Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

86 1.1K 3
Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Đề tài:Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

MỤC LỤC MỤC LỤC .1 Bảng ký hiệu các từ viết tắt .3 Danh mục bảng 4 Danh mục hình 6 MỞ ĐẦU .7 CHƯƠNG 1. TỔNG QUAN 8 1.1. Vai trò và đặc tính phân tích của đồng, kẽm, coban 8 1.1.1. Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật 8 1.1.2. Đặc tính phân tích của đồng, kẽm, coban 11 1.2. Một số phương pháp quang xác định Cu(II), Zn(II), Co(II) 18 1.2.1. Phương pháp phổ hấp thụ nguyên tử AAS .19 1.2.2. Phương pháp phân tích trắc quang .20 1.3. Thuốc thử 1-(2-pyridylazo )-2- naphtol (PAN) 27 1.3.1. Cấu tạo, tính chất vậtcủa PAN .27 1.3.2. Khả năng tạo phức của PAN .28 CHƯƠNG 2. THỰC NGHIỆM .34 2.1. Nội dung nghiên cứu .34 2.2. Thiết bị và hóa chất 35 2.2.1 Thiết bị và phần mềm .35 2.2.2. Hóa chất .35 2.3. Cách tiến hành thực nghiệm 37 2.3.1. Qui trình nghiên cứu đơn biến .37 2.3.2. Qui trình nghiên cứu đa biến 37 2.3.3. Qui trình phân tích mẫu .37 2.4. Thuật toán phân tích hồi qui tuyến tính đa biến .38 2.4.1. Phương pháp bình phương tối thiểu thông thường (CLS) 38 2.4.2. Phương pháp bình phương tối thiểu nghịch đảo (ILS) 38 2.4.3. Phương pháp bình phương tối thiểu từng phần (PLS) 39 1 2.4.4. Phương pháp hồi qui cấu tử chính (PCR) 39 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN .41 3.1. Khảo sát điều kiện tối ưu xác định Cu(II), Zn(II), Co(II) .41 3.1.1. Nét đặc trưng phổ của các phức Cu(II)-PAN, Zn(II) -PAN, Co(II) – PAN .41 3.1.2. Khảo sát ảnh hưởng của pH đến sự tạo phức 43 3.1.3. Khảo sát ảnh hưởng của nồng độ Triton X-100 đến sự tạo phức .45 3.1.4. Khảo sát ảnh hưởng của thuốc thử PAN .46 3.1.5. Khảo sát ảnh hưởng của thời gian 47 3.1.6. Khảo sát ảnh hưởng của nồng độ Cu(II), Zn(II), Co(II) .48 3.1.7. Khảo sát ảnh hưởng của các ion lạ 57 3.2. Xác định Cu(II), Zn(II), Co(II) trong hỗn hợp 61 3.2.1. Xác định Cu(II), Zn(II), Co(II) trong hỗn hợp bằng phương pháp tách 62 3.2.2. Sử dụng thuật toán hồi qui tuyến ttính đa biến xác định đồng thời Cu(II), Zn(II), Co(II) 64 3.3. Ứng dụng vào phân tích mẫu phân vi lượng .75 3.3.1. Qui trình phá mẫu 75 3.3.2. Phân tích mẫu phân vi lượng .75 KẾT LUẬN .80 TÀI LIỆU THAM KHẢO .82 2 Bảng ký hiệu các từ viết tắt STT Kí hiệu viết tắt Tên đầy đủ 1 AAS Atomic absorbtion spectrotometry (Quang phổ hấp thụ nguyên tử) 2 CLS Classical least squares (Phương pháp bình phương tối thiểu thông thường) 3 ILS Inverse least squares (Phương pháp bình phương tối thiểu nghịch đảo) 4 PC Principal component (Cấu tử chính) 5 PCR Principal component regression (Phương pháp hồi qui cấu tử chính) 6 PLS Partial least squares (Phương pháp bình phương tối thiểu từng phần) 7 PP Phương pháp 8 ppm Part per million (Phần triệu) 9 UV-Vis Ultraviolet – visible spectrophotometry (Quang phổ tử ngoại khả kiến) 10 S D Standard deviation (Độ lệch chuẩn ) 11 UV-Vis Ultraviolet – visible spectrophotometry (Quang phổ tử ngoại khả kiến) 3 Danh mục bảng Bảng 1. Sự hình thành phức Cu(II) trong một số thuốc thử hữu cơ 20 Bảng 2. Các tính chất của một số phức kim loại – PAN 29 Bảng 3. Đặc trưng phổ hấp thụ Cu(II) - PAN, Zn(II) – PAN, Co(II) – PAN 43 Bảng 4. Kết quả khảo sát ảnh hưởng của pH đến sự hình thành các phức .43 Bảng 5. Ảnh hưởng của nồng độ đệm citrat đến sự hình thành các phức .44 Bảng 6: Sự phụ thuộc của độ hấp thụ quang vào nồng độ của đệm axetat .45 Bảng 7. Khảo sát ảnh hưởng của nồng độ Triton X–100 đến sự hình thành phức 45 Bảng 8: Kết quả khảo sát ảnh hưởng của thuốc thử PAN 46 Bảng 9: Kết quả sự phụ thuộc của A vào nồng độ Cu(II) .48 Bảng 11: Kết quả đo độ hấp thụ quang của 12 mẫu trắng 50 Bảng 12: Độ hấp thụ quang của phức Cu(II)-PAN ở 3 nồng độ khác nhau 51 Bảng 13:Kết quả đánh giá phương pháp xác định Cu(II) .51 Bảng 14: Kết quả sự phụ thuộc của A vào nồng độ Zn(II) .51 Bảng 15: Kết quả xây dựng đường chuẩn xác định Zn(II) 52 Bảng 16: Kết quả đo độ hấp thụ quang của 12 mẫu trắng 53 Bảng 17: Độ hấp thụ quang của phức Zn-PAN ở 3 nồng độ khác nhau .54 Bảng 18: Kết quả đánh giá phương pháp xác định Zn(II) .54 Bảng 19: Kết quả sự phụ thuộc của A vào nồng độ Co(II) .54 Bảng 20: Kết quả xây dựng đường chuẩn xác định Co(II) 55 Bảng 21: Kết quả đo độ hấp thụ quang của 12 mẫu trắng 56 Bảng 22: Độ hấp thụ quang của phức Co-PAN ở 3 nồng độ khác nhau .57 Bảng 23:Kết quả đánh giá phương pháp xác định Co(II) .57 Bảng 24 : Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong đệm axetat 58 Bảng 25 : Ảnh hưởng của Mn(II) đến độ hấp thụ quang trong hỗn hợp đệm .58 Bảng 26 : Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong đệm axetat .59 Bảng 27 : Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong hỗn hợp đệm 59 Bảng 28 : Ảnh hưởng của Fe(III) đến độ hấp thụ quang trong đệm axetat 60 Bảng 29 : Ảnh hưởng của Fe(III) đến độ hấp thụ quang trong hỗn hợp đệm .60 Bảng 30. Hiệu suất thu hồi theo phương pháp tách dựa vào đường chuẩn .63 4 Bảng 31:Nồng độ thêm chuẩn 63 Bảng 32: Hiệu suất thu hồi theo phương pháp tách dựa vào đường thêm chuẩn 64 Bảng 33: Độ hấp thụ quang của từng ion và của hỗn hợp trên toàn phổ .64 Bảng 34: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp CLS 68 Bảng 35: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS 70 Bảng 36: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PLS 72 Bảng 37: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR .74 Bảng 38: Hàm lượng Cu(II), Zn(II), Co(II) trên nhãn một số mẫu phân vi lượng 75 Bảng 39: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp AAS. .76 Bảng 40: Xác định đồng thời hàm lượng Cu(II), Zn(II), Co(II) .76 Bảng 41: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp tách .77 Bảng 42 : Hàm lượng trung bình của các ion 77 Bảng 43: Kết quả phân tích hàm lượng Cu(II) (ppm) .78 Bảng 44: Kết quả phân tích hàm lượng Zn(II) (ppm) .78 Bảng 45: Kết quả phân tích hàm lượng Co(II) (ppm) .78 5 Danh mục hình Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 .41 Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 42 Hình 3. Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu 44 Hình 4. Ảnh hưởng của nồng độ Triton X- 100 đến độ hấp thụ quang của các phức 46 Hình 5: Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức 47 Hình 6,7,8: Khảo sát độ bền của các phức màu theo thời gian .48 Hình 9: Khảo sát khoảng tuyến tính xác định Cu(II) 49 Hình 10: Đường chuẩn xác định Cu(II) 50 Hình 11: Khảo sát khoảng tuyến tính xác định Zn(II) .52 Hình 12: Đường chuẩn xác định Zn(II) .53 Hình 13: Khảo sát khoảng tuyến tính xác định Co(II) 55 Hình 14: Đường chuẩn xác định Co(II) 56 Hình 15: Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp của 3 phức theo lý thuyết và theo thực tế 62 6 MỞ ĐẦU Các nguyên tố đồng, kẽm, cobanvai trò quan trọng trong đời sống con người, các ngành công nghiệp, và sự sinh tồn của động thực vật nói chung. Chúng là các nguyên tố vi lượng có tác dụng thúc đẩy sự phát triển của sinh vật. Đối với thực vật, việc nâng cao năng suất, phát triển chất lượng giống cây trồng là điều thiết yếu và thường được thực hiện bằng việc bổ sung phân vi lượng trong các giai đoạn phát triển của chúng. Sự thiếu hụt cũng như vượt quá ngưỡng cho phép của hàm lượng các nguyên tố này đều gây ra những tác hại không nhỏ. Vì vậy, việc xác định các nguyên tố trên là rất cần thiết. Để phân tích, xác định hàm lượng các nguyên tố nhất là khi chúng cùng có mặt trong mẫu phân tích và hàm lượng thấp là vấn đề khó khăn. Có nhiều phương pháp xác định các nguyên tố vi lượng như điện hoá, phương pháp quang phổ phát xạ AES, ICP- AES, phương pháp huỳnh quang, phương pháp phổ hấp thụ nguyên tử AAS .có độ chọn lọc, độ nhạy cao, cho kết quả phân tích tốt nhưng đòi hỏi trang thiết bị giá thành lớn và kỹ thuật phân tích cao. Phương pháp quang phân tử với trang bị phổ biến, độ chọn lọc thích hợp, kĩ thuật tiến hành đơn giản, kết hợp với phương pháp tách sắc kí, chiết đạt đến độ nhạy cao. Việc phân tích các nguyên tố chuyển tiếp nói chung và ba nguyên tố đồng, kẽm, coban nói riêng đều có những thuốc thử đặc trưng nhưng tốn thời gian, sử dụng dung môi độc. Để khắc phục điều đó, việc sử dụng môi trường mixen trong phép đo trắc quang là một bước tiến không nhỏ, làm giảm thiểu công đoạn chiết, tách. Đặc biệt, phương pháp đo trắc quang sử dụng môi trường mixen, thuốc thử thông dụng kết hợp với thuật toán hồi qui đa biến đem lại hiệu quả tốt trong việc xác định đồng thời các nguyên tố. Trong công trình nghiên cứu này, chúng tôi đã lựa chọn phương pháp đo quang với thuốc thử 1- (2-pyridilazo )- 2- naphtol (PAN) trong môi trường mixen nhằm xác định riêng rẽ từng nguyên tố và kết hợp với thuật toán hồi qui đa biến tuyến tính để xác định đồng thời Cu(II), Zn(II), Co(II). Những kết quả đó được ứng dụng để phân tích Cu(II), Zn(II), Co(II) trong các mẫu phân vi lượng, đặc biệt là phân bón lá và so sánh với phép đo AAS. 7 CHƯƠNG 1. TỔNG QUAN 1.1. Vai trò và đặc tính phân tích của đồng, kẽm, coban 1.1.1. Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật Các nguyên tố vi lượng, tuy có không nhiều trong cơ thể nhưng lại đóng một vai trò hết sức quan trọng đối với sự sống, chẳng hạn như hỗ trợ các phản ứng hóa học trong cơ thể; giúp cơ thể sử dụng chất đạm, mỡ và đường; làm vững chắc xương và điều khiển thần kinh, cơ; điều hòa hoạt động của cơ thể, tương tác với các chất khác như các vitamin. Hầu hết trong số chúng được đưa vào cơ thể đều đặn cùng với thức ăn. Hàng ngày, người trưởng thành đưa vào cơ thể từ vài trăm µg (Se, As .) đến vài mg (Fe, I ). Khi thiếu hụt nguyên tố vi lượng có thể dẫn đến các biểu hiện bệnh lý, hay các sự bất ổn cho cơ thể chúng ta. Việc bổ sung định kỳ có kiểm soát các nguyên tố vi lượng là rất có ích cho sức khỏe và giúp ngăn ngừa một số bệnh tật Đối với thực vật, có khoảng 74 nguyên tố trong đó có 14 nguyên tố đa lượng (chiếm 99,95%) và 60 nguyên tố vi lượng và siêu vi lượng (0,05%) nhưng vẫn có vai trò quan trọng. Vi lượng là cơ sở của sự sống vì hầu hết các quá trình tổng hợp và chuyển hóa là nhờ enzym mà thành phần của enzym chủ yếu là các nguyên tố vi lượng. Hiện nay, có khoảng 1000 enzym và 1/3 được hoạt hóa bằng kim loại. Các nguyên tố tồn tại nhiều dạng khác nhau, chủ yếu gồm B, Mn, Zn, Cu, Fe, Mo, Co đã được tìm thấy dưới dạng các phức hữu cơ – khoáng. Các phức hữu cơ – khoáng này có những tính chất cơ bản về mặt hóa học như: tính chất của các phức chất khác biệt với tính chất của các thành phần cấu tạo nên nó, phức chất có thể tham gia vào các phản ứng mà thành phần không có. Cây cần một lượng ít phân vi lượng nhưng đó là những vi chất thiết yếu, nếu thiếu sẽ ảnh hưởng đến năng suất. Với mọi sinh vật, không thể phủ nhận vai trò của các nguyên tố vi lượng nói chung và các nguyên tố đồng, kẽm, coban nói riêng. Đồng tác động đến nhiều chức năng cơ bản và là một phần cấu thành nên các enzym quan trọng trong cơ thể. Nó tham gia vào các hoạt động như sản xuất hồng cầu, sinh tổng hợp elastin và myelin, tổng hợp nhiều hoormon (catecholamin, tuyến giáp, corticoid .), tổng hợp nhiều sắc tố, chuyển hóa sắt và lipit . Do vậy, đồng là 8 một chất dinh dưỡng cần thiết cho cơ thể con người với một hàm lượng rất nhỏ (80 – 99,4 mg trong cơ thể người trưởng thành). Tiêu chuẩn RDA của Mỹ về đồng đối với người lớn khỏe mạnh là 0.9mg/ngày. Đồng với hàm lượng không thích hợp sẽ gây ra ảnh hưởng tiêu cực đối với con người. Sự thiếu hụt đồng thường dẫn đến thiếu máu đối với trẻ nhỏ, mất sắc tố ở lông tóc . Khi hàm lượng đồng vượt có thể gây ra rối loạn dạ dày, những bệnh về gan, thận và phổi. Mức cao nhất có thể chịu được về đồng theo DRI trong chế độ ăn uống đối với người lớn theo mọi nguồn đều là 10 mg/ngày. Đối với thực vật thì đồng (hàm lượng 5 – 20 ppm) - nguyên tố rất đặc biệt về mặt sinh vật học ảnh hưởng trực tiếp đến quá trình sinh trưởng và phát triển sản lượng của cây. Đồng là chất xúc tác của những quá trình oxi hoá nội bào; thành phần của men cytochrome oxydase và thành phần của nhiều enzim – ascorbic, axit axidase, phenolase, lactase; xúc tiến quá trình hình thành vitamin A; cần thiết cho sự hình thành diệp lục và làm xúc tác cho một số phản ứng khác trong cây, nhưng thường không tham gia vào thành phần của chúng. Cây muốn phát triển bình thường, đều cần phải có một ít đồng, cây hấp thụ đồng dưới dạng Cu(II), nhiều loại cây rau biểu hiện thiếu đồng với lá thiếu sức trương, rủ xuống và có mầu xanh, chuyển sang quầng mầu da trời tối trước khi trở nên bạc lá, biến cong và cây không ra hoa được. Lượng đồng thiếu hụt có thể được bổ sung dễ dàng trong một thời gian dài bằng cách bón đồng sunfat hay đồng oxit.và nếu dùng những hợp chất của đồng để bón cho đất (đặc biệt là đất bùn lầy) thì thu hoạch thường tăng lên rất cao. Chelat hay đồng sunfat trung tính (25% đồng) rất phù hợp cho việc bón lá. Kẽm là nguyên tố không thể thiếu trong đời sống của động thực vật. Nó đứng thứ hai sau sắt trong các nguyên tố cần thiết với tổng lượng kẽm là 2 – 3 g với người trưởng thành. Kẽm là nguyên tố vi lượng có trong nhiều enzym quan trọng, nhất là enzym tham gia tổng hợp ARN, protein, kích thích tố sinh trưởng (auxin); cần thiết cho thị lực, giúp cơ thể chống lại bệnh tật. Nhu cầu về kẽm hàng ngày khoảng 10 -15 mg đối với người trưởng thành. Việc thu nạp quá nhiều kẽm của cơ thể có thể sinh ra sự thiếu hụt của các khoáng chất khác trong dinh dưỡng. Sự thiếu hụt kẽm để lại những hiệu ứng rõ nét trong việc tăng trọng của động vật, gây ra các dị tật ở mặt, 9 xương, tim, não, gây ra sự hoạt động không bình thường của các cơ quan thị giác, vị giác, khứu giác và trí nhớ. Trong thực vật, kẽm (hàm lượng 25 – 150 ppm) được hấp thụ dưới dạng Zn(II) được coi như là một trong các nguyên tố vi lượng đầu tiên cần thiết cho cây trồng, liên quan đến tổng hợp và hoạt hóa enzym, là thành phần của các auxin (có tác dụng điều hòa sinh trưởng), cần thiết cho việc sản xuất ra chất Diệp lục và các Hydratcarbon, làm tăng tốc độ trao đổi chất của cây. Tuy chỉ được sử dụng với liều lượng rất nhỏ nhưng để có năng suất cao không thể không có kẽm. Kẽm cũng không được vận chuyển sử dụng lại trong cây nên biểu hiện thiếu thường xảy ra ở những lá non và bộ phân khác của cây, chức năng tế bào của cây bị suy yếu. Kẽm thường được bón cho cây bằng cách phun lên lá dung dịch ZnSO 4 (23% Zn) hay dùng Zn - EDTA bón trực tiếp cho đất. Việc bổ sung kẽm còn giúp tăng cường khả năng sử dụng lân và đạm Coban có nhiều vai trò quan trọng trong cơ thể như kích thích tạo máu, kích thích tổng hợp protein cơ, tham gia chuyển hoá gluxit, chuyển hoá các chất vô cơ. Coban có tác dụng hoạt hoá một số enzim và ức chế một số enzim khác. Coban tham gia vào quá trình tạo vitamin cobalamin - B 12 (C 36 H 88 O 24 N 14 PCo). Coban kết hợp với Mangan có tác dụng rất tốt đối với các triệu chứng đau nửa đầu. Cơ thể thiếu Coban có những biểu hiện đầu tiên là cảm giác mệt mỏi, thiếu tập trung và thiếu máu. Coban không độc như hầu hết các hầu hết các kim loại nặng vì theo những nghiên cứu mới đây tại Mỹ thì không có sự liên hệ giữa coban trong nước và bệnh ung thư ở người. Tuy nhiên, với hàm lượng lớn coban sẽ gây tác động xấu đến cơ thể người và động vật. Triệu trứng nhiễm độc coban ở người là nôn mửa, tiêu chảy… . Thực tế lượng coban mà con người hấp thụ hàng ngày từ nước nhỏ hơn từ thực phẩm. Cũng như ở động vật, trong thực vật, coban là thành phần trung tâm của vitamin cobalamin (vitamin B 12 ). Hoạt tính xúc tác của carbonxylase được gia tăng khi có mặt Mg hoặc Mn, Co. Coban cần cho việc ra hoa, quả, chống sâu bệnh, nắng nóng, ảnh hưởng tốt đến độ bền vững của chlorophyll, tác dụng tốt đến tổng hợp carotenoid, tia gamma phát ra từ 60 Co hiện đang được sử dụng để diệt vi khuẩn và tăng sức đề kháng trên rau quả. Sự có mặt của coban rất cần thiết trong quá trình lên men, trao đổi chất 10 [...]... phức của nhôm với PAN trong dung dịch etylic Xác định Co trong dung dịch với thuốc thử PAN trong sự có mặt của chất hoạt động bề mặt trong hoà (TritonX – 100) p- PAN có thể tổng hợp được, các đặc điểm của phức kim loại với PAN đã được nghiên cứu Các phản ứng của PAN với hầu hết các kim loại nặng nhạy hơn các phản ứng của các đồng phân - ortho Trong môi trường axit mạnh, thành phần phức vòng càng của. .. pháp trao đổi ion Sự lựa chọn dung môi phù hợp là rất quan trọng đối với việc chiết tách phức kim loại với PAN Cloroform được sử dụng rộng rãi Việc chiết thường không hoàn toàn với CCl4 cũng như ete và benzen Trong nghiên cứu này, phản ứng tạo phức giữa PAN và Cu(II) với sự có mặt của chất hoạt động bề mặt trung tính là Triton X-100 đã được khảo sát Các điều kiện tối ưu đã được phát triển để xác định... sau khi làm giàu với độ lệch chuẩn trong vùng 0,8-2,9% và giới hạn phát hiện 0,006-0,277ppm 19 Các tác giả cũng đã ứng dụng phương pháp này để xác định đồng thời coban, sắt và niken trong dung dịch chất điện ly của mangan Bước sóng hấp thụ của coban, sắt và niken tương ứng là 240,7; 248,3; và 232,0 nm Ảnh hưởng của nền Mn 2+ và lượng thích hợp MnSO4 và (NH4)2SO4 Sai số tương đối của coban là 3,1%, hiệu... thời coban, niken và paladi trong môi trường chất hoạt động bề mặt Tween 80 Cơ sở của phương pháp dựa trên sự tạo phức của Co(II), Ni(II) và Pd(II) với thuốc thử PAN trong môi trường tween – 80 Nghiên cứu đã khảo sát các cực đại hấp thụ của Co(II): 575 và 615 nm, của Ni(II): 569 và 530 nm, của Pd(II): 615 và 660 nm tại pH = 5, nồng độ Tween tối ưu là 0,3% Tất cả các yếu tố ảnh hưởng đến độ nhạy của. ..và có ý nghĩa đối với cố định nitơ phân tử bằng con đường sinh học Co chứa trong thành phần của nhiều alumosilicat Hàm lượng của Co trong đất nhỏ hơn Mn, Zn, Cu Đất hình thành trên đá bazơ giàu Co hơn trên đá axit Co tồn tại trong đất chủ yếu ở dạng muối của Co2+ và dạng Co2+ hấp phụ trao đổi Ở điều kiện phản ứng của đất là trung tính và kiềm thì tính linh động và độ dễ tiêu của Co giảm Các ion... dụng với muối kẽm: Zn 2+ + S 2- → ZnS ↓ ZnS hình thành ở pH = 2 và không tan trong S2- dư [9], [14] 1.1.2.3 Đặc tính phân tích của coban [3] Coban là một kim loại nặng thuộc nhóm VIIIB, chu kỳ 4, ô thứ 27 trong bảng tuần hoàn các nguyên tố hóa học và có cấu hình electron là 1s2 2s2 2p6 3s2 3p6 3d7 4s2 Coban có các mức oxi hóa: Co, Co(II), Co(III) Coban đơn chất Ở nhiệt độ thường, coban tương đối bền... tác dụng được với nhiều nguyên tố, rất thuận lợi cho việc xác định cả ba nguyên tố chỉ với một thuốc thử này Với thuốc thử đó và tránh việc chiết với dung môi hữu cơ độc hại, chúng tôi lựa chọn giải pháp là dùng môi trường mixen trung tính, có tác dụng làm tăng độ tan của phức kim loại với PAN Khảo sát đặc trưng của hệ M(II) – PAN - Chất hoạt động bề mặt • Xét phổ đặc trưng, ảnh hưởng của pH, mixen,... Triton X-100, cực đại hấp thụ: λmax = 555 nm, giới hạn phát hiện LOD = 4 ppb, khoảng tuyến tính: 0,08 – 4 ppm Đối chiếu với phương pháp AAS cho kết quả tốt [40] Olga Ch.Manouri và cộng sự đã nghiên cứu phân tích hàm lượng Zn(II) trong dược phẩm bằng một số phương pháp Phương pháp thứ nhất là phương pháp đo quang dựa trên cơ sở sự tạo phức của Zn(II) với thuốc thử 4-(2-pyridylazo)resorcinol (PAR) tại pH... nó tác dụng với hầu hết các á kim Coban rất đặc trưng với mức oxi hoá +2 trong các hợp chất Trong môi trường kiềm, muối coban tạo kết tủa màu xanh lam CoCl2 + OH -  CoOHCl- + ClKết tủa này sau đó chuyển thành Co(OH)2 màu hồng Coban tan rất nhanh trong axit HCl, HNO3, H2SO4 hoặc axit pecloric nhưng chỉ tan rất chậm trong axit HF giải phóng ra khí H2 Coban kim loại có tính khử, kết hợp với halogen (X)... tính khử, bền với oxi, chủ yếu tác dụng với lưu huỳnh, chỉ tan được trong môi trường axit có tính oxi hóa, trong dung dịch NH3 có mặt oxi Đối với các halogen, đồng phản ứng rất dễ dàng tạo thành các halogenua Đồng có thể tan trong dung dịch amoniac khi có mặt của O2 không khí 2Cu + 8NH3 +O2 +H2O → 2[Cu(NH3)4](OH)2 Ngoài ra, đồng dễ tạo nên hợp kim với các kim loại khác, dễ tạo hỗn hống với thuỷ ngân

Ngày đăng: 23/04/2013, 15:19

Hình ảnh liên quan

Bảng ký hiệu các từ viết tắt - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng k.

ý hiệu các từ viết tắt Xem tại trang 3 của tài liệu.
Bảng 2. Các tính chất của một số phức kim loại – PAN - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 2..

Các tính chất của một số phức kim loại – PAN Xem tại trang 29 của tài liệu.
Hình 1. Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 1..

Đặc trưng của phổ hấp thụ các phức màu trong môi trường Tween 80 Xem tại trang 41 của tài liệu.
Hình 2. Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 2..

Đặc trưng của phổ hấp thụ các phức trong môi trường Triton X-100 Xem tại trang 42 của tài liệu.
Bảng 3. Đặc trưng phổ hấp thụ Cu(II)-PAN, Zn(II )– PAN, Co(II )– PAN λmax (nm) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 3..

Đặc trưng phổ hấp thụ Cu(II)-PAN, Zn(II )– PAN, Co(II )– PAN λmax (nm) Xem tại trang 43 của tài liệu.
Hình 3. Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 3..

Ảnh hưởng của pH đến độ hấp thụ quang của các phức màu Xem tại trang 44 của tài liệu.
Tiến hành đo quang khi thay đổi nồng độ đệm axetat, thu được kết quả ở bảng 6. - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

i.

ến hành đo quang khi thay đổi nồng độ đệm axetat, thu được kết quả ở bảng 6 Xem tại trang 45 của tài liệu.
Hình 4. Ảnh hưởng của nồng độ Triton X-100 đến độ hấp thụ quang của các phức - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 4..

Ảnh hưởng của nồng độ Triton X-100 đến độ hấp thụ quang của các phức Xem tại trang 46 của tài liệu.
Bảng 8: Kết quả khảo sát ảnh hưởng của thuốc thử PAN - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 8.

Kết quả khảo sát ảnh hưởng của thuốc thử PAN Xem tại trang 46 của tài liệu.
Hình 5: Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 5.

Ảnh hưởng của nồng độ thuốc thử đến độ hấp thụ quang của các phức Xem tại trang 47 của tài liệu.
Hình 6,7,8: Khảo sát độ bền của các phức màu theo thời gian - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 6.

7,8: Khảo sát độ bền của các phức màu theo thời gian Xem tại trang 48 của tài liệu.
Hình 9: Khảo sát khoảng tuyến tính xác định Cu(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 9.

Khảo sát khoảng tuyến tính xác định Cu(II) Xem tại trang 49 của tài liệu.
Tại P= 0,95, f1= n- 2= 3, f 2= n-3 =2 ta có: Fbảng = 2,1916. [8] - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

i.

P= 0,95, f1= n- 2= 3, f 2= n-3 =2 ta có: Fbảng = 2,1916. [8] Xem tại trang 50 của tài liệu.
Hình 10: Đường chuẩn xác định Cu(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 10.

Đường chuẩn xác định Cu(II) Xem tại trang 50 của tài liệu.
Từ hình 11, nhận thấy khi nồng độ Zn(II) tăng thì độ hấp thụ quang cũng tăng tuyến tính - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

h.

ình 11, nhận thấy khi nồng độ Zn(II) tăng thì độ hấp thụ quang cũng tăng tuyến tính Xem tại trang 52 của tài liệu.
Hình 11: Khảo sát khoảng tuyến tính xác định Zn(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 11.

Khảo sát khoảng tuyến tính xác định Zn(II) Xem tại trang 52 của tài liệu.
Hình 12: Đường chuẩn xác định Zn(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 12.

Đường chuẩn xác định Zn(II) Xem tại trang 53 của tài liệu.
Bảng 18: Kết quả đánh giá phương pháp xác định Zn(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 18.

Kết quả đánh giá phương pháp xác định Zn(II) Xem tại trang 54 của tài liệu.
Hình 13: Khảo sát khoảng tuyến tính xác định Co(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 13.

Khảo sát khoảng tuyến tính xác định Co(II) Xem tại trang 55 của tài liệu.
Hình 14: Đường chuẩn xác định Co(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 14.

Đường chuẩn xác định Co(II) Xem tại trang 56 của tài liệu.
Bảng 23:Kết quả đánh giá phương pháp xác định Co(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 23.

Kết quả đánh giá phương pháp xác định Co(II) Xem tại trang 57 của tài liệu.
Bảng 22: Độ hấp thụ quang của phức Co-PAN ở3 nồng độ khác nhau - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 22.

Độ hấp thụ quang của phức Co-PAN ở3 nồng độ khác nhau Xem tại trang 57 của tài liệu.
Bảng 2 6: Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong đệm axetat - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 2.

6: Ảnh hưởng của Fe(II) đến độ hấp thụ quang trong đệm axetat Xem tại trang 59 của tài liệu.
Từ bảng trên, nhận thấy khi dùng hỗn hợp đệm axetat 4.10-2M và citrat 1.10-3M sẽ loại trừ được ảnh hưởng của Fe(II) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

b.

ảng trên, nhận thấy khi dùng hỗn hợp đệm axetat 4.10-2M và citrat 1.10-3M sẽ loại trừ được ảnh hưởng của Fe(II) Xem tại trang 60 của tài liệu.
Hình 15: Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp củ a3 phức theo lý thuyết và theo thực tế - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Hình 15.

Phổ hấp thụ của các phức Cu-PAN, Zn -PAN, Co-PAN và phổ hỗn hợp củ a3 phức theo lý thuyết và theo thực tế Xem tại trang 62 của tài liệu.
Bảng 35: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS  - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 35.

Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp ILS Xem tại trang 70 của tài liệu.
Bảng 36: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PLS - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 36.

Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PLS Xem tại trang 72 của tài liệu.
Bảng 37: Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 37.

Sai số giữa nồng độ mẫu chuẩn và nồng độ xác định được từ phương pháp PCR Xem tại trang 74 của tài liệu.
Bảng 39: Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp AAS - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 39.

Hàm lượng Cu(II), Zn(II), Co(II) trong mẫu đo bằng phương pháp AAS Xem tại trang 76 của tài liệu.
Bảng 44: Kết quả phân tích hàm lượng Zn(II) (ppm) - Vai trò của đồng, kẽm, coban đối với sự phát triển của sinh vật

Bảng 44.

Kết quả phân tích hàm lượng Zn(II) (ppm) Xem tại trang 78 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan