Luận án nghiên cứu tổng hợp và đặc trưng vật liệu mới, cấu trúc nano ứng dụng trong quang hóa xúc tác phân hủy thuốc nhuộm

146 646 0
Luận án nghiên cứu tổng hợp và đặc trưng vật liệu mới, cấu trúc nano ứng dụng trong quang hóa xúc tác phân hủy thuốc nhuộm

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MC LC LI CM N i LI CAM OAN ii DANH MC CC T VIT TT iii DANH MC CC HèNH V iv DANH MC CC BNG viii T VN CHNG TNG QUAN TI LIU 1.1 Vt liu graphen v ng dng x lý cht mu 1.1.1 Vt liu trờn c s graphen 1.1.2 Tõm hot ng ca graphen v graphen oxit 1.1.3 Cỏc phng phỏp tng hp graphen 1.1.3.1 Phng phỏp tỏch c hc 1.1.3.2 Phng phỏp epitaxy C ch phõn hy nhit C ch to mng graphen 1.1.3.3 Phng phỏp húa hc 11 1.2 Cht mu hu c v phng phỏp x lý 13 1.2.1 Gii thiu v ụ nhim cht mu hu c 13 1.2.1.1 Thuc nhum 14 1.2.1.2 Cỏc thụng s ỏnh giỏ nc thi dt nhum 15 1.2.2 Cỏc phng phỏp x lý thuc nhum hot tớnh nc thi dt nhum 1.2.2.1 Cỏc phng phỏp húa lý 17 21 Phng phỏp keo t Phng phỏp hp ph 1.2.2.3 Phng phỏp in húa 24 1.2.2.4 Phng phỏp húa hc 25 1.3 Phng phỏp oxi húa nõng cao (AOPs) 26 1.3.1 Gii thiu cỏc quỏ trỡnh oxi húa nõng cao 26 1.3.2 C s lý thuyt ca quỏ trỡnh Fenton 30 1.3.2.1 Quỏ trỡnh Fenton ng th 30 1.3.2.2 Quỏ trỡnh Fenton d th 32 1.3.2.3 Quỏ trỡnh Photo Fenton 33 1.3.2.4 Quỏ trỡnh ozon húa 34 1.3.3 Nhng yờu t nh hng n quỏ trỡnh Fenton v Photo Fenton 35 1.3.3.1 nh hng ca pH 35 1.3.3.2 nh hng ca nng H2O2 v t l Fe +/H2O2 35 1.3.3.3 nh hng ca cỏc anion vụ c 36 1.3.4 nh hng ca bc súng bc x (i vi quỏ trỡnh Photo Fenton) 1.3.4 Tỡnh hỡnh nghiờn cu v ỏp dng cỏc quỏ trỡnh oxi húa nõng cao hin 1.3.5 Cỏc h xỳc tỏc x lý cht mu hu c 36 36 38 1.3.5.1 Xỳc tỏc quang húa TiO2/ graphen 38 1.3.5.2 Xỳc tỏc quang húa composite oxit kim loi/graphen 40 1.3.5.3 Xỳc tỏc quang húa composit ion kim loi/graphen cú t tớnh 43 CHNG THC NGHIM V PHNG PHAP NGHIấN CU 45 2.1 Mc tiờu nghiờn cu 45 2.2 Thc nghim 45 2.2.1 Tng hp vt liu graphen oxit (GO) 45 2.2.2 Tng hp vt liu graphen oxit vi súng (GOVS) v graphen oxit siờu õm (GOSA) t graphen oxit (GO) 2.2.3 Tng hp h vt liu nano composit oxit kim loi Fe3O4-GO trờn c s Fe3O4 2.2.4 Tng hp h vt liu nano composit oxit kim loi CoFe2O4-GO trờn c s Fe3O4 bin tớnh 2.2.5 Tng hp h vt liu nano composit oxit kim loi ZnFe2O4-GO trờn c s Fe3O4 bin tớnh 2.2.6 Tng hp h vt liu nano composit oxit kim loi Fe0-Fe3O4-GO trờn c s Fe3O4 bin tớnh 2.2.7 Tng hp h vt liu nano composit oxit kim loi Fe(III)-GO trờn c s Fe3O4 bin tớnh 2.3 Phn ng Photo-Fenton 46 2.4 ng hc ca phn ng 53 2.5 Phng phỏp nghiờn cu 56 2.5.1 Phng phỏp nhiu x Rnghen (X-ray diffraction, XRD) 56 2.5.2 Phng phỏp ph hng ngoi FT-IR 57 46 47 49 50 51 51 2.5.3 Phng phỏp ph in t quang tia X (XPS) 59 2.5.4 Phng phỏp ph tỏn sc nng lng tia X 60 2.5.5 Phng phỏp hin vi in t truyn qua (TEM) v kớnh hin vi in t truyn qua phõn gii cao HR-TEM 2.5.6 Phng phỏp ng nhit hp ph- kh hp ph nitrogen (BET) 61 2.5.7 Phng phỏp ph hp th t ngoi v kh kin 64 2.5.8 Phng phỏp xỏc nh t tớnh ca vt liu bng t k mu rung (Vibrating Sample Magnetometer - VSM) CHNG KT QU V THO LUN 66 67 3.1 c trng ca vt liu graphen oxit v graphen tng hp c 67 3.1.1 Gin XRD ca graphen oxit v graphen 67 3.1.2 nh kớnh hin vi in t truyn qua phõn gii cao (HR-TEM) ca vt liu graphen oxit v graphen 3.1.3 Ph hng ngoi (FTIR) ca vt liu graphen oxit v graphen 68 69 3.1.4 Ph in t quang tia X (XPS) ca vt liu graphen oxit v graphen 71 3.2 c trng vt liu xỳc tỏc nano composit oxit kim loi graphen/graphen oxit 73 3.2.1 Gin XRD ca cỏc h xỳc tỏc nano composit oxit kim loi trờn graphen oxit v graphen 3.2.1.1 Gin XRD ca h vt liu xỳc tỏc Fe3O4-GO 73 73 3.2.1.2 Gin XRD ca h vt liu xỳc tỏc CoFe2O4-GO trờn c s Fe3O4 bin tớnh 3.2.1.3.Gin XRD ca h vt liu xỳc tỏc ZnFe2O4-GO trờn c s Fe3O4 bin tớnh 3.2.1.4 Gin XRD ca h vt liu xỳc tỏc Fe0-Fe3O4-GO trờn c s Fe3O4 bin tớnh 3.2.1.5 Gin XRD ca h vt liu lai Fe(III)-GO 3.2.2 nh HR-TEM ca cỏc h xỳc tỏc nano composit oxit kim loi trờn graphen v graphen oxit 3.2.2.1 nh HR-TEM ca h vt liu xỳc tỏc Fe3O4-GO 3.2.2.2 nh HR-TEM ca h vt liu xỳc tỏc CoFe2O4-GO trờn c s Fe3O4 bin tớnh 3.2.2.3 nh HR-TEM ca h vt liu xỳc tỏc ZnFe2O4-GO trờn c s 63 75 76 76 77 78 78 78 Fe3O4 bin tớnh 3.2.2.4 nh HR-TEM ca h vt liu xỳc tỏc Fe0-Fe3O4-GO trờn c s Fe3O4 bin tớnh 3.2.2.5 nh HR-TEM ca h vt liu xỳc tỏc nano composit oxit kim loi trờn c s Fe(III)-GO 3.2.3 Ph hng ngoi (FTIR) ca cỏc h xỳc tỏc nano composit oxit kim loi trờn graphen oxit 3.2.3.1 Ph hng ngoi (FTIR) ca h vt liu xỳc tỏc Fe3O4 GO 3.2.3.2 Ph hng ngoi (FTIR) ca h vt liu xỳc tỏc CoFe2O4 - GO trờn c s Fe3O4 bin tớnh 3.2.3.2 Ph hng ngoi (FTIR) ca h vt liu xỳc tỏc ZnFe2O4-GO trờn c s Fe3O4 bin tớnh 3.2.3.4 Ph hng ngoi (FTIR) ca h vt liu xỳc tỏc Fe0-Fe3O4-GO trờn c s Fe3O4 bin tớnh 3.2.3.5 Ph FTIR ca h vt liu xỳc tỏc nano composit oxit kim loi Fe(III)-GO 3.2.4 Ph in t quang tia X (XPS) ca cỏc h xỳc tỏc nano composit oxit kim loi graphen oxit 3.2.4.1 Ph XPS ca h vt liu xỳc tỏc Fe3O4-GO 3.2.4.2 Ph XPS ca h vt liu Fe0-Fe3O4-GO trờn c s Fe3O4 bin tớnh 3.2.4.3 Ph XPS ca h vt liu xỳc tỏc nano composit oxit kim loi Fe(III)-GO 3.2.5 Hp ph v kh hp ph Nit (BET) 3.2.5.1 Hp ph v kh hp ph Nit (BET) ca h vt liu xỳc tỏc Fe0-Fe3O4-GO v Fe3O4-GO 3.2.5.2 Hp ph v kh hp ph Nit (BET) ca h vt liu xỳc tỏc ZnFe2O4-GO 3.2.6 c trng t tớnh ca h xỳc tỏc nano composit oxit kim loi graphen oxit 3.2.6.1 ng cong t tr ca h vt liu Fe0-Fe3O4-GO v Fe3O4-GO 79 79 80 81 81 81 82 83 83 84 84 85 86 88 88 89 91 91 3.2.6.2 ng cong t tr ca h vt liu ZnFe2O4-GO 92 3.3 ỏnh giỏ hot tớnh xỳc tỏc, bn ca cỏc h vt liu nano composit oxi kim loi trờn graphen oxit 93 3.3.1 ỏnh giỏ hot tớnh ca h vt liu xỳc tỏc nano composit Fe3O4 GO 3.3.2 ỏnh giỏ hot tớnh ca h vt liu xỳc tỏc CoFe2O4-GO trờn c s Fe3O4 bin tớnh 3.3.3.ỏnh giỏ hot tớnh ca h vt liu xỳc tỏc ZnFe2O4-GO trờn c s Fe3O4 bin tớnh 3.3.4 ỏnh giỏ hot tớnh ca h vt liu xỳc tỏc Fe0-Fe3O4-GO trờn c s Fe3O4 bin tớnh 3.3.5 ỏnh giỏ hot tớnh ca h vt liu xỳc tỏc nano composit oxit kim loi Fe(III)-GO 3.3.6 Vai trũ ca cỏc tỏc nhõn phn ng Photo Fenton 3.3.6 ỏnh giỏ hiu qu quỏ trỡnh phõn hy thuc nhum hot tớnh RR195 ca cỏc loi xỳc tỏc Fe(III)-GO; Fe0-Fe3O4-GO; CoFe3O4-GO; ZnFe2O4-GO; Fe3O4-GO 3.4 Nghiờn cu cỏc iu kin nh hng n kh nng phõn hy thuc nhum hot tớnh RR195 trờn vt liu xỳc tỏc cú hot tớnh cao nht Fe0-Fe3O4-GO 3.4.1 nh hng pH n kh nng phõn hy thuc nhum hot tớnh RR195 trờn Fe0-Fe3O4-GO 3.4.2 nh hng ca nng H2O2 n quỏ trỡnh phõn hy thuc nhum hot tớnh RR195 trờn Fe0-Fe3O4-GO 3.4.3 nh hng ca nng thuc nhum hot tớnh RR195 ban u n quỏ trỡnh phõn hy trờn Fe0-Fe3O4-GO 3.5 ng hc ca quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy thuc nhum hot tớnh RR195 trờn mt s h xỳc tỏc KT LUN CHUNG 94 95 97 100 105 107 111 112 112 113 115 116 123 NHNG ểNG GểP MI CA LUN AN 125 DANH MC CAC BI BAO LIấN QUAN N LUN AN 126 TI LIU THAM KHO 127 T VN Ngy nay, vi s tin b ca khoa hc v cụng ngh, cỏc ngnh cụng nghip nh cụng nghip sn, dt, in, hoỏ du phỏt trin rt mnh m, ó tỏc ng tớch cc n s phỏt trin kinh t xó hi Tuy nhiờn, bờn cnh nhng li ớch m nú mang li thỡ nhng tỏc hi m cỏc ngnh cụng nghip ny gõy vi mụi trng l rt ỏng lo ngi Vit Nam ang tn ti mt thc trng l nc thi cụng nghip hu ht cỏc c s sn xut mi ch c x lý s b, thm thi trc tip mụi trng dn n mụi trng nc (k c nc mt v nc ngm) nhiu khu vc ang b ụ nhim nghiờm trng Thnh phn nc thi cụng nghip ca cỏc c s nh: dt may, cao su, giy, m phm, ch yu l cỏc cht mu, thuc nhum hot tớnh, cỏc ion kim loi nng, cỏc cht hu c, Trong ú cỏc cht mu thuc nhum cú tớnh tan cao nờn chỳng l tỏc nhõn chớnh gõy ụ nhim cỏc ngun nc v nh hng n sc khe ca ngi v cỏc sinh vt sng Nguy him hn na l thuc nhum nc thi rt khú phõn hy vỡ chỳng cú bn cao vi ỏnh sỏng, nhit v cỏc tỏc nhõn gõy oxi hoỏ Vỡ vy, bờn cnh vic nõng cao ý thc bo v mụi trng ca ngi, sit cht cụng tỏc qun lý mụi trng thỡ vic tỡm phng phỏp nhm loi b cỏc ion kim loi nng, cỏc hp cht mu hu c, thuc nhum hot tớnh c hi mụi trng nc cú ý ngha ht sc to ln Trong nhng nm gn õy ó cú nhiu cụng trỡnh nghiờn cu v s dng cỏc phng phỏp khỏc nhm x lý cỏc hp cht hu c c hi nc thi Tuy nhiờn, cỏc phng phỏp x lý nc thi truyn thng nh: phng phỏp c hc, phng phỏp sinh hc, phng phỏp húa lý, u khụng x lý c hoc x lý khụng trit cỏc cht ụ nhim ny cú th gii quyt trit cỏc loi cht mu cú nc thi khú phõn hy thỡ phng phỏp oxi húa nõng cao (AOPs) vi c im da vo c tớnh ca cỏc cht oxi húa mnh nh hydrogen peroxide (H2O2), Ozon (O3), xỳc tỏc cỏc phn ng quang húa, in hoỏ hoc quang in hoỏ kt hp vi hiu ng Fenton ó c ghi nhn cú hiu qu cao Ngoi ra, phng phỏp ny cú nhng u im khỏc nh khụng cn nng lng kớch thớch tỏc nhõn phn ng, d s dng v ớt c hi Mt nhng phng phỏp trin vng gn õy thng c ỏp dng x lý nc thi l quỏ trỡnh oxi húa nõng cao (AOPs) s dng xỳc tỏc quang húa, xỳc tỏc Photo Fenton nh: TiO2, ZnO, CdS, H2O2, MFe2O4 c im ca nhng cht ny l di tỏc ng ca ỏnh sỏng s sinh cp electron (e-) v l trng (h+) cú kh nng phõn hy cht hu c ụ nhim thnh nhng cht sch vi mụi trng Tuy nhiờn, nhng hn ch nht nh ca phng phỏp oxi hoỏ nõng cao hin khin cho vic m rng quy mụ ng dng chớnh l giỏ thnh nguyờn liu u vo hnh h thng cũn cao h giỏ thnh ca cụng ngh nhng li nõng cao c hiu sut x lý cỏc cht hu c cú mu thỡ vic tip tc nghiờn cu hon thin cụng ngh l cn thit Nhiu nhúm nghiờn cu ó kt hp mt s phng phỏp oxi húa nõng cao (AOPs) nh UV/H2O2, UV/H2O2/TiO2, UV/Fenton v Siờu õm/UV/TiO2 hay to cỏc vt liu composit mi cho kt qu kh quan Vt liu cacbon v vt liu trờn c s cacbon nh graphen c coi l nhng vt liu c s dng nhiu nht lm vt liu hp ph chỳng cú b mt riờng ln, n nh v bn hoỏ hc, bn nhit, dung lng hp ph chn lc cao vi cht mu, ion kim loi nng v cht nhy quang hc Gn õy, Graphen l mt vt liu cacbon mi, cú cu trỳc lp (mt hoc vi lp), chiu dy mi lp bng kớch thc nguyờn t cacbon, cỏc nguyờn t cacbon vi liờn kt sp2 to thnh mng tinh th dng t ong Graphen ó tr thnh i tng c nhiu nh khoa hc quan tõm, nghiờn cu rng rói bi cú nhng tớnh cht u vit nh: tớnh cht in, in húa, quang hc, c hc v kh nng hp ph c ỏo ca nú Cú nhiu phng phỏp tng hp graphen, ph bin nht l phng phỏp húa hc da trờn quỏ trỡnh oxi húa graphit to thnh graphen oxit (GO) v quỏ trỡnh kh húa hc graphen oxit thnh graphen (rGO) s dng cỏc tỏc nhõn kh phự hp Graphen, graphen oxit lm tng quỏ trỡnh trao i electron ca chỳng v cỏc kim loi lm gim nng lng vựng cm ca cỏc kim loi, ngoi graphen, graphen oxit cũn ngn chn s tỏi kt hp ca cp electron v l trng to ra, chớnh iu ny lm tng hiu sut quang húa Do vy, mt s nh nghiờn cu ó gn kt cỏc kim loi lờn b mt ca graphen, graphen oxit lm tng hot tớnh quang húa ca chỳng Xut phỏt t nhng lý trờn chỳng tụi la chn ti lun ỏn Nghiờn cu tng hp v c trng vt liu mi, cu trỳc nano ng dng quang húa xỳc tỏc phõn hy thuc nhum ó c thc hin Mc tiờu nghiờn cu ca lun ỏn Tng hp thnh cụng mt s h vt liu nano composit trờn c s oxit kim loi cú t tớnh/graphen oxit; nghiờn cu ỏnh giỏ hot tớnh xỳc tỏc ca cỏc h vt liu tng hp c trờn thuc nhum hot tớnh v ng dng lm xỳc tỏc quang húa mi, hiu qu cao, cú kh nng thu hi v tỏi s dng phn ng phõn hy cht mu, thuc nhum hot tớnh x lý nc thi dt nhum Ni dung nghiờn cu ca lun ỏn - Tng hp c mt s vt liu nano composit oxit kim loi/graphen oxit trờn c s oxit st t Fe3O4, Fe3O4 bin tớnh v to phc Fe(III), nh h xỳc tỏc Fe3O4-GO; CoFe2O4-GO; ZnFe2O4-GO; Fe0-Fe3O4-GO; Fe(III)-GO bng phng phỏp ng kt ta, phng phỏp kh húa hc v phng phỏp trao i ion - c trng cỏc vt liu tng hp c bng cỏc phng phỏp húa lý hin i nh XRD, FTIR, TEM, XPS, BET, UV-Vis - ỏnh giỏ hot tớnh i vi cỏc h xỳc tỏc tng hp c - Nghiờn cu cỏc iu kin nh hng nh pH, nng H2O2, nng thuc nhum hot tớnh RR195 ban u n hot tớnh xỳc tỏc ca vt liu tng hp - Nghiờn cu ng hc quỏ trỡnh xỳc tỏc quang húa phn ng phõn hy thuc nhum hot tớnh RR195 trờn h xỳc tỏc cú hot tớnh cao nht CHNG TNG QUAN 1.1 Vt liu graphen v ng dng x lý cht mu Graphen vt liu cacbon mi cú mt mt phng n lp ca nhng nguyờn t cacbon c sp xp cht ch mng tinh th hỡnh t ong chiu (2D) Graphen c cun li s to nờn dng thự hỡnh fullerene 0D, c qun li s to nờn dng thự hỡnh cacbon nanotube 1D, hoc c xp chng lờn s to nờn dng thự hỡnh graphit 3D (Hỡnh 1.1) Vỡ c im trờn m nhng lý thuyt v graphen ó bt u c nghiờn cu t nhng nm 1940 Nm 1946, P.R Wallace l ngi u tiờn vit v cu trỳc vựng nng lng ca graphen, v ó nờu lờn nhng c tớnh d thng ca loi vt liu ny Cũn nhng nghiờn cu v thc nghim thỡ cha c phỏt trin bi vỡ cỏc nh khoa hc cho rng cu trỳc tinh th chiu vi b dy ch bng nguyờn t khụng tn ti v cỏc thit b k thut lỳc by gi cng khụng th quan sỏt thy cỏc cu trỳc ny Hỡnh 1.1 Graphen - vt liu cú cu trỳc c bn (2D) cho cỏc vt liu cacbon khỏc (0D, 1D, v 3D [1] n nm 2004, nhng khỏm phỏ t thc nghim ca nh khoa hc ngi Nga l Kostya Novoselov v Andre Geim thuc Trng i hc Manchester Anh ó chng t s tn ti ca graphen, t ú vt liu ny ó thu hỳt s quan tõm c bit ca cỏc nh khoa hc trờn th gii bi cỏc c tớnh vt tri ca nú Nhng tm graphen cú cu trỳc phng v dy mt nguyờn t, l vt liu mng nht tt c cỏc vt liu hin cú, vi cu trỳc bn vng graphen c xem l vt liu cng nht hin v dng tinh khit thỡ graphen dn in nhanh hn bt c cht no khỏc (ngay c nhit bỡnh thng) Hn na, cỏc electron i qua graphen hu nh khụng gp in tr nờn sinh nhit thp hn in tr ca Ag v l in tr thp nht hin nhit phũng 1.1.1 Vt liu trờn c s graphen Trc nhng nm 1980, h cacbon ch c bit n vi graphit v kim cng, cho n s xut hin ca fullerene, v gn õy l graphen ó thay i hon ton iu ú Trong cỏc vt liu cacbon ny, graphen c quan tõm nghiờn cu rt nhiu c im cu trỳc c ỏo v tớnh cht vt tri Hn na chi phớ sn xut graphen c cho l thp hn so vi vt liu nano cacbon khỏc Chớnh vỡ vy, s quan tõm n graphen ngy cng tng nghiờn cu cỏc khớa cnh khỏc c bit, graphen c chỳ ý nh vt liu hp ph cho x lý nc thi vỡ tớnh cht c ỏo ca graphen nh: cú cu trỳc hon ho, din tớch b mt tng i cao cú th tng hp t graphit bng phng phỏp húa hc, búc tỏch lp v kh húa hc Mt vi nghiờn cu c thc hin hp ph cỏc ion kim loi v cỏc cht hu c c hi s dng graphen Cỏc ng dng phong phỳ ca graphen ó khuyn khớch s phỏt trin khụng ch ca n lp graphen m cũn vt liu liờn quan nh graphen oxit (GO) GO l mt sn phm trung gian quan trng ca graphen thu c bng cỏch oxi húa graphit v tỏch lp c hc GO vi tớnh cht c bn ging nh graphen nh din tớch b mt riờng ln, cú nhiu nhúm chc trờn b mt, kh nng phõn tỏn tt nc ó c nhiu nhúm nghiờn cu lm cht hp ph loi b cỏc hp cht cha cation v cyanotoxins t nc b ụ nhim Cỏc nhúm chc cha oxy s liờn kt vi cỏc ion kim loi v hp cht cú in t dng Tớnh cht vt lý ca n lp graphen nhit phũng c Sumit Goenka [2] thng kờ bng 1.1 Bng 1.1 Tớnh cht ca Graphen n lp Tớnh cht Giỏ tr Chiu di liờn kt C-C 0,142 nm Mt 0,77 mg.m-2 Din tớch b mt lý thuyt 2630 m2 g-1 Mụ un n hi 1100 GPA TI LIấU THAM KHO Geim AK, Novoselov KS, The rise of graphene, Nat Mater, 2007,6, 183-191 Sumit Goenka, Vinayak Sant, Shilpa Sant,Graphene-based nanomaterials for drug delivery and tissue engineering Journal of Controlled Release, 2014,173, 7588 Al-Degs Y S, Khraisheh M A M, Allen S J and Ahmad M N, Effect of Cacbon Surface Chemistry on the Removal of Reactive Dyes from Textile Effluent , Water Research, 2000, 34(3), 927-935 Peiying Zhu, Ming Shen, Shuhua Xiao, Dong Zhang ,Experimental study on the reducibility of graphene oxide by hydrazine hydrate, Physica B: Condensed Matter, 2011, 406, 3, 498-502 Gao.Y, Li Y, Zhang L, Huang H, Hu J, Shah S.M, Su X, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J Colloid Interf Sci 2012, 368, 540546 Yang S.T, S Chen, Y Chang, A Cao, Y Liu, H Wang, Removal of methylene blue from aqueous solution by graphene oxide, J Colloid Interf Sci 2011,359, 2429 Yang X, Li J, Wen T, Ren X, Huang Y, Wang X, Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation, Colloid Surface A, 2013, 422, 118125 Zhao G, Li J, Ren X, Chen C, Wang X, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ Sci Technol, 2011,45, 1045410462 Zhao G , Ren X, Gao X, Tan X, Li J, Chen, Huang Y, Wang X, Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets, Dalton Trans, 2011, 40, 1094510952 10 Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans 2013, 42, 56825689 11 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al, Electric field effect in atomically thin carbon films Science, 2004, 306, 666669 127 12 Somani PR, Somani SP, Umeno M, Planer nano-graphenes from camphor by CVD Chem Phys Lett, 2006 430, 56-59 13 Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC Freestanding subnanometer graphite sheets Appl Phys Lett, 2004, 85, 12651267 14 Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holoway BC, Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition Carbon, 2004, 42, 2867-2872 15 Hummers, W S.; Offeman, R E Preparation of Graphitic Oxide Journal of the American Chemical Society, 1958, 80 (6), 1339 16 Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD, Graphene oxide dispersions in organic solvents Langmuir, 2008, 24, 10560- 10564 17 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Processable aqueous dispersions of graphene nanosheets Nat Nanotechnol, 2011, 3, 101-105 18 Liu X, Pan L, Lv T, Sun CQ, Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method, J colloid Interface Sci, 2013,408, 145-150 19 Gomez-Navarro C, Weitz RT, Bittner A.M, Scolari, M, Mews A, Burghard, M, Kern,K, Electronic transport properties of individual chemically reduced graphene oxide sheets Nano Lett, 2007, 7, 3499-3503 20 Shin H J, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, et al Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv Funct Mater, 2007, 19, 1987-1992 21 Stankovich, S.; Dikin, D A.; Piner, R D.; Kohlhaas, K A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S B T.; Ruoff, R S, Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide Carbon , 200,45, 1558-1565 22 AKsay A, Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al, Functionalized single graphene sheets derived from splitting graphite oxide, J Phys Chem B, 2006,110, 8535-8539 23 Trn Vn Nhõn, H Th Nga (2005), Giỏo trỡnh cụng ngh x lớ nc thi, Nh xut bn Khoa hc v k thut, H Ni 128 24 ng Xuõn Vit (2007), Nghiờn cu phng phỏp thớch hp kh mu thuc nhum hot tớnh nc thi dt nhum, lun ỏn tin s k thut, H ni 25 ng Trn Phũng, Trn Hiu Nhu (2005), X lớ nc cp v nc thi dt nhum, NXB Khoa hc k thut, H Ni 26 ỡnh Róng, ng ỡnh Bch, Lờ Th Anh o, Nguyn Mnh H, Nguyn Th Thanh Phong (2006), Hoỏ hc hu c 3, NXB Giỏo duc, H Ni 27 Fernỏndez C, Soledad Larrechi M, Pilar Callao M, An analytical overview of processes for removing organic dyes from wastewater effluents Trend Anal Chem, 2010 , 29, 12021211 28 Nguyn Hu Phỳ (2003), Hoỏ lý v hoỏ keo, Nh xut bn khoa hc v k thut, H Ni 29 Nguyn Hu Phỳ (1998), Giỏo trỡnh hp ph v xỳc tỏc trờn b mt vt liu v vụ c mao qun, Nh xut bn khoa hc v k thut, H Ni 30 Neyens E, Baeyens J, A review of classic Fentons peroxidation as an advanced oxidation technique, Juarnaol of Hazardous Materials, 2003, 98 33-50 31 Lin SS, Gurol MD , Heterogeneous, catalytic oxidation of organic compounds by hydrogen peroxide, Wat Sci Tech 1996, 34, 57-64 32 Lu M, Oxidation of Chlorophenols with hydrogen peroxide in the presence of goethite Chemosphere, 2000, 40, 125-130 33 S.H Lin, C.C Lo, Fenton process for treatment of desizing wastewater, Water Res ,1997, 31, 20502056 34 E Chamarro, A Marco, S Esplugas, Use of Fenton reagent to improve organic chemical biodegradability, Water Res 2001, 35, 10471051 35 F.J Rivas, F.J Beltran, J Frades, P Buxeda, Oxidation of p-hydroxybenzoic acid by Fentons reagent, Water Res 2001, 35, 387396 36 E.M Siedlecka, P Stepnowski, Phenols degradation by Fenton reaction in the presence of chlorides and sulfates, Pol J Environ Stud 2005 ,14 ,823 828 129 37 A.A Burbano, D.D Dionysiou, M.T Suidan, T.L Richardson, Oxidation kineticsand effect of pH on the degradation of MTBE with Fenton reagent, Water Res 2005, 39, 107118 38 P.J.D Ranjit, K Palanivelu, C.S Lee, Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method, Korean J Chem Eng 2008 , 25,112117 39 M.S Yalfani, S Contreras, F Medina, J Sueiras, Phenol degradation by Fentons process using catalytic in situ generated hydrogen peroxide, Appl Catal B:Environ 2009, 89 , 519526 40 G Lofrano, L Rizzo, M Grassi, V Belgiorno, Advanced oxidation of catechol: a comparison among photocatalysis, Fenton and photo-Fenton processes, Desalination , 2009 ,249, 878883 41 C Jiang, S Pang, F Ouyang, J Ma, J Jiang, A new insight into Fenton and Fentonlike processes for water treatement, J Hazard Mater 2010, 174, 813817 42 S Liu, H Sun, S Liu and S Wang Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts, Chem Eng J ,2013, 214, 298303 43 Z.-D Meng, L Zhu, T Ghosh, C.-Y Park, K Ullah, V Nikam and W.-C Oh, Ag2Se-graphene/TiO2 nano composites, sonochemical synthesis and enhanced photocatalytic properties under visible light, Bull Korean Chem Soc., 2012, 33, 37613766 44 Y Tang, S Luo, Y Teng, C Liu, X Xu, X Zhang and L Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays J Hazard.Mater , 2012, 241242, 323330 45 B Neppolian, A Bruno, C L Bianchi and M Ashokkumar, Graphene oxide based Pt-TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency Ultrason Sonochem , 2012, 19, 915 46 J Guo, S Zhu, Z Chen, Y Li, Z Yu, Q Liu, J Li, C Feng and D Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst Ultrason Sonochem., 2011, 18, 10821090 130 47 M S A Sher Shah, A R Park, K Zhang, J H Park and P J Yoo, Green synthesis of biphasic TiO-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity.ACS Appl Mater Interfaces, 2012, 4, 38933901 48 D Wang, X Li, J Chen and X Tao, hanced photoelectrocatalytic activity of reduced grapheme oxide/TiO2 composite films for dye degradation, Chem Eng J., 2012, 198199, 547554 49 S Ghasemi, S R Setayesh, A Habibi-Yangjeh, M HormoziNezhad and M Gholami, Assembly of CeO2TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutantsJ Hazard Mater., 2012, 199, 170 178 50 Y.-p Zhang, J.-j Xu, Z.-h Sun, C.-z Li and C.-x Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency Pan, Progress in Natural Science: Materials International, 2011, 21, 467471 51 G Jiang, Z Lin, C Chen, L Zhu, Q Chang, N Wang, W Wei and H Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants Carbon, 2011, 49, 2693 2701 52 N Khalid, Z Hong, E Ahmed, Y Zhang, H Chan and M Ahmad, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light Appl Surf Sci , 2012, 258, 5827 5834 53 D Fu, G Han, Y Chang and J Dong, The synthesis and properties of ZnO graphene nano hybrid for photodegradation of organic pollutant in water Mater Chem Phys 2012, 132, 673681 54 S Chandra, P Das, S Bag, R Bhar and P Pramanik, Mn2O3 decorated graphene nanosheet: An advanced material for the photocatalytic degradation of organic dyes, Mater Sci Eng., B, 2012, 177, 855861 55 H Seema, K C Kemp, V Chandra and K S Kim, Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight , Nanotechnology, 2012, 23, 355705 131 56 X Yang, H Cui, Y Li, J Qin, R Zhang and H Tang, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance ACS Catal, 2013, 3, 363369 57 J Zhang, Z Xiong and X Zhao, Graphenemetaloxide composites for the degradation of dyes under visible light irradiationJ Mater Chem., 2011, 21, 36343640 58 H Fan, X Zhao, J Yang, X Shan, L Yang, Y Zhang, X Li and M Gao, ZnOgraphene composite for photocatalytic degradation of methylene blue dye Catal Commun , 2012, 29, 2934 59 B Li and H Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water , J Mater Chem, 2011, 21, 33463349 60 H Seema, K C Kemp, V Chandra and K S Kim, GrapheneSnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology, 2012, 23, 355705 61 B Li, T Liu, L Hu and Y Wang, A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant J Phys Chem Solids, 2013, 74, 635640 62 N P Herring, S H Almahoudi, C R Olson and M S ElShall, Enhanced photocatalytic activity of ZnOgraphene nanocomposites prepared by microwave synthesis J Nanopart Res, 2012, 14, 113 63 X Chang, L Dong, Y Yin and S Sun, A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets, RSC Adv , 2013, 3, 1500515013 64 X An, C Y Jimmy, Y Wang, Y Hu, X Yu and G Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing J Mater Chem, 2012, 22, 85258531 65 Y Fu, H Chen, X Sun and X Wang, Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis Appl Catal., B, 2012,111, 280287 66 Y Fu and X Wang, Magnetically Separable ZnFe2O4Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation Ind Eng Chem Res , 2011, 50, 72107218 132 67 Y Fu, Q Chen, M He, Y Wan, X Sun, H Xia and X Wang, Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage Ind Eng Chem Res , 2012, 51, 11700 11709 68 Y Fang, R Wang, G Jiang, H Jin, Y Wang, X Sun, S Wang and T Wang, CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials Bull Mater Sci , 2012, 35, 495499 69 Y Hou, X Li, Q Zhao and G Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism Appl Catal, B, 2013, 142143, 80 88 70 L Sun, R Shao, L Tang and Z Chen, Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation J Alloys Compd, 2013, 564, 5562 71 S Vijay Kumar, N Huang, N Yusoff and H Lim, High performance magnetically separable graphene/zinc oxide nanocomposite Mater Lett, 2013, 93, 411414 72 Won-Chun Oh, The Effect of Thermal and Ultrasonic Treatment on the Formation of Graphene-oxide Nanosheets, Journal of the Korean Physical Society, 2010, 56(4), 1097-1102 73 Hae-MiJu, Sung-Ho Choi, Seung Hun Huh, X-ray Diffraction Patterns of Thermally-reduced Graphenes, journal of the Korean Physical Society, 2010, 57(6), 1649-1652 74 Yanwu Zhu, Shanthi Murali, Meryl D Stoller, Aruna Velamakanni, Richard D Piner, Rodney S Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 2010, 48(7), 2118-2122 75 McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem Mater, 2007, 19, 4396-4404 76 Franỗois Perreault,Andreia Fonseca de Faria and Menachem Elimelech, Environmental applications of graphene-based nanomaterials, Chem Soc Rev, 2015, 44, 5861-5896 133 77 Abhijit Ganguly, Surbhi Sharma, Pagona Papakonstantinou, Jeremy Hamilton, Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies , J Phys Chem C, 2011, 115 (34), 1700917019 78 Karthikeyan Krishnamoorthy, Murugan Veerapandian, Kyusik Yun, S.-J Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, 2013, 53, 3849 79 MU Shi-Jia, SU Yu-Chang, XIAO Li-Hua, LIU Si-Dong, HU Te, TANG Hong-Bo, X-Ray Diffraction Pattern of Graphite Oxide, CHIN PHYS LETT, 2013, 30(9), 096101 80 Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS, Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone J Mater Chem., 2011, 21, 33713377 81 Siegfried Eigler, Christoph Dotzer, Andreas Hirsch, Michael Enzelberger, Paul Mỹller, Formation and Decomposition of CO2 Intercalated Graphene Oxide, Chem Mater, 2012, 24 (7), 12761282 82 Daniel R Dreyer,a Sungjin Park, Christopher W Bielawski and Rodney S Ruoff, The chemistry of graphene oxide, Chem Soc Rev., 2010, 39, 228 240 83 Hontoria-Lucas C, Lopez-Peinado, A J, Lúpez-Gonzỏlez J D, RojasCervantes, M L, Martin-Aranda, R M, Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, 1995, 33, 1585 84 Acik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R M., Chhowalla, M., Chabal, Y J The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, J Phys Chem C., 2011, 115, 19761-19781 85 Xiangke Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites, RSC Advances, 2012, 2, 1240012407 86 Bo Yang, Zhang Tian, Li Zhang, Yaopeng Guo, Shiqiang Yan Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero 134 valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, Journal of Water Process Engineering, 2015, 5, 101111 87 Nlebedim, I C.; Ranvah, N.; Williams, P I.; Melikhov, Y.; Snyder, J E.; Moses, A J.; Jiles, D C Effect of Heat Treatment on the Magnetic and Magnetoelastic Properties of Cobalt Ferrite.J Magn Mater, 2010, 322, 1929-1933 88 Fu, X Wang, Magnetically Separable ZnFe2O4Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind Eng Chem Res, 2011, 50,7210 -7218 89 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG Processable aqueous dispersions of graphene nanosheets Nat Nanotechnol 2008 , ,1015 90.Y.P Sun, et al Characterization of zero-valent iron nanoparticles, Advances in Colloid and Interface Science, 2006,120 (1-3),4756 91 M Rivero-Huguet, W.D Marshall Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron Chemosphere, 2009, 76, 12401248 92 Karthikeyan Krishnamoorthy, Murugan Veerapandian, Kyusik Yun, S.-J Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, CARBON, 2013, 53, 3849 93 Graphen oxide (GO)-Fe3+ hybrid nanosheets with effactive sonocatalytic degradation of reactive Red 120 and study of their ninetic mechamism Ultrason sonochemistry, 2015,24,123-131 94 H.J Zhu, Y.F Jia, X Wu, H Wang Removal of arsenic from water by supported nano zero-valent iron on activated carbon J Hazard Mater 2009, 172, 15911596 95 Juan Guoa, Ruiyu Wang, Weng Weei Tjiu, Jisheng Pan, Tianxi Liu,Synthesis of Fe nanoparticles@graphene composites for environmental applications ,Journal of Hazardous Materials, 2012, 225 226, 63 73 96 Liu F, Yang J, Zuo J, Ma D, Gan L, Xie B, Wang P, Yang B, Graphenesupported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study Journal of Environmental Sciences ,2014, 26(8):1751-1762 135 97 Maarten B J Roeffaers, Iron(III)-Based MetalOrganic Frameworks As Visible Light Photocatalysts, J Am Chem Soc, 2013, 135, 1448814491 98 Mohsen Sheydaei, et al., Preparation of a novel -FeOOH-GAC nano composite for decolorization of textile wastewater by Photo Fenton-like process in a continuous reactor, Journal of Molecular Catalysis A: Chemical, 2014,392, 229 -234 99 P Ramesh Kumar, Enhanced properties of porous CoFe2O4reduced graphene oxide composites with alginate binders for Li-ion battery applications, New J Chem, 2014, 38, 3654-3361 100 Xiaojun Guo, Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4catalyst, Journal of the Taiwan Institute of Chemical Engineers, 2015,000, 111 101 Tuan A Vu, Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous Photo-Fenton catalyst for reactive dye degradation RSC Adv, 2014, 4, 41185-41194 102 Dafeng Zhang, One-step combustion synthesis of CoFe2O4graphene hybrid materials for photodegradation of methylene blue, Materials Letters, 2013,113, 179181 103 Yanwu Zhu, Shanthi Murali, Meryl D Stoller, Aruna Velamakanni, Richard D Piner, Rodney S Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon , 2010,48(7) ,2118 2122 104 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG Processable aqueous dispersions of graphene nanosheets Nat Nanotechnol 2008 , ,1015 105 30 Liu F, Yang J, Zuo J, Ma D, Gan L, Xie B, Wang P, Yang B, Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study Journal of Environmental Sciences 2014, 26(8),1751-1762 106 Karthikeyan Krishnamoorthy, et al., Murugan Veerapandian, Kyusik Yun, S.-J Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, CARBON, 2013, 53, 3849 136 107 Ying Dong, et al., Graphene oxideiron complex: synthesis, characterization and visible-light-driven photocatalysis,J Mater Chem A, 2013, 1, 644650 108 Li Z, Liu Z, Sun H, Gao C, Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes,and Graphene, Chem Rev., 2015, 115, 704671172 109 Phaedon Avouris and Christos Dimitrakopoulos, Graphene: synthesis and applications, Material today, 2012, 15(3), 86-97 110 Jeongho Park,Tyson Back, William C Mitchel, Steve S Kim, Said Elhamri, John Boeckl, Steven B Fairchild,Rajesh Naik, and Andrey A Voevodin,Approach to multifunctional device platform with epitaxial graphene on transition metal oxide, Sci Rep., 2015, 5, 14374 111 Kwang S Kim Water-dispersible magnetitereduced graphene oxide composites for arsenic removal, ACS Nano, 2010, 4, 39793986 112 Jieping Sun, Qionglin Liang, Qiang Han, Xiaoqiong Zhang, Mingyu Ding, One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples, Talanta, 2015, 132, 557563 113 Lu, J., Jiao, X., Chen, D., Li, W., Solvothermal Synthesis and Characterization of Fe3O4 and Fe2O3 Nanoplates, J Phys Chem C, 2009, 113, 40124017 114 A P Grosvenor, B A Kobe, M C Biesinger, N S McIntyre, Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds, Surf Interface Anal., 2004, 36, 15641574 115 Sheng Guo, Graphene oxideFe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon, 2013, 60, 437-444 116 Juan Guoa, Ruiyu Wang, Weng Weei Tjiu, Jisheng Pan, Tianxi Liu, Synthesis of Fe nanoparticles@graphene composites for environmental applications, Journal of Hazardous Materials, 2012, 225 226, 6373 117 Fenglin Liu, JingHe Yang, Jiane Zuo,Ding Ma, Lili Gan, Bangmi Xie, Pei Wang, Bo Yang, Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study, Journal of Environmental Sciences, 2014, 26(8), 1751-1762 137 118 Sheng Guo, Graphene oxideFe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, CARBON, 2013,60, 437 -444 119 Jian-Hua Wang, et al, In situgrowth of -FeOOH nanorods on graphene oxide with ultra-high relaxivity forin vivomagnetic resonance imaging and cancer therapy, J Mater Chem B, 2013,1, 2582 120 Yalin Qin, Mingce Long, Beihui Tan, Baoxue Zhou, RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/rGO Composite and Its Regeneration through A Fenton-like Reaction, Nano-Micro Letters, 2014, 6(2), 125-135 121 Nor Aida Zubir, Christelle Yacou, Julius Motuzas, Xiwang Zhang& Joóo C Diniz da Costa, Structural and functional investigation of graphene oxideFe3O4 nanocomposites for the heterogeneous Fenton-like reaction, Scientific Reports , 2014, 4, 4594 122 Xinhua Xu et al., Nanoscale Zero-Valent Iron (nZVI) assembled on magnetic Fe3O4/graphene for Chromium (VI) removal from aqueous solution, Journal of Colloid and Interface Science, 2014, 417, 5159 123 S.T Xing, Z.C Zhou, Z.C Ma, Y.S Wu Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2, Appl Catal B: Environ., 2011, 107, 386392 124 Feng, J., J Mao, XiaogangWen, M Tu, "Ultrasonic assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles", Journal of Alloys and Compounds, 2011, 509, 90939097 125 M Ismail, Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles, Int J Electrochem Sci., 2012, 7, 5734 5745 126 Kodama R H and A E Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Physical Review B, 1999, 59, 6321-6356 127 Millan A, A.Urtizberea, F.Palacio, N.J O.Silva, V.S.Amaral, E.Snoeck, and V.Serin, Surface effects in maghemite nanoparticles, Journal of Magnetism and Magnetic Materials, 2007, 312, L5-L933 128 Abhijit Ganguly, Surbhi Sharma, Pagona Papakonstantinou, Jeremy Hamilton Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies, J Phys Chem C, 2011,115 (34), 1700917019 138 129 Ramesha G.K, Vijaya Kumara A, Muralidhara H.B, Sampath S Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes,Journal of Colloid and Interface Science, 2011, 361 (1), 270277() 130 Yongsheng Fu, Combination of cobalt ferrite and graphene: Highperformance and recyclable visible-light photocatalysis, Applied Catalysis B: Environmental , 2012,111 112, 280 287 132 Dafeng Zhang, One-step combustion synthesis of CoFe2O4graphene hybrid materials for photodegradation of methylene blue, Materials Letters, 2013,113, 179181 133 Krzysztof barbusiski, Fenton reaction - controversy concerning the chemistry, Ecological chemistry and engineering,2009 , 16(3).347-358 134 J.H Ramirez, C.A Costa, L.M Madeira, G Mata, M.A Vicente, M.L Rojas-Cervantes, A.J Lúpez-Peinado, R.M Martớn-Aranda, Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay, Appl Catal B: Environ 2007, 71, 4456 135 Choi K, Lee W Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II) J Hazard Mater 2012;211 212:146153 136 M Vinothkannan, C Karthikeyan, G Gnana kumar, Ae Rhan Kim, Dong Jin Yoo, One-pot green synthesis of reduced graphene oxide (rGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136 , 256264 137 H.J Zhu, Y.F Jia, X Wu, H Wang Removal of arsenic from water by supported nano zero-valent iron on activated carbon J Hazard Mater 2009, 172, 15911596 138 Lavanyah Narayanasamy, Thanapalan Murugesan, Degradation of Alizarin Yellow R using UV/H2O2 Advanced Oxidation Process, Environmental Progress & Sustainable, 2014, 33(2), 482-489 139 Sakthivel Thangavel, Nivea Raghavan, Govindan Kadarkarai, Sang-Jae Kim, Gunasekaran Venugopal, Graphene-oxide (GO) Fe3+ hybrid nanosheets with effective sonocatalytic degradation of Reactive Red 120 and study of their kinetics mechanism, Ultrasonics Sonochemistry, 2015, 24, 123131 139 140 Yongkoo Seol, Iraj Javandel, Citric acid-modified Fentons reaction for the oxidation of chlorinated ethylenes in soil solution systems, Chemosphere 72,(4), 2008, 537542 141 Qiuqiang Chen, Iron pillared vermiculite as a heterogeneous Photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant, Separation and Purification Technology, 2010,71(3),315-323 142 Lavanyah Narayanasamy, Thanapalan Murugesan, Degradation of Alizarin Yellow R using UV/H2O2 Advanced Oxidation Process, Environmental Progress & Sustainable, 2014; 33(2), 482-489 143 N.H Ince, Critical effect of hydrogen peroxide in photochemical dye degradation, Water Res 1999, 33, 080084 144 A Aleboyeh, H Aleboyeh, Y Moussa, Critical effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: acid orange 8, acid blue 74 and methyl orange, Dyes Pigm 2003, 57 ,6775 145 Sumaeth Chavadej, Pattamawadee Phuaphromyod, Erdogan Gulari, Pramoch Rangsunvigit, Thammanoon Sreethawong, Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique, Chemical Engineering Journal, 2008 , 137 ,489495 146 Vittorio Loddo, Giuseppe Marcừ , Cristina Martừ n, Leonardo Palmisano,Vicente Rives, Antonino Sclafani, Preparation and characterisation of TiO2 (anatase) supportedon TiO2 (rutile) catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2 (anatase) supported on Al2O3, Applied Catalysis B: Environmental, 1999,20, 29-45 147 Sang Bum Kim , Sung Chang Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Applied Catalysis B: Environmental, 2002, 35,305315 148 N Guettaù, H Ait Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension Part II: kinetics study, Desalination,185, 2005, 1-3, 439448 149 Nor Aida Zubir, Optimisation of graphene oxideiron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid Orange 7, Journal of Environmental Chemical Engineering, 2014, 2-3, 18811888 140 141 [...]... sáng mạnh, làm giảm chi phí vận hành hệ thống và nâng cao hiệu quả xử lý 28 Bảng 1.4 Một số phương pháp oxi hóa nâng cao (AOPs) phổ biến hiện nay đang sử dụng trong xử lý nước thải Oxi hóa nâng cao (AOPs) không chiếu sáng - Ozone (O3) Fenton (Fe2+ + H2O2) Điện phân Siêu âm Oxi hóa nâng cao (AOPs) có chiếu sáng - Quang phân (UV + H2O2) - Quang xúc tác (ánh sáng + chất xúc tác) - Quang- Fenton (ánh sáng... GO là có độ âm điện lớn khi phân tán trong nước từ kết quả đo thế zeta Đó là do sự ion hóa của nhóm axit cacboxylic và phenolic hydroxyl Sự phân tán ổn định của GO trong nước không chỉ do tính ưa nước mà còn do lực đẩy tĩnh điện của nó Ngoài ra còn có thể tách lớp graphit oxit để tạo thành GO bằng phương pháp vi sóng, hỗn hợp được đặt trong lò vi sóng với công suất 700W trong 1 phút, nhiệt độ tăng... các chất điện phân và oxit kim loại, chiếu xạ (tia UV, ánh sáng mặt trời hoặc sóng siêu âm) Các phương pháp được sử dụng có thể tách rời độc lập hoặc kết hợp với nhau dưới điều kiện bình thường Tuy nhiên, trong số các phương pháp oxi hóa nâng cao (AOPs) thì các phương pháp oxi hóa nâng cao (AOPs) sáng được sử dụng rộng rãi hơn trong xử lý nước thải bởi có thể tận dụng năng lượng từ ánh sáng mặt trời... và dễ dàng phân tán trong nước Graphit oxit được phân tán trong nước theo tỉ lệ 1mg/ml và sử dụng phương pháp siêu âm để tách lớp thành graphen oxit Các tấm graphit ban đầu có độ dày 0,34 nm, tấm GO được cho là dày hơn do sự dịch chuyển của nguyên tử cacbon sp3 lên trên hoặc dưới so với mặt phẳng graphen gốc và sự có mặt của các nguyên tử oxy liên kết hóa trị Kết quả tương tự khi pha phân tán là các... hấp phụ Trong pha lỏng người ta thường gặp các trường hợp hấp phụ sau: - Hấp phụ các chất tan trên bề mặt phân cách pha lỏng-khí, lỏng-lỏng - Hấp phụ các chất tan trên bề mặt chất rắn tiếp xúc với pha lỏng Sự hấp phụ xảy ra trên bề mặt pha rắn trong dung dịch phức tạp hơn nhiều so với trong pha khí Bởi vì, các phân tử dung môi có thể hấp phụ cạnh tranh với các phân tử chất tan: chất tan gồm các phân tử... sắc tươi sáng do sự hiện diện của một hoặc một vài nhóm azo (-N =N-) tạo hệ liên hợp với cấu trúc nhân thơm Trong khuôn khổ luận án này, chúng tôi tập trung đề cập đến đặc điểm của thuốc nhuộm axit azo (Reactive Red 195) thường được sử dụng trong phòng thí nghiệm dệt may và các ngành công nghiệp khác, đồng thời cũng được dùng làm chất màu chỉ thị để đánh giá hiệu quả của các mô hình xử lý trong phần... sinh học, mà chỉ xác định lượng oxy cần thiết trong 5 ngày đầu (BOD5) ở nhiệt độ 20oC trong bóng tối (để tránh hiện tượng quang hợp ở trong nước) 16 Nhu cầu oxy hóa học (COD- chemical oxigen Demand) COD được định nghĩa là lượng oxy cần thiết cho quá trình oxi hóa toàn bộ các chất hữu cơ có trong mẫu thành CO2 và H2O Chỉ số COD được dùng rộng rãi để đặc trưng cho hàm lượng chất hữu cơ của nước thải... khả năng hấp phụ các chất phân cực tốt hơn trong trường hợp chất đó có bề mặt kém phân cực Để có thể so sánh khả năng hấp phụ giữa các chất người ta sử dụng khái niệm bề mặt riêng, đó là diện tích bề mặt của chất hấp phụ tính cho một gam chất hấp phụ (m2/g) Ví dụ: bề mặt riêng của silicagel có thể từ 200-700 m2/g, zeolit từ 500800 m2/g… Sự hấp phụ trong môi trường nước 22 Trong nước, tương tác giữa... nước của chất hấp phụ, mức độ kị nước của các chất bị hấp phụ trong môi trường nước So với hấp phụ trong pha khí, sự hấp phụ trong môi trường nước thường có tốc độ chậm hơn nhiều Đó là do tương tác giữa chất bị hấp phụ với dung môi nước và với bề mặt chất hấp phụ làm cho quá trình khuếch tán của các phân tử chất tan rất chậm Sự hấp phụ trong môi trường nước chịu ảnh hưởng nhiều bởi pH của môi trường... trọng trong việc hình thành nên các tính chất điện khác thường của graphen (hình 1.2) 1.1.2 Tâm hoạt động của graphen và graphen oxit Các hợp chất hữu cơ có thể được hấp phụ trên các hạt nano (NPs) hay vật liệu cấu trúc nano không qua liên kết cộng hóa trị mà là những tương tác sau: tương tác điện tử, liên kết hydro, sự xếp chồng liên kết π- π, lực phân tán, liên kết cho - nhận và hiệu ứng kỵ nước Trong

Ngày đăng: 10/06/2016, 11:22

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan