S., Schwinghammer M., Scharf M.E., Buczkowski G and Bennett G.W (2009), "Survey and identification of termites (Isoptera: Rhinotermitidae) in Indiana", Annals of the Entomological Society of America 102(6), pp 10291036 [146] Wang W., Archbold T., Kimber M.S., Li J., Lam J.S and Fan M.Z (2012), "The porcine gut microbial metagenomic library for mining novel cellulases established from growing pigs fed cellulose-supplemented high-fat diets", J Anim Sci 90(Supplement 4), pp 400402 [147] Warnecke F., Luginbỹhl P., Ivanova N., Ghassemian M., Richardson T.H., Stege J.T., Cayouette M., McHardy A.C., Djordjevic G., Aboushadi N., Sorek R., Tringe S.G., Podar M., Martin H.G., Kunin V., Dalevi D., Madejska J., Kirton E., Platt D., Szeto E., Salamov A., Barry K., Mikhailova N., Kyrpides N.C., Matson E.G., Ottesen E.A., Zhang X., Hernỏndez M., Murillo C., Acosta L.G., Rigoutsos I., Tamayo G., Green B.D., Chang C., Rubin E.M., Mathur E.J., Robertson D.E., Hugenholtz P and Leadbetter J.R (2007), "Metagenomic and functional analysis of hindgut microbiota of a woodfeeding higher termite", Nature 450(7169), pp 560565 [148] Wenzhu T., Xiaoyi C., Hui Z., Fang C and Xianzhen L (2011), Limitation of the developmenttion cellulose hydrolysis by cellulase assay and search for the 152 true cellulase degrading crystalline celluose Cellulase: Types, actions, mechanisms and uses Nova Science Pub Inc, pp 233249 [149] Wood T and Johnson R.A (1986), The biology, physiology, and ecology of termites Praeger Publishers, pp 168 [150] Xia Y., Ju F., Fang H.H.P and Zhang T (2013), "Mining of novel thermostable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics", PLoS ONE 8(1), pp e53779 [151] Xie L., Zhang L., Zhong Y., Liu N., Long Y., Wang S., Zhou X., Zhou Z., Huang Y and Wang Q (2012), "Profiling the metatranscriptome of the protistan community in Coptotermes formosanus with emphasis on the lignocellulolytic system", Genomics 99(4), pp 246255 [152] Xu Y.-Q., Duan C.-J., Zhou Q.-N., Tang J.-L and Feng J.-X (2006), "Cloning and identification of cellulase genes from uncultured microorganisms in pulp sediments from paper mill effluent", Wei Sheng Wu Xue Bao 46(5), pp 783788 [153] Xu Z., Hansen M.A., Hansen L.H., Jacquiod S and Sứrensen S.J (2014), "Bioinformatic approaches reveal metagenomic characterization of soil microbial community", PLoS ONE 9(4), pp e93445 [154] Yamada R., Nakatani Y., Ogino C and Kondo A (2013), "Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporterco-expressing Saccharomyces cerevisiae", AMB Express 3(1), pp 34 [155] Yan X., Geng A., Zhang J., Wei Y., Zhang L., Qian C., Wang Q., Wang S and Zhou Z (2013), "Discovery of (hemi-) cellulase genes in a metagenomic library from a biogas digester using 454 pyrosequencing", Appl Microbiol Biotechnol 97(18), pp 81738182 [156] Yin L.-J., Huang P.-S and Lin H.-H (2010), "Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp YJ5", J Agric Food Chem 58(17), pp 98339837 [157] Zafar M., Ahmed S., Khan M.I.M and Jamil A (2014), "Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli", Mol Biol Rep 41(5), pp 32953302 [158] Zhang L., Fan Y., Zheng H., Du F., Zhang K., Huang X., Wang L., Zhang M and Niu Q (2013), "Isolation and characterization of a novel endoglucanase 153 from a Bursaphelenchus xylophilus metagenomic Library", PLoS ONE 8(12), pp e82437 [159] Zhang X.-Z and Zhang Y.-H.P (2013), Cellulases: characteristics,sources, production, and applications Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers S.-T Yang, H.A El-Enshasy, and N Thongchul, eds John Wiley & Sons, Inc, pp 131146 [160] Zhou X., Smith J.A., Oi F.M., Koehler P.G., Bennett G.W and Scharf M.E (2007), "Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes", Gene 395(1-2), pp 2939 Ti liu t internet [161] http://res.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf [162] http://res.illumina.com/documents/products/technotes/technote_denovo_assembly_ecoli.pdf [163] www.qiagene.com/handbooks [164] http://www.sigmaaldrich.com/catalog/product/sigma/b6916?lang=en®ion=VN [165] http://www.ncbi.nlm.nih.gov [166] http://www.neb.com/nebecomm/products/productm0254.asp [167] http://www.fermentas.com/en/products/all/molecular-cloning/kits/k123-clonejet-pcr-cloning [168] http://richsingiser.com/4402/Novagene%20pET%20system%20manual.pdf [169] http://www.biomol.de/dateien/infos_nr353.pdf [170] http://www.gene-quantification.com/bio-rad_rna_bulletin_5286.pdf 154 [...]... (2002), "Thành phần loài của khu hệ mối Vi t Nam", Báo cáo hội nghị côn trùng toàn quốc lần thức IV, NXB Nông nghiệp, Hà Nội, tr 225–228 Tài liệu tiếng Anh [3] [4] Altermann E and Klaenhammer T.R (2005), "PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database", BMC Genomics 6(1), pp 60 Amann R.I., Ludwig W and Schleifer K.H (1995), "Phylogenetic identification and... Costa-Leonardo A.M and Haifig I (2014), Termite communication during different behavioral activities Biocommunication of Animals G Witzany, ed Springer Netherlands, pp 161–190 [24] Culligan E.P., Sleator R.D., Marchesi J.R and Hill C (2014), "Metagenomics and novel gene discovery: promise and potential for novel therapeutics" Virulence 5(3), pp 399–412 [25] Dai X., Zhu Y., Luo Y., Song L., Liu D., Liu L.,... cellulolytic bacterium isolated from a cellulose- degrading bacterial community", Int J Syst Evol Microbiol 54(6), pp 2043–2047 [67] Kennedy J., Marchesi J.R and Dobson A.D (2008), "Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments", Microb Cell Fact 7, pp 27 144 [68] König H and Varma A (2006), Cellulose digestion in the termite... (2010), "Cellulosic bionanocomposites: A review of preparation, properties and applications", Polymers 2(4), pp 728–765 [119] Sleator R d., Shortall C and Hill C (2008), "Metagenomics" , Lett Appl Microbiol 47(5), pp 361–366 149 [120] Smith H.D (1937), "Structure of Cellulose" , Ind Eng Chem 29(9), pp 1081–1084 [121] Streit W.R and Schmitz R.A (2004), "Metagenomics the key to the uncultured microbes",... Chapman J., Hugenholtz P., Allen E.E., Ram R.J., Richardson P.M., Solovyev V.V., Rubin E.M., Rokhsar D.S and Banfield J.F (2004), 151 "Community structure and metabolism through reconstruction of microbial genomes from the environment", Nature 428(6978), pp 37–43 [142] Valenzuela L., Chi A., Beard S., Orell A., Guiliani N., Shabanowitz J., Hunt D.F and Jerez C.A (2006), "Genomics, metagenomics and proteomics... (2007), "Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes", Gene 395(1-2), pp 29–39 Tài liệu từ internet [161] http://res.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf [162] http://res.illumina.com/documents/products/technotes/technote_denovo_assembly_ecoli.pdf [163] www.qiagene.com/handbooks [164] http://www.sigmaaldrich.com/catalog/product/sigma/b6916?lang=en®ion=VN... activities identified by functional screening of a genomic DNA library from the gut microbiota of the termite Reticulitermes santonensis", Microbiol Res 166(8), pp 629–642 [87] McGavin M and Forsberg C.W (1988), "Isolation and characterization of endoglucanases 1 and 2 from Bacteroides succinogenes S85", J Bacteriol 170(7), pp 2914–2922 146 [88] Miller G.L (1959), "Use of dinitrosalicylic acid reagent... biomass-degrading genes through Illuminabased de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam", J Biosci Bioeng 118(6), pp 665–671 [31] Duan C.-J., Xian L., Zhao G.-C., Feng Y., Pang H., Bai X.-L., Tang J.-L., Ma Q.-S and Feng J.-X (2009), "Isolation and partial characterization of novel genes encoding acidic... PCR conditions for the analysis of 16S rRNA genes from a natural environment", FEMS Microbiol Lett 221(2), pp 299–304 Huson D.H., Auch A.F., Qi J and Schuster S.C (2007), "MEGAN analysis of metagenomic data" Genome Res 17(3), pp 377–386 Huson D.H., Richter D.C., Mitra S., Auch A.F and Schuster S.C (2009), "Methods for comparative metagenomics" BMC Bioinformatics 10(Suppl 1), pp S12 [57] Iida T., Ohkuma... novel thermostable cellulolytic genes from a thermophilic cellulose- degrading consortium by metagenomics" , PLoS ONE 8(1), pp e53779 [151] Xie L., Zhang L., Zhong Y., Liu N., Long Y., Wang S., Zhou X., Zhou Z., Huang Y and Wang Q (2012), "Profiling the metatranscriptome of the protistan community in Coptotermes formosanus with emphasis on the lignocellulolytic system", Genomics 99(4), pp 246–255 [152]

Ngày đăng: 30/08/2016, 15:32

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan