Green Chemistry and Processes

343 1.3K 0
Green Chemistry and Processes

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CHAPTER 1 Introduction The chemical industry accounts for 7% of global income and 9% of global trade, adding up to US$1.5 trillion in sales in 1998, with 80% of the world’s output produced by 16 countries. Production is projected to increase 85% by 2020 compared to the 1995 levels. This will be in pace with GDP growth in the United States, but at twice the per capita intensity. There will be strong market penetration by countries other than these 16, especially in commodity chemicals (OECD, 2001). Over the past half-century, the largest growth in volume of any category of materials has been in petrochemical-based plastics; and in terms of revenue it was pharmaceuticals. The latter, in the past two decades, has become number one. Overall production has shifted from predominantly commodity chemicals to fine and specialty chemicals, and now it is the life sciences. In the United States, the chemical industry contributes 5% of GDP and adds 12% of the value to GDP by all U.S. manufacturing industries, and it is also the nation’s top exporter (Lenz and Lafrance, 1996). This information speaks volumes about the importance of chemical industries in our day-to-day life and in supporting the nation’s economy. But it is plagued with several problems, such as running out of petrochemical feedstock, environmental issues, toxic discharge, depletion of nonrenewable resources, short-term and long-term health problems due to exposure of the public to chemicals and solvents, and safety concerns, among others. About 7.1 billion pounds of more than 650 toxic chemicals were released to the environment in 2000 by the United States 12 Green Chemistry and Processes alone (Environmental Protection Agency, 2002, www.epa.gov). This inventory represents only a small fraction of the approximately 75,000 chemicals in commercial use in the United States. The health and environmental effects of many chemicals are not known completely, even though some have been in use for several decades. The U.S. industry spends about $10 billion per year on environmental R&D. An ideal manufacturing process and an ideal product should have certain criteria, which are depicted in Fig. 1.1. An ideal process is simple, requires one step, is safe, uses renewable resources, is environmentally acceptable, has total yield, produces zero waste, is atom-efficient, and consists of simple separation steps. An ideal product requires minimum energy and minimum packaging, is safe and 100% biodegradable, and is recyclable. Generally, the public focuses on the process and product, paying very little attention to the “ideal user.” Figure 1.1 also lists an ideal user. An ideal user cares for the environment, uses minimal amounts, recycles, reuses, and understands a product’s environmental impact. In addition, an ideal user encourages “green” initiatives. FIGURE 1.1. Criteria for ideal product, process of manufacture and user. safe Renewable resources Environmental acceptability Zero 100 % yield waste One step Atomefficient Simple separation Minimum energy Minimum packaging safe 100% biodegradable Recyclable reusable Care for ecology Minimum usage recycle reuse Understand impact of all products on environment Ideal process Ideal product Ideal userIntroduction 3 Definition of Green Chemistry Green chemistry involves a reduction in, or elimination of, the use of hazardous substances in a chemical process or the generation of hazardous or toxic intermediates or products. This includes feedstock, reagents, solvents, products, and byproducts. It also includes the use of sustainable raw material and energy sources for this manufacturing process (Anastas and Warner, 1998; Anastas and Lankey, 2000, 2002; Anastas et al., 2001). A responsible user is also required to achieve the goals of green chemistry. The U.S. Presidential Green Chemistry Challenge, March 199

Green Chemistry and Processes This page intentionally left blank Green Chemistry and Processes Mukesh Doble Professor, Department of Biotechnology, India Institute of Technology, Madras, India Anil Kumar Kruthiventi Associate Professor, Department of Chemistry Sri Sathya Sai University, India AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK This book is printed on acid-free paper Copyright © 2007, Elsevier Inc All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Application submitted British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library ISBN: 978-0-12-372532-5 For information on all Academic Press publications visit our Web site at www.books.elsevier.com Printed in The United States of America 07 08 09 10 Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org Dedications I would like to dedicate this book to Geetha, Deepak, and Niharika —Mukesh I would like to dedicate this book to Bhagawan Sri Sathya Sai Baba —Anil Kumar This page intentionally left blank Contents Preface About the Authors xi xv Introduction Definition of Green Chemistry Twelve Principles of Green Chemistry Initiatives Taken Up by Countries Around the World The Green Chemistry Expert System How Green Chemistry Is Being Addressed Cross Interactions from Green Chemistry The Patent Scene The Measure of Greenness Safety and Risk Indices Mass and Energy Indices The Hierarchical Approach The Sustainable Process Index Conclusions References 3 9 11 11 15 16 17 21 22 23 Newer Synthetic Methods Introduction Use of Microwaves for Synthesis Electro-Organic Methods Elegant and Cost-Effective Synthetic Design Conclusions References 27 27 32 33 33 37 39 vii viii Contents Appendix 2.1 References Appendix 2.2 References 40 42 44 50 Catalysis and Green Chemistry Catalysis and Green Chemistry Conclusions References 53 54 66 66 Biocatalysis: Green Chemistry Introduction Advantages Within Industrial Applications Challenges to Make Biocatalysis Industrially Viable Process Design Future Trends References 69 69 70 71 82 83 89 Alternate Solvents Safer Solvents Green Solvents Water as Solvent Solvent-Free Conditions Ionic Liquids Conclusions References 93 94 97 98 99 99 103 104 Process and Operations Industry Perception Reactions Reactor Designs Micro Mixers Unit Operations Reactions with Separation Operations Other New Reactor Designs Process Integration Conclusions References 105 107 112 113 117 121 135 161 162 167 168 Alternate Energy Sources Greenhouse Gases Renewable Energy Future Sources of Renewable Energy 171 172 187 190 Contents ix Conclusions References 190 191 Inherent Safety Conflicts Due to Inherently Safe Designs Conclusions References 193 228 242 243 Industrial Examples The Pharmaceutical Industries and Green Chemistry The Polymer Industry Pesticides, Antifoulants, and Herbicides Solvents and Green Chemistry The Food and Flavor Industry The Maleic Anhydride Manufacturing Process Chelants The Surfactant Industry Industries in Need of Support to Go Green The Semiconductor Manufacture Industry The Dye Industry The Textile Industry The Tannery Industry The Sugar and Distillery Industries The Paper and Pulp Industry The Pharmaceutical Industry Conclusions References 245 252 264 270 274 277 280 281 283 284 284 285 286 288 288 289 291 293 294 Conclusions and Future Trends Energy Process Intensification Biotechnology: The Solution to All Problems Future Predictions Conclusions References 297 297 299 302 308 310 311 10 Index 313 312 Green Chemistry and Processes American Chemical Society, green chemistry teaching materials: http://center.acs.org/applications/greenchem/; http://www.acs.org/ education/greenchem/cases.html Anastasio, M and Viglia, A., Worldwide Biotech Process Overview on Industrial Biotechnology Part 2, The White Industry, Workshop, Biotech Process Overview, Milan, Italy, Feb 2006 Bachmann, R., Industrial biotechnology—New value creation opportunities McKinsey & Co Study, 2002 Cann, C M., Bringing state-of-the-art, applied, novel, green chemistry to the classroom by employing the Presidential Green Chemistry Challenge Awards, J Chem Educ., 76: 1639, 1999 Collins, T J., Introducing green chemistry in teaching and research, J Chem Educ., 72: 96, 1995 Dale, B E., “Greening” the chemical industry: Research and development priorities for biobased industrial products, J Chem Tech & Biotech., 78: 1093–1103, 2003 Green Chemistry Institute: http://www.lanl.gov/greenchemistry/ Green Chemistry Network: http://chemsoc.org/networks/gcn/ Jansen, M P., The cost of converting a gasoline-powered vehicle to propane: An excellent review problem for senior high school or introductory chemistry, Chem Educ., 77: 1578, 2000 Lakind, J S., Wilkins, A A., and Berlin Jr., C M., Environmental chemicals in human milk: A review of levels, infant exposures, and health, and guidance for future research, Toxicology and Appl Pharmacology, 198(2), 184–208, 2004 Lyons, G., Chemical Trespass: A Toxic Legacy, A WWF-UK Toxic Programme Report (July 1999), WWF-UK, Surrey, Gu71xR, UK Okkerse, H and Van Bekkum, H., From fossil to green Green Chemistry, 107–114, Apr 1999 Reed, S M and Hutchison, J E., Resources for incorporating green chemistry into teaching green chemistry in the organic teaching laboratory: An environmentally benign synthesis of adipic acid, J Chem Educ., 77: 1627, 2000 Royal Belgian Academy Council of Applied Science, Industrial Biotechnology and Sustainable Chemistry, Jan 2004 Royal Society of Chemistry, Green Chemistry: http://www.rsc.org/publishing/journals/gc/index.asp; http://www.rsc.org/publishing/journals/ gc/reviewsarchive/asp Singh, M M., Szafran, Z., and Pike, R M., Microscale chemistry and green chemistry: Complementary pedagogies, J Chem Educ., 76: 1684, 1999 U.S EPA’s Green Chemistry Program: http://www.epa.gov/ greenchemistry/ Warner, C John, S., Amy, Cannon, Kevin M Dye, Green Chemistry Environmental impact Assessment Review, 24: 775–799, 2004 Index Page numbers followed by “f” denote figures; those followed by “t” denote tables A Absorption towers, 127–131 ACE inhibitors, 256 Acetone–butanol–ethanol, 189 Adipic acid, 275 Advanced loop reactor, 145–146 AgraQuest, Inc., 272 Agricultural industry, 270–274 Aldol reaction, 88 Aldol–Tishchenko reaction, 118 Alkyl glycoside, 283 American Institute of Chemical Engineers, 13 Amidocarboxylation, 56f 7-Aminocephalosporanic acid, 257 7-Aminodeacetoxy cephalosporanic acid, 258–259 6-Aminopenicillinic acid, 63, 63f Annular tubular reactor, 156, 157f Antibiotics, 291–292 Antiferroelectric liquid crystals, 277 Antifoulants, 271 6-APA, 258 Approach temperature difference, 111 Arrhenius equation, 238 Asahi Kasei Corporation, 265 Ascorbic acid, 262 Atmosphere greenhouse gases in, 175 losses to, 219–220 Atom economy, Atom-economy factor, 54 Atom-efficiency, 55f Atomic power plants, 15 Atropine, 34f Attenuation principle, of inherent safety, 207–208 Auxiliary substances, 313 314 Index B Bacillus subtilis, 272 Batch hydrogenation processes, 138, 138f Batch process, 109, 120, 159– 161, 216 Batch reactor description of, 113 fed, 203 Baxenden Chemicals, 267 Bayer–Villiger oxidation, 119 Bayer–Villiger reaction, 63, 64f Benzene, 60–61, 275 Benzodiazepines, 255 Benzyl bromide, 31 Bhopal incident, 195, 196t Biginelli reaction, 37t BINAP, 59 Bioavailability, 242 Biocatalysis See also Catalysis applications of, 71t bioisosteric modifications, 75–76 classical reaction vs., 65 cyclodextrins, 79–81 description of, 62 homogenous, 77 importance of, 69–70 industrial viability of, 71–88 limitations of, 72f microorganisms, 70 in organic solvents, 76–79 process design, 82–83, 84t– 85t soil enrichment, 73–75 Biochemical reactions, 98 Biodiesel, 186–187 Bioethanol, 279–280 Biofuel, 188–189 Bioisosteric modifications, 75– 76 Biomass annual production of, 303 definition of, 187 gaseous, 190 hydrogen from, 183 liquid, 189–190 solid, 189 Biomimetic approach, 300–301 Biopesticides, 270–271 Bioremediation, 73 Biosynthesis See also Synthesis clean synthesis methods, 88 description of, 83 one-pot approach, 87–88 organic synthesis methods and, 88 Biotechnology in chemistry industry, 302 interdisciplinary approach, 302–303 market share increases in, 302 summary of, 310–311 Biotransformations history of, 69 stereospecific synthesis, 69 Boiling point, 205 Bubble columns, 131 Bucherer-Bergs reaction, 37t Buckman Laboratories, 290 Buss loop reactor, 159 C Caprolactam, 196, 269f, 269–270 Captopril, 256, 256f Carbon dioxide emissions of, 173–174 sinks for, 174, 176 supercritical, 101–102, 251– 252 Carboxylation, 55–56 Carcinogens, 95 Index Cargill Dow, 266 Caro’s acid, 160, 160f Catalysis See also Biocatalysis characteristics of, 54 description of, in Hoeschst–Celanere process, 56 Mobil/Badger cumene process, 57, 57f stoichiometric reactions vs., 58 summary of, 66 Catalysts heterogeneous, 58 multifunctional, 300–301 oxidation, 300 Catalytic plate reactor, 150–151 Catechol, 65f Centrifuges, liquid–liquid, 133– 134 Chelants, 281–282 Chemical Exposure Index, 232, 233t Chemical industry See also Industrial examples gross domestic product contributions from, income generated by, public perception of, 310 scrutiny of, Chemical reactions See also Reaction(s) components of, 27–28, 28f description of, 27 diversity of, 93 enzymatic reactions vs., 70t hazard identification, 212– 216 ionic liquid uses, 100 kinetic activation of, 29–32, 31t 315 microwave-assisted, 32, 44– 50 multicomponent See Multicomponent reactions rapid, 216 sonochemical processes, 29– 32 substitution, 37–38 ultrasound-assisted, 29, 31, 40–41 Chemical reactor heat balance in, 217 with heat exchanger, 146–147 Chernobyl, 196, 211 Chip reactor, 119–120 Chiral molecules, 58 Chlorination process, 200–201 Chlorofluorocarbons, 101, 207, 246 Chlortetracycline, 292 Chromium, 288 Chymotrypsin, 78 Classical energy forms, 29 Clean synthesis methods, 88 Clofibric acid, 262–263 Cocaine, 34f Combinatorial chemistry, 301 Compact heat exchanger, 110, 122 Computer chip manufacturing, 284–285 Continuous process, 109, 158f, 159–161 Continuous stirred tank reactor, 202–205 Corrosion, 241 Covalent modification, 80t Cross-linked enzyme crystals, 64, 72, 293, 294f Crown ethers, 81–82 316 Index Cumene Mobil/Badger cumene process, 57, 57f production of, from benzene, 60–61 Cumulative indexes, 20 3-Cyanopyridine, 257 Cyclodextrins, 79–81 D Decomposition pH-dependent, 222 reactions associated with, 213 Deep reactive ion etching, 165 Degradation, Department of Energy, Dephosphorylation, 88 Derivatives, Derivatization, Diacylhydrazines, 271 Dies–Alder reactions, 98 Dilution, 208 Directed evolution, 75, 80t Disodium iminodiacetate, 273, 273f Distillation columns, 123–127 Distillery industry, 288–289 Dividing wall column, 123– 125, 124f Domino effects, 210–211 Dow, 245–246, 270 Drug discovery, 36–37 See also Pharmaceutical industry Du Pont, 245, 265–266 Dust, 226 Dye industry, 285–286 E Eco-efficiency, E-factor, 252 Electro-organic synthetic processes, 33 Elimination principle, of inherent safety, 205–206 Elimination reactions, 38 Energy alternate sources of biodiesel, 186–187 description of, 171–172 geothermal, 182–183 hydroelectricity, 181 hydrogen, 183–185 nuclear power, 185–186 ocean waves, 180–181 oil, 176–177 solar energy, 177–180 wind, 181–182, 187 classical, 29 future of, 297–299 global consumption of, 298–299 nonclassical, 28 nonrenewable sources of, 171 renewable biofuel, 188–189 description of, 187 future sources, 190 types, 187–188 Energy efficiency of process, 105–106 Energy indicators, 12–13, 16–17 Energy-based sustainability index, 17 Environment impact factors for, 14–15 research and development expenditures, technology effects on, 21–22 toxic chemicals released into, 1–2 Environmental Protection Agency, Index Environmental quoefficient factors, 54 Enzymatic reactions characteristics of, 71 chemical reactions vs., 70t crown ether effects on, 81–82 Epoxy phenolic molding compounds, 275 Error tolerance, 210 Esterification reaction, 141– 142, 142f Ethanol, 189 Ethyl lactate, 97–98, 274 Ethylene oxide, 206, 209 European Environmental Agency, Exothermic reactions, 218, 237 Explosiveness, 237 Extraction columns, 134–135 F Fault tree analysis, 234 Fed batch reactor, 203 Feedstock, 4, 275 Ferroelectric liquid crystals, 277 Fine particles, 226 Fire and Explosion Index, 232 Fire extinguishers, 275 Fischer–Tropsch catalyst, 151 Flame retardants, 275 Flammable materials description of, 216 liquids, 237 on-site inventory of, 221 Flash devolatilization, 125 Flexible semisolid transfer process, 163–164 Fluidized bed reactor, 161–162 FMEA, 233–234 Food and flavor industry, 277–280 317 Fossil fuels description of, 173 hydrogen from, 183 Fuel cells, 184–185 G G reactor, 126 Ganciclovir, 254–255 Gas evolution, 223 Gas phase hydrogenation process, 139f Gaseous biomass, 190 Gas-liquid absorber tower, 130f GCES See Green Chemistry Expert System GE Plastics, 247 Genetic engineering disadvantages of, 63 microbes, 64 Geothermal energy, 182–183 Gewald reaction, 37t Global warming, 173–174 Glycidyl ethers, 117–118, 118f Green chemistry agricultural applications of, 270–274 benefits of, 245 combinatorial chemistry and, 301 companies involved in, 11, 12t cross interactions from, 9–11 definition of, 3, 53 future of, 308–310 global initiatives for, 6–7 hierarchical approach, 17–20, 21t, 23 industrial examples of See Industrial examples international organizations participating in, levels of, 10 methods of, 318 Index patents, 11, 12t principles of, 3–6, 64, 95, 243f risk elimination by, 8–9 summary of, 22–23 teaching aids used in college education courses, 311 Green Chemistry Expert System, 7–9 Green Chemistry Institute, 10 Green power, 187 Green product manufacturing, 247f Green solvents, 97–98 Greenhouse gases creation of, 172–173 factors that affect atmospheric levels of, 175 increases in, 174–175 Kyoto Protocol provisions, 173 lifetime of, 176 methane, 174 types of, 173 water vapor, 174–175 Greenness environmental factors, 14–15 measures of, 11–14 process indicators for, 21t Gross domestic product, Groundwater depletion, 15 H Hantzsch-dihydropyridine synthesis reaction, 37t HAZAN, 236 Hazard(s) causes of, 197 consequences of, 193–195, 197–198 corrosion, 241 description of, 193 domino effects, 210–211 equipment status and, 211 flammable liquids as, 216 incorrect assembly and, 211 industrial examples of, 195–196 inherent safety process to avoid, 197 inventory-related, 221, 238 minimizing of, 197 noise as, 195 physiological effects of, 237 raw material purification and, 220 reduction methods for, 198 threshold limit value for, 237 Hazard identification, 212–219, 233–240 HAZOP, 234–236, 235t HCFC-22, 176 Heat exchanger chemical reactor cum, 146–147 compact, 110, 122 designs for, 121–123 plate, 121–122 schematic diagram of, 106f self-cleaning, 122f, 122–123 Heat of reaction, 212, 222 Heat pipes, 111, 111f Heat transfer coefficient, 213 Heikkilä’s method, 16 Herbicides, 273–274 High-G mass transfer unit, 128 Highly volatile solvents, 220 Hoeschst–Celanere process, 55–56, 56f “Hot finger” reactor design, 151–152, 152f Hydroelectric dams, 187 Hydroelectricity, 181 Index Hydrogen, 183–185 Hydrogen peroxide, 206–207, 276–277 Hydrogenation processes batch, 138, 138f gas phase, 139f liquid-phase, 139–140, 140f rate of, 140 resistances in, 141 trickle bed, 139f Hydrophobic borohydrides, 98 5-Hydroxybenzofurazan, 116 20-Hydroxyecdysone, 271 Hyperlipidemia-controlling drugs, 262–263 I Ibuprofen, 55, 248–251 Ideal manufacturing process, Ideal product, Ideal user, Impurities, 239 Industrial examples AgraQuest, Inc., 272 antifoulants, 270–274 Asahi Kasei Corporation, 265 Baxenden Chemicals, 267 Cargill Dow, 266 chelants, 281–282 distillery industry, 288–289 Dow, 245–246, 270 Du Pont, 245, 265–266 dye industry, 285–286 food and flavor industry, 277–280 GE Plastics, 247 herbicides, 273–274 Ibuprofen, 55, 248–251 Metabolix, Inc., 268–269 Mitsubishi Rayon, 267 Monsanto, 273 Nike, 245 319 paper and pulp industry, 289–290 Patagonia, 246 pesticides, 270–274 pharmaceutical industry See Pharmaceutical industry polymers, 264–270, 308 semiconductors, 284–285 Shaw Industries, 246 solvents, 274–277 sugar industry, 288–289 summary of, 293–294 surfactants, 283–284 tannery industry, 288 textile industry, 286–287 3M, 245–247 Industrial waste discharge, 6–7 Infrastructure, 18 Inherent safety See also Safety conflicts caused by, 228–230 considerations for, 199–201 cost of, 226–228 hazards See Hazard(s) history of, 196–197 parameters for, 236–238 principles attenuation/moderation, 207–208 containing/enclosing/ reinforcing, 209–210 domino effects, 210–211 ease of control, 212 elimination/substitution, 205–206 error tolerance, 210 intensification, 200 limitation of effects, 208–209 list of, 200–201 simplicity, 209 profit–risk model, 226–228 prototype index of, 236 summary of, 242–243 320 Index transportation-related issues, 219 Inherent security, 224–225 INSIDE Project, 240 Intensification principle, of inherent safety, 200 Inventory-related hazards, 221, 238 Ionic liquids, 78f, 99–101 ISO, 247 Isosteres, 75, 76f J Jones oxidation, 55f Just-in-time production, 208–209 K Kabachnik–Fields reaction, 37t Kalundborg model, 248, 248f Kindler thioamide synthesis reaction, 37t Kinetics, 222–223 Knorr synthesis, 120 Kraft pulping, 290 Kyoto Protocol, 173, 302 L Lactate ester solvents, 97 Landfill disposal of waste, 266–267 L-aspartame, 259–260 L-dopa, 261–262 Lewis acids, 56 Life cycle analysis/assessment, 247, 305–306, 311 Lignin, 289–290 Linoleum production, 143 Lipopeptide, 272f Liquid biomass, 189–190 Liquid salts, 100 Liquid–liquid biphasic systems, 96 Liquid–liquid centrifuges, 133–134 Liquid–liquid extraction columns, 134–135 Liquid–liquid extraction reactor, 136 Liquid-phase hydrogenation process, 139–140, 140f Loop reactor, 146f, 201f, 204 LY300164, 260–261, 261f M Maastricht Treaty, Maleic anhydride, 280–281 Mannich reaction, 37t Mass indicators, 12–13, 16–17 m-Chloroperoxybenzoic acid, 63 Meerwin–Ponndorf–Verly reduction, 57–58 Membrane processes, 131, 133 Menthol, 278–279, 279f Mercury, 181 Metabolix, Inc., 268–269 Metal oxide catalyst synthesis, 276 Methane co-permeation, 127 description of, 174 Methanol, 189 Methyl acetate, 137 Methyl ethyl ketone, 61 Methyl isobutyl ketone, 58 Methyl isocyanate, 160 Micro mixers, 117–118 Microbes, genetically engineered, 64 Microchannel reactor, 114, 114f Index Microfluidic reactor, 163–165 Micro-instruments, 166–167 Microorganisms, 70 Microreactors description of, 113–117, 120 illustration of, 106f narrow-channeled, 140–141 Microtechnology, 165 Microwave radiation reactor, 167, 168f Microwaves synthetic chemistry use of, 32 thermal reactions vs., 44–50 Miniature bubble column reactor, 119 Minimization principle, of inherent safety, 200 Mitsubishi Rayon, 267 Mobil/Badger cumene process, 57, 57f Moderation principle, of inherent safety, 207–208 Monobromobenzaldehyde, 159 Monsanto, 273 Multicomponent reactions definition of, 35–36 drug discovery uses of, 36–37 illustration of, 36f types of, 37t Multienzyme one-pot approach, 87–88 N Narrow-channeled microreactors, 140–141 Natural gas dehydration, 127, 128f Nike, 245 Nitric oxide, 133 Nitriles, 273, 274f Nitrous oxide, 176 321 Nobel Prize in chemistry, 10–11 Noise, as hazard, 195 Nonclassical energy forms, 28 Noncovalent derivatization, 301–302 Noncovalent modification, 80t Nongovernmental organizations, 310–311 Novozymes, 287 Nuclear power, 185–186 O Ocean thermal energy conversion, 190 Ocean waves, 180–181 Oil, 176–177 One-pot approach, 87–88 Operating costs, 224 Organic solvents, 76–79 Organic synthesis biosynthesis methods and, 88 challenges for, 86–87 description of, 83 Organotins, 271 Oscillating columns, 167 Oscillatory flow mixing reactor, 144–145 Oxidation, 87–88 Oxidation reagents and catalysts, 300 P Packed towers, 127 Paclitaxel, 263–264 Paper and pulp industry, 289–290 Particles, 226 Passerini reaction, 37t Patagonia, 246 322 Index Patents, 11, 12t Penicillin-G, 63, 63f, 258 Pervaporation description of, 131, 132f reaction cum, 136–137 Pesticides, 242, 270–274 Pharmaceutical industry ACE inhibitors, 256 7-aminocephalosporanic acid, 257 7-aminodeacetoxy cephalosporanic acid, 258–259 6-APA, 258 ascorbic acid, 262 benzodiazepines, 255 captopril, 256, 256f 3-cyanopyridine, 257 description of, 291–293 E-factor, 252–253 ganciclovir, 254–255 global production, 304, 304t hyperlipidemia-controlling drugs, 262–263 L-aspartame, 259–260 L-dopa, 261–262 LY300164, 260–261, 261f paclitaxel, 263–264 process cycle in, 306 product cycle in, 306 progesterone, 264 riboflavin, 255–256 sertraline, 254, 255f sildenafil citrate, 253, 253f–254f toxicity concerns, 18–19 vitamin B3, 256 pH-dependent decompositions, 222 Phosgene, 160, 200, 268 Phosphorylation, 87 Photochemical reactor, 165–166 Photo-initiation, 155 Photovoltaic devices, 178 p-Hydroxyacetophenone, 61, 61f Pinch analysis, 162 Plant reliability, 227 Plant-size reductions, 110 Plate heat exchangers, 121–122 Plate reactor, 114, 116f Pollution prevention, Polyether ether ketone, 147 Polyacrylic acid, 268 Polyaniline, 145 Polyhydroxyalkanoate, 268 Polyisobutylene succinic anhydride, 207 Polylactic acid, 266 Polymer industry, 264–270, 308 Polyurethanes, 267–268 Polyvinyl chloride, 266–267 Precipitative cum evaporative reactor, 136 Process batch, 109, 120, 159–161, 216 continuous, 109, 158f, 159–161 energy efficiency of, 105–106 flexible semisolid transfer, 163–164 green chemistry constraints on, 18 in linoleum production, 143–144 membrane, 131, 133 semi-batch, 216 telescoping of, 223–224 Process economics, 17 Process indicators, 19–20, 21t, 23 Process integration, 162–163 Process intensification advantages of, 106 barriers to, 112 Index benefits of, 107–108 challenges to, 299 Delphi study findings regarding, 108–111 description of, 162, 299 features of, 107 history of, 105 industry perception of, 107–112 multifunctional reagents, 300–301 plant-size reductions, 110 principles of, 106–107 product replacement, 299–300 reactions affected by, 112–113 schematic diagram of, 108f summary of, 167 Product green chemistry constraints on, 18 purities of, 18 recycle of, 23 toxicity concerns, 18–19 Product indicators, 19–20 Product replacement, 299–300 Profit–risk model, 226–228 Progesterone, 264 1,3-Propanediol, 265 Propene oxide, 62f, 276–277 Protein engineering, 70 Prototype index of inherent safety, 236 Pseudomonas cepacia, 79 Pseudomonas putida, 74 R Radioactive waste, 209–210 Raw materials global production of, 303– 304 purification of, 220 323 Reaction(s) See also Chemical reactions design considerations for, 216–219 esterification, 141–142, 142f exothermic, 218, 237 process intensification benefits for, 112–113 with separation operations, 135–138 stages of, 223–224 vapor phase, 215 Reaction contaminants, 214 Reaction cum pervaporation, 136–137 Reaction mass concentration, 222 Reaction mass efficiency, 19 Reaction pressure, 221 Reaction temperature, 221 Reactive distillation, 135–136 Reactor advanced loop, 145–146 annular tubular, 156, 157f batch, 113, 203 Buss loop, 159 catalytic plate, 150–151 chip, 119–120 continuous stirred tank, 202–205 diameter of, 217f fluidized bed, 161–162 G, 126 liquid–liquid extraction, 136 loop, 146f, 201f microchannel, 114, 114f microfluidic, 163–165 microreactor See Microreactors microwave radiation, 167, 168f miniature bubble column, 119 324 Index oscillatory flow mixing, 144–145 photochemical, 165–166 plate, 114, 116f precipitative cum evaporative, 136 rotating packed bed, 126f, 148–150 segmented flow tubular, 157, 158f semi-batch, 204–205 slug flow, 152f, 152–153 spinning disc, 153–156 tube inside another tube, 147–148 tubular, 203f, 203–204 Reactor designs hot finger, 151–152, 152f new types of, 161–162 safe types of, 201–212 Refineries, 304 Refrigeration systems, 207 Remediation, 306–307 Renewable energy biofuel, 188–189 description of, 187 future sources, 190 types, 187–188 Reverse micelles, 80t Reverse osmosis, 131 Rhamnolipids, 283 Riboflavin, 255–256 Risk definition of, 15 green chemistry used to eliminate, 8–9 reduction of, 197 safety and, 15–16 Risk assessment, 230–233 Risk control, 198–199 Risk priority number, 234 Rotating packed bed reactor, 126f, 148–150 RoundupTM, 273 Ruhrchemie–Rhône–Poulenc process, 96, 97f S Saccharomyces yeast, 65, 66f Safety See also Inherent safety human factors involved in, 240–241 molecular-level designs, 241–242 operating costs’ effect on, 224 risk and, 15–16 Safety assessment, 230–233 Safety audits, 233–234 Safety checks, 233–234 Safety Index, 239f, 239–240 Safety indices, 15–16, 16t Scale-up, 214 Security, inherent, 224–225 Segmented flow tubular reactor, 157, 158f Self-cleaning heat exchanger, 122f, 122–123 Semi-batch processes, 216 Semi-batch reactor, 204–205 Semiconductor industry, 284–285 Separation operations, reactions with, 135–138 Sertraline, 254, 255f Shaw Industries, 246 Sildenafil citrate, 253, 253f–254f Simplicity principle, of inherent safety, 209 Sinks, 174, 176 Slug flow reactor, 152f, 152–153 Soil enrichment applications for, 73–74 Index approach, 74–75 description of, 73 Solar energy, 177–180 Solar pond, 179 Solid biomass, 189 Solvent(s) applications of, 95f carcinogenic, 95 chlorofluorocarbon, 101 description of, 274 ethyl lactate, 97–98 green, 97–98 highly volatile, 220 lactate ester, 97 process operation uses of, 94 safer types of, 94–97, 96t selection criteria for, 95–96 summary of, 103–104 supercritical carbon dioxide, 101–102 water as, 98–99 Solvent-free systems, 99 Solventless reactions, 301 Sonochemical processes, 29–32 Sonochemical switching, 31, 32f Spinning disc reactor, 153–156 Stakeholders, 18 Stereospecific synthesis, 69 Stoichiometric reactions, 58 Strecker reaction, 37t Structure–activity relationships, 241–242 Styrene–butadiene rubber, 138 Substitution principle, of inherent safety, 205–206 Substitution reactions, 37–38 Sugar industry, 288–289 Sulfoxides, 102 Sulfurhexafluoride, 176 Sumitomo process, 269f Supercritical carbon dioxide, 101–102, 251–252 325 Supercritical water, 102–103 Surfactants, 283–284 Sustainable development definition of, 53 description of, 13 reduction and, 298f Sustainable metrics, 13–14 Sustainable process alternatives, 12 Sustainable process index, 21–22 Synthesis See also Biosynthesis design of, 33–37 microwave use in, 32 multicomponent reactions in See Multicomponent reactions solvent-free, 99 T Tannery industry, 288 Telescoping of processes, 223–224 Terephthalic acid, 102 Tetracycline, 292 Tetrafluoromethane, 176 Textile industry, 286–287 Thermal polyaspartate, 268 Thermodynamics, 222 Thiophene, 114–115, 115f 3M, 245–247 Threshold limit value, 237 Titanium silicate catalyst, 276 Toxicodynamics, 242 Transportation, 219 Tributylin oxide, 271 Trickle bed hydrogenation process, 139f Tropinone, 34f, 34–35 Tube inside another tube reactor, 147–148 326 Index Tubular reactor, 203f, 203–204 Type A reactions, 112–113 Type B reactions, 113 Type C reactions, 113 U Ugi reaction, 37t Ultrasound-assisted reactions, 29, 31, 40–41 Uranium, 185 U.S Bureau of Engraving, 274 U.S Presidential Green Chemistry Challenge, 3, V Vanillin, 278 Vapor phase reactions, 215 Vitamin B3, 256 W Waste considerations for, 225–226 from effluent plants, 292 landfill disposal of, 266–267 prevention of, 27 U.S production of, 306 Water accelerating effect of, 98 as solvent, 98–99 deoxygenated, 126 immiscibility of, 96 supercritical, 102–103 Water vapor, 174–175 Wave energy, 180–181 Weibull model, 228 Wind energy, 181–182, 187 Z Zeolites, 57, 57f–58f

Ngày đăng: 13/07/2016, 14:04

Từ khóa liên quan

Mục lục

  • Green Chemistry and Processes

  • Copyright page

  • Contents

  • Preface

  • About the Authors . . .

  • CHAPTER 1: Introduction

    • Definition of Green Chemistry

    • Twelve Principles of Green Chemistry

    • Initiatives Taken Up by Countries Around the World

    • The Green Chemistry Expert System

    • How Green Chemistry Is Being Addressed

    • Cross Interactions from Green Chemistry

    • The Patent Scene

    • The Measure of Greenness

    • Safety and Risk Indices

    • Mass and Energy Indices

    • The Hierarchical Approach

    • The Sustainable Process Index

    • Conclusions

    • References

    • CHAPTER 2: Newer Synthetic Methods

      • Introduction

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan