Construction of nerve growth factor loop 4 containing polypeptides for facilitated gene transfer to neurons

163 177 0
Construction of nerve growth factor loop 4   containing polypeptides for facilitated gene transfer to neurons

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CONSTRUCTION OF NERVE GROWTH FACTOR LOOP 4CONTAINING POLYPEPTIDES FOR FACILITATED GENE TRANSFER TO NEURONS JIEMING ZENG NATIONAL UNIVERISTY OF SINGAPORE 2004 Construction of Nerve Growth Factor Loop 4-Containing Polypeptides for Facilitated Gene Transfer to Neurons Jieming Zeng (MSc, MB) A THESIS SUMMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY FACULTY OF MEDICINE NATIONAL UNIVERISTY OF SINGAPORE & INSTITUTE OF BIOENGINEERING AND NANOTECHNOLOGY March 2004 ACKNOWLEDGEMENTS First and foremost, I wish to express my appreciation to my supervisor, A/P Shu Wang for his totally supporting on this study and for truly understanding what this research is all about And to A/P Heng-Phon Too and A/P Hanry Yu, my co-supervisors for the in-depth discussions and useful suggestions I would also like to acknowledge our exceptional research group at Institute of Bioengineering and Nanotechnology for providing such a fabulous environment for the study Especially thank Mr Shujun Gao for the assistance in animal studies, and thank Dr Xu Wang for the technical support in immunostaining study and confocal microscopy My thanks also to Ms Yuexia Ma for preparing the primary culture My gratitude also to Dr Alonzo H Ross from the University of Massachusetts Medical School for kindly providing two TrkA-expressing NIH3T3 cell lines Finally, I would like to express my gratitude to my family for their generosity, faith, and superb guidance during the lengthy PhD study To my father, Yaoying Zeng -immunologist and researcher -for rendering inspiring ideas To my mother, Xiaochang Cai -dermatologist and nurturer -for the continuous encouragement And my wife, Ruijuan Du who herself has been pursuing a PhD in molecular microbiology during the same period for believing in me from the start and lightening my life II TABLE OF CONTENTS Contents Page Acknowledgements………… ……… ………….………II Table of Contents……………………… ……….……… III List of Figures…………………………………………… VII Abbreviations………………………….… …………… VIII List of Publications and Patent………….………… … X Summary……………………… ……….…………………XII Introduction………….………… …………………… 1.1 Gene Therapy………………… ….…………………2 1.1.1 Background of Gene Therapy……… … …………….………2 1.1.2 Gene Delivery with Nonviral Vectors…………… …………….6 1.1.2.1 The importance of gene delivery vectors……………………6 1.1.2.2 The viral vectors…….………………………………………….7 1.1.2.3 The nonviral vectors………….………………………………10 1.1.2.4 The barriers to nonviral gene delivery….……… …………11 1.1.2.5 The improvement of nonviral vectors.……….… … …… 24 1.1.3 Targeted Gene Therapy…………………………………………25 1.1.3.1.Targeted gene therapy… ………………………………… 25 1.1.3.2 Approaches to targeted gene therapy.…… …………… 27 1.1.3.3 Targeting of nonviral vectors……………………………… 29 1.2 Gene Therapy in the Nervous System….… ….30 1.2.1 Gene Therapy in the Nervous System………… …… …… 30 1.2.1.1 The appeal to gene therapy in the nervous system… .30 III 1.2.1.2 The applicability of gene therapy in the nervous systems.….33 1.2.2 Targeted Gene Delivery to the Nervous System ………… 35 1.2.2.1 The challenges and requirements for gene therapy in the nervous system……………………………………… 35 1.2.2.2 Targeting of nonviral vectors to the nervous system… 37 1.2.3 NGF and NGF Peptidomimetics.……….………………………39 1.2.3.1 NGF and its receptors.….…….… …………………………39 1.2.3.2 NGF peptidomimetics… …………….……………… … 43 1.2.3.3 Targeting NGF receptor expressing neurons.…………….47 1.3 Aim of the Study……………… ………………… 48 Materials and Methods………… …………… …….50 2.1 Studies Using Bacterially Produced Polypeptides…………………………………………51 2.1.1 Plasmid Construction.……… ………………………….………51 2.1.2 Polypeptide Expression, Purification and Detection.……… 51 2.1.3 Cell Lines and Reporter Plasmid………… ………………….52 2.1.4 Detection of TrkA, Erk and Akt Activation.… ……………….53 2.1.5 Cell Survival Assay.…………………………… …………… 54 2.1.6 DNA Retardation Assay……………………… ………………54 2.1.7 Gene Delivery Assay….…………………… …………………55 2.2 Studies Using Chemically Synthesized Peptides……………….………………………… 56 2.2.1 Peptide Design and Synthesis….……………… …… …… 56 2.2.2 Cell Cultures……………………………………… ……………56 2.2.3 Biochemical and Biological Assays…………… …………….58 IV 2.2.4 Report Plasmid, DNA Binding Assay and Preparation of DNA complexes……………….……………… 60 2.2.5 Zeta Potential and Size of the Complexes………… ……….61 2.2.6 Gene Transfer.……………………………………… ……… 62 2.2.7 Flow Cytometry, Immunocytochemistry and Immunohistochemistry…………………………………………… 63 Experimental Results………………………… ………66 3.1 Studies Using Bacterially Produced Polypeptides…………………………………………67 3.1.1 Description of the Recombinant Cationic Polypeptides….… 67 3.1.2 Activation of TrkA, Erk and Akt by DsbC-NL4-10K………… 70 3.1.3 Promotion of PC12 Cell Survival by DsbC-NL4-10K ……….72 3.1.4 Binding of DsbC-NL4-10K to Plasmid DNA… …………… 74 3.1.5 Enhanced Polycation-mediated Gene Delivery to PC12 by DsbC-NL4-10K……………… …………………… 76 3.2 Studies Using Chemically Synthesized Peptides……………….………………………… 81 3.2.1 Biochemical and Biological Effects of NL4-10K Peptide………………………………………………………… 81 3.2.2 NL4-10K Binds to DNA and Mediates In Vitro Gene Transfer… ……………………………………………… 86 3.2.3 NL4-10K Mediates Gene Delivery through TrkA…………… 90 3.2.4 NL4-10K-containing Complexes Mediate Gene Delivery to DRG In Vivo…….……………………………… …100 3.2.5 Biocompatibility of PEI600/DNA/NL4-10K Ternary Complexes ………………………………………… 104 V Discussion……………………………………… …….107 4.1 Studies Using Bacterially Produced Polypeptides……………………………………… 108 4.1.1 The design and production of polypeptides………………….108 4.1.2 The polypeptide-containing complexes… ………………….111 4.2 Studies Using Chemically Synthesized Peptides……………….………………… …… 112 4.2.1 The design of targeting ligand….…………………………… 113 4.2.2 The binding of ligand to TrkA………………………………….114 4.2.3 The selectivity in peptide-mediated gene delivery………… 115 4.2.4 The peptide-containing complexes ….……… …………….117 4.2.5 The use of oligolysine as DNA carrier…….………………….118 4.2.6 The possible intrinsic gene delivery at high +/- charge ratio………………………………………….………119 4.2.7 The competitive inhibition assay…………………………… 122 4.2.8 The possibility of receptor-mediated gene delivery using a targeted oligolysine-based system at high +/- charge ratio…………………………….……………………124 4.2.9 The application………………………………………………….125 References…………………………………………… 127 Appendix A: Amino Acid Sequences……… ………146 Appendix B: Nucleic Acid Sequences……………….148 VI LIST OF FIGURES Figures Page Figure 3.1 Schematic of expression plasmids… …………………………….68 Figure 3.2 Structure and production of recombinant polypeptides …………69 Figure 3.3 Activation of TrkA, Erk and Akt by DsbC-NL4-10K……………….71 Figure 3.4 Promotion of neuronally differentiated PC12 cell survival in serum-free medium by DsbC-NL4-10K…………………… ………………73 Figure 3.5 DNA retardation by DsbC-NL4-10K…………………………… …75 Figure 3.6 Enhanced PEI600-mediated gene transfer by DsbC-NL4-10K in PC12 cells…… …………………………………………… 78 Figure 3.7 Comparison of DsbC-NL4-10K-meidated gene delivery in PC12 and COS7 cells…………….…………………………………………….79 Figure 3.8 Competitive inhibition of DsbC-NL4-10K-mediated gene delivery to PC12 cells by DsbC-NL4-10K pre-treatment……………….…… 80 Figure 3.9 Structures of chimeric peptide NL4-10K and its control NL4…….83 Figure 3.10 Effects of NL4-10K on TrkA receptor…………………………… 84 Figure 3.11 Promotion of neuronally differentiated PC12 cell survival in serum-free medium by NL4-10K….…………………………………85 Figure 3.12 DNA retardation by NL4-10K in agarose gel under electrophoresis……… …………………………………………………88 Figure 3.13 Efficiency of NL4-10K-mediated gene delivery in vitro………….89 Figure 3.14 Flow cytometric analysis of Trk receptors in various cell lines and primary cultured cells…………………………………………… 91 Figure 3.15 Specificity of NL4-10K-mediated gene delivery………………….97 Figure 3.16 Co-localization of Trk receptors and luciferase immunoreactivity in primary cortical neurons after transfection with NL4-10K/pCAGluc complexes……………………………………… …….99 Figure 3.17 Gene delivery mediated by NL4-10K-containing complexes…102 Figure 3.18 Biocompatibility of NL4-10K-containing complexes……………105 VII ABBREVIATIONS AAV adeno-associated virus AD Alzheimer's disease ADA adenosine deaminase ALS amyotrophic lateral sclerosis BBB blood-brain barrier BDNF brain-derived neurotrophic factor BSA bovine serum albumin CR cysteine-rich cluster DMEM Dulbecco's modified Eagle's medium DRG dorsal root ganglia EGF epidermal growth factor ERK extracellular receptor-activated kinase FBS fetal bovine serum HA hemagglutinin HBS HEPES-buffered saline HRP horseradish peroxidase HSPGs heparin sulfate proteoglycans HSV herpes simplex virus Ig immunoglobulin LLR leucine-rich region MND motor neuron disease NGF nerve growth factor NLS nuclear localization sequence NPC nuclear pore complex NT-3 neurotrophin-3 NT-4/5 neurotrophin-4/5 NT-6 neurotrophin-6 VIII OTC ornithine transcarbamylase PBS phosphate-buffered saline PD Parkinson’s disease PEG polyethylene glycol PEI polyethyleneimine PI-3K phosphotidylinositol-3-OH kinase PLC- γ1 phospholipase Cγ1 PNA peptide nucleic acid RLU relative light unit SC spinal cord SCID severe combined immune deficiency SCID-X1 X-linked severe combined immunodeficiency SH2 src homology domain TIL tumor-infiltrating lymphocyte IX 85 Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR, Belluscio L, Le Beau MM, Espinosa R, III, Squinto SP, (1992) Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity Proc Natl Acad Sci U S A 89: 3060-3064 86 Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli Proc Natl Acad Sci U S A 69: 2904-2909 87 Jones MG, Munson JB, Thompson SW (1999) A role for nerve growth factor in sympathetic sprouting in rat dorsal root ganglia Pain 79: 2129 88 Jullien J, Guili V, Reichardt LF, Rudkin BB (2002) Molecular kinetics of nerve growth factor receptor trafficking and activation J Biol Chem 277: 38700-38708 89 Kafri T, Morgan D, Krahl T, Sarvetnick N, Sherman L, Verma I (1998) Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy Proc Natl Acad Sci U S A 95: 11377-11382 90 Kahle P, Barker PA, Shooter EM, Hertel C (1994) p75 nerve growth factor receptor modulates p140trkA kinase activity, but not ligand internalization, in PC12 cells J Neurosci Res 38: 599-606 91 Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large-T antigen Nature 311: 33-38 92 Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF (1991) The trk proto-oncogene product: a signal transducing receptor for nerve growth factor Science 252: 554-558 93 Kaplan DR, Stephens RM (1994) Neurotrophin signal transduction by the Trk receptor J Neurobiol 25: 1404-1417 94 Kawas CH, Katzman R (1999) Epidemiology of dementia and Alzheimer's disease In: Alzheimer's disease (Terry RD, Katzman R, Bick KL, Sisodia SS, eds), pp 95-116 Philadelphia: Lippincott Williams & Wilkins 95 Kichler A, Leborgne C, Coeytaux E, Danos O (2001) Polyethyleniminemediated gene delivery: a mechanistic study J Gene Med 3: 135-144 135 96 Kieber-Emmons T, Murali R, Greene MI (1997) Therapeutic peptides and peptidomimetics Curr Opin Biotechnol 8: 435-441 97 Kircheis R, Blessing T, Brunner S, Wightman L, Wagner E (2001a) Tumor targeting with surface-shielded ligand polycation DNA complexes J Control Release 72: 165-170 98 Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, Felzmann T, Buchberger M, Wagner E (1997) Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery Gene Ther 4: 409-418 99 Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, Wagner E (2001b) Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application Gene Ther 8: 28-40 100 Kircheis R, Wightman L, Wagner E (2001c) Design and gene delivery activity of modified polyethylenimines Adv Drug Deliv Rev 53: 341358 101 Klein R, Jing SQ, Nanduri V, O'Rourke E, Barbacid M (1991a) The trk proto-oncogene encodes a receptor for nerve growth factor Cell 65: 189-197 102 Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, CordonCardo C, Jones KR, Reichardt LF, Barbacid M (1991b) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3 Cell 66: 395-403 103 Knight A, Carvajal J, Schneider H, Coutelle C, Chamberlain S, Fairweather N (1999) Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin Eur J Biochem 259: 762-769 104 Kullander K, Kaplan D, Ebendal T (1997) Two restricted sites on the surface of the nerve growth factor molecule independently determine specific TrkA receptor binding and activation J Biol Chem 272: 93009307 105 Kunath K, Merdan T, Hegener O, Haberlein H, Kissel T (2003) Integrin targeting using RGD-PEI conjugates for in vitro gene transfer J Gene Med 5: 588-599 106 Kwok KY, McKenzie DL, Evers DL, Rice KG (1999) Formulation of highly soluble poly(ethylene glycol)-peptide DNA condensates J Pharm Sci 88: 996-1003 107 Labat-Moleur F, Steffan AM, Brisson C, Perron H, Feugeas O, Furstenberger P, Oberling F, Brambilla E, Behr JP (1996) An electron 136 microscopy study into the mechanism of gene transfer with lipopolyamines Gene Ther 3: 1010-1017 108 Lanford RE, Butel JS (1984) Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen Cell 37: 801813 109 Lear JD, DeGrado WF (1987) Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA2 J Biol Chem 262: 6500-6505 110 Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O'Brodovich H, Lukacs GL (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer Gene Ther 6: 482-497 111 Lee FS, Kim AH, Khursigara G, Chao MV (2001) The uniqueness of being a neurotrophin receptor Curr Opin Neurobiol 11: 281-286 112 Lee YH, Fang KM, Yang CM, Hwang HM, Chiu CT, Tsai W (2000) Kainic acid-induced neurotrophic activities in developing cortical neurons J Neurochem 74: 2401-2411 113 Lehrman S (1999) Virus treatment questioned after gene therapy death Nature 401: 517-518 114 LeSauteur L, Wei L, Gibbs BF, Saragovi HU (1995) Small peptide mimics of nerve growth factor bind TrkA receptors and affect biological responses J Biol Chem 270: 6564-6569 115 Levi-Montalcini R (1987) The nerve growth factor 35 years later Science 237: 1154-1162 116 Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection Gene Ther 6: 585-594 117 Longo FM, Manthorpe M, Xie YM, Varon S (1997) Synthetic NGF peptide derivatives prevent neuronal death via a p75 receptordependent mechanism J Neurosci Res 48: 1-17 118 Longo FM, Mobley WC (1996) Minimized hormones grow in stature Nat Biotechnol 14: 1092 119 Longo FM, Vu TK, Mobley WC (1990) The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides Cell Regul 1: 189-195 137 120 Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus J Biol Chem 275: 1625-1629 121 Luzio JP, Mullock BM, Pryor PR, Lindsay MR, James DE, Piper RC (2001) Relationship between endosomes and lysosomes Biochem Soc Trans 29: 476-480 122 Maliartchouk S, Debeir T, Beglova N, Cuello AC, Gehring K, Saragovi HU (2000) Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action J Biol Chem 275: 9946-9956 123 Maliartchouk S, Saragovi HU (1997) Optimal nerve growth factor trophic signals mediated by synergy of TrkA and p75 receptor-specific ligands J Neurosci 17: 6031-6037 124 Marshall E (1999) Gene therapy death prompts review of adenovirus vector Science 286: 2244-2245 125 Martinez-Fong D, Navarro-Quiroga I, Ochoa I, Alvarez-Maya I, Meraz MA, Luna J, Arias-Montano JA (1999) Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells Brain Res Mol Brain Res 69: 249-262 126 Massa SM, Xie Y, Longo FM (2002) Alzheimer's therapeutics: neurotrophin small molecule mimetics J Mol Neurosci 19: 107-111 127 Matsui H, Johnson LG, Randell SH, Boucher RC (1997) Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells J Biol Chem 272: 1117-1126 128 Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase Annu Rev Biochem 67: 265-306 129 Maxfield FR (1982) Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts J Cell Biol 95: 676-681 130 McDonald NQ, Chao MV (1995) Structural determinants neurotrophin action J Biol Chem 270: 19669-19672 of 131 McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor Nature 354: 411-414 138 132 McInnes C, Sykes BD (1997) Growth factor receptors: structure, mechanism, and drug discovery Biopolymers 43: 339-366 133 McKay RD (1989) The origins of cellular diversity in the mammalian central nervous system Cell 58: 815-821 134 McMahon SB, Armanini MP, Ling LH, Phillips HS (1994) Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets Neuron 12: 1161-1171 135 Medina-Kauwe LK, Kasahara N, Kedes L (2001a) 3PO, a novel nonviral gene delivery system using engineered Ad5 penton proteins Gene Ther 8: 795-803 136 Medina-Kauwe LK, Maguire M, Kasahara N, Kedes L (2001b) Nonviral gene delivery to human breast cancer cells by targeted Ad5 penton proteins Gene Ther 8: 1753-1761 137 Meldolesi J, Sciorati C, Clementi E (2000) The p75 receptor: first insights into the transduction mechanisms leading to either cell death or survival Trends Pharmacol Sci 21: 242-243 138 Mercola KE, Stang HD, Browne J, Salser W, Cline MJ (1980) Insertion of a new gene of viral origin into bone marrow cells of mice Science 208: 1033-1035 139 Miller MW, Pitts FA (2000) Neurotrophin receptors in the somatosensory cortex of the mature rat: co-localization of p75, trk, isoforms and c-neu Brain Res 852: 355-366 140 Miranda R, Sohrabji F, Singh M, Toran-Allerand D (1996) Nerve growth factor (NGF) regulation of estrogen receptors in explant cultures of the developing forebrain J Neurobiol 31: 77-87 141 Mischel PS, Umbach JA, Eskandari S, Smith SG, Gundersen CB, Zampighi GA (2002) Nerve growth factor signals via preexisting TrkA receptor oligomers Biophys J 83: 968-976 142 Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer Proc Natl Acad Sci U S A 93: 12349-12354 143 Mu X, Silos-Santiago I, Carroll SL, Snider WD (1993) Neurotrophin receptor genes are expressed in distinct patterns in developing dorsal root ganglia J Neurosci 13: 4029-4041 139 144 Nathwani AC, Nienhuis AW, Davidoff AM (2003) Current status of gene therapy for hemophilia Curr Hematol Rep 2: 319-327 145 Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors Gene Ther 9: 1647-1652 146 Nonomura T, Kubo T, Oka T, Shimoke K, Yamada M, Enokido Y, Hatanaka H (1996) Signaling pathways and survival effects of BDNF and NT-3 on cultured cerebellar granule cells Brain Res Dev Brain Res 97: 42-50 147 Obermeier A, Lammers R, Wiesmuller KH, Jung G, Schlessinger J, Ullrich A (1993) Identification of Trk binding sites for SHC and phosphatidylinositol 3'-kinase and formation of a multimeric signaling complex J Biol Chem 268: 22963-22966 148 Oupicky D, Konak C, Dash PR, Seymour LW, Ulbrich K (1999) Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block Bioconjug Chem 10: 764-772 149 Palmer AM (2002) Pharmacotherapy for Alzheimer's disease: progress and prospects Trends Pharmacol Sci 23: 426-433 150 Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action Curr Opin Neurobiol 11: 272-280 151 Pattarawarapan M, Burgess K (2003) Molecular basis of neurotrophinreceptor interactions J Med Chem 46: 5277-5291 152 Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase) EMBO J 10: 885-892 153 Peluffo H, Aris A, Acarin L, Gonzalez B, Villaverde A, Castellano B (2003) Nonviral gene delivery to the central nervous system based on a novel integrin-targeting multifunctional protein Hum Gene Ther 14: 1215-1223 154 Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells J Biol Chem 273: 75077511 155 Pollard H, Toumaniantz G, Amos JL, Avet-Loiseau H, Guihard G, Behr JP, Escande D (2001) Ca2+-sensitive cytosolic nucleases prevent 140 efficient delivery to the nucleus of injected plasmids J Gene Med 3: 153-164 156 Poole B, Ohkuma S (1981) Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages J Cell Biol 90: 665-669 157 Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats J Comp Neurol 377: 443-464 158 Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence Cell 64: 615-623 159 Robinson RC, Radziejewski C, Spraggon G, Greenwald J, Kostura MR, Burtnick LD, Stuart DI, Choe S, Jones EY (1999) The structures of the neurotrophin homodimer and the brain-derived neurotrophic factor/neurotrophin heterodimer reveal a common Trk-binding site Protein Sci 8: 2589-2597 160 Robinson RC, Radziejewski C, Stuart DI, Jones EY (1995) Structure of the brain-derived neurotrophic factor/neurotrophin heterodimer Biochemistry 34: 4139-4146 161 Rosenberg SA, Blaese RM, Anderson WF (1990) The N2-TIL human gene transfer clinical protocol Hum Gene Ther 1: 73-92 162 Ruit KG, Osborne PA, Schmidt RE, Johnson EM, Jr., Snider WD (1990) Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse J Neurosci 10: 24122419 163 Ruponen M, Yla-Herttuala S, Urtti A (1999) Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies Biochim Biophys Acta 1415: 331-341 164 Ryan KJ, Wente SR (2000) The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm Curr Opin Cell Biol 12: 361-371 165 Saragovi HU, Gehring K (2000) Development of pharmacological agents for targeting neurotrophins and their receptors Trends Pharmacol Sci 21: 93-98 166 Saragovi HU, Rebai N, Di Guglielmo GM, Macleod R, Sheng J, Rubin DH, Greene MI (1999) A G1 cell cycle arrest induced by ligands of the 141 reovirus type receptor is secondary to inactivation of p21ras and mitogen-activated protein kinase DNA Cell Biol 18: 763-770 167 Schneider R, Schweiger M (1991) A novel modular mosaic of cell adhesion motifs in the extracellular domains of the neurogenic trk and trkB tyrosine kinase receptors Oncogene 6: 1807-1811 168 Seabold GK, Luo J, Miller MW (1998) Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons Brain Res Dev Brain Res 108: 139-145 169 Shamovsky IL, Ross GM, Riopelle RJ, Weaver DF (1999) The interaction of neurotrophins with the p75NTR common neurotrophin receptor: a comprehensive molecular modeling study Protein Sci 8: 2223-2233 170 Shilling PD, Kelsoe JR (2002) Functional genomics approaches to understanding brain disorders Pharmacogenomics 3: 31-45 171 Simberg D, Danino D, Talmon Y, Minsky A, Ferrari ME, Wheeler CJ, Barenholz Y (2001) Phase behavior, DNA ordering, and size instability of cationic lipoplexes Relevance to optimal transfection activity J Biol Chem 276: 47453-47459 172 Simoes S, Slepushkin V, Gaspar R, de Lima MC, Duzgunes N (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides Gene Ther 5: 955-964 173 Simoes S, Slepushkin V, Pretzer E, Dazin P, Gaspar R, Pedroso de Lima MC, Duzgunes N (1999) Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides J Leukoc Biol 65: 270-279 174 Siomi H, Dreyfuss G (1995) A nuclear localization domain in the hnRNP A1 protein J Cell Biol 129: 551-560 175 Smaglik P (1999) Tighter watch urged on adenoviral vectors with proposal to report all 'adverse events' Nature 402: 707 176 Smisterova J, Wagenaar A, Stuart MC, Polushkin E, ten Brinke G, Hulst R, Engberts JB, Hoekstra D (2001) Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery J Biol Chem 276: 47615-47622 142 177 Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death Cell 76: 959-962 178 Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us Cell 77: 627-638 179 Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair Annu Rev Neurosci 24: 1217-1281 180 Somia N, Verma IM (2000) Gene therapy: trials and tribulations Nat Rev Genet 1: 91-99 181 Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T, (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor Cell 65: 895-903 182 Stenseth K, Thyberg J (1989) Monensin and chloroquine inhibit transfer to lysosomes of endocytosed macromolecules in cultured mouse peritoneal macrophages Eur J Cell Biol 49: 326-333 183 Subbarao NK, Parente RA, Szoka FC, Jr., Nadasdi L, Pongracz K (1987) pH-dependent bilayer destabilization by an amphipathic peptide Biochemistry 26: 2964-2972 184 Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycationmediated DNA delivery Appl Microbiol Biotechnol 62: 27-34 185 Vacik J, Dean BS, Zimmer WE, Dean DA (1999) Cell-specific nuclear import of plasmid DNA Gene Ther 6: 1006-1014 186 Van der Zee CE, Ross GM, Riopelle RJ, Hagg T (1996) Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice Science 274: 1729-1732 187 Vega JA, Garcia-Suarez O, Hannestad J, Perez-Perez M, Germana A (2003) Neurotrophins and the immune system J Anat 203: 1-19 188 Vijayanathan V, Thomas T, Thomas TJ (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy Biochemistry 41: 14085-14094 143 189 Wibo M, Poole B (1974) Protein degradation in cultured cells II The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1 J Cell Biol 63: 430-440 190 Wiesmann C, de Vos AM (2001) Nerve growth factor: structure and function Cell Mol Life Sci 58: 748-759 191 Wiesmann C, Ultsch MH, Bass SH, de Vos AM (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor Nature 401: 184-188 192 Wiethoff CM, Smith JG, Koe GS, Middaugh CR (2001) The potential role of proteoglycans in cationic lipid-mediated gene delivery Studies of the interaction of cationic lipid-DNA complexes with model glycosaminoglycans J Biol Chem 276: 32806-32813 193 Williams DA, Baum C (2003) Medicine Gene therapy new challenges ahead Science 302: 400-401 194 Winkler J, Thal LJ, Gage FH, Fisher LJ (1998) Cholinergic strategies for Alzheimer's disease J Mol Med 76: 555-567 195 Wolff JA, Lederberg J (1994) An early history of gene transfer and therapy Hum Gene Ther 5: 469-480 196 Woo SB, Neet KE (1996) Characterization of histidine residues essential for receptor binding and activity of nerve growth factor J Biol Chem 271: 24433-24441 197 Woo SB, Whalen C, Neet KE (1998) Characterization of the recombinant extracellular domain of the neurotrophin receptor TrkA and its interaction with nerve growth factor (NGF) Protein Sci 7: 10061016 198 Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC, Jr (1997) Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers Biochemistry 36: 3008-3017 199 Xie Y, Tisi MA, Yeo TT, Longo FM (2000) Nerve growth factor (NGF) loop dimeric mimetics activate ERK and AKT and promote NGF-like neurotrophic effects J Biol Chem 275: 29868-29874 200 Xu L, Pirollo KF, Tang WH, Rait A, Chang EH (1999) Transferrinliposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts Hum Gene Ther 10: 2941-2952 144 201 Xu Y, Szoka FC, Jr (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection Biochemistry 35: 5616-5623 202 Yang Y, Park Y, Man S, Liu Y, Rice KG (2001) Cross-linked low molecular weight glycopeptide-mediated gene delivery: relationship between DNA metabolic stability and the level of transient gene expression in vivo J Pharm Sci 90: 2010-2022 203 Yano L, Shimura M, Taniguchi M, Hayashi Y, Suzuki T, Hatake K, Takaku F, Ishizaka Y (2000) Improved gene transfer to neuroblastoma cells by a monoclonal antibody targeting RET, a receptor tyrosine kinase Hum Gene Ther 11: 995-1004 204 Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid J Biol Chem 270: 18997-19007 205 Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus Proc Natl Acad Sci U S A 96: 91-96 206 Zapf-Colby A, Olefsky JM (1998) Nerve growth factor processing and trafficking events following TrkA-mediated endocytosis Endocrinology 139: 3232-3240 207 Zhou X, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action Biochim Biophys Acta 1189: 195-203 208 Ziady AG, Davis PB (2002) Receptor-directed gene delivery using molecular conjugates In: Vector targeting for therapeutic gene delivery (Curiel DT, Douglas JT, eds), pp 63-86 New Jersey: Wiley-Liss, Inc 209 Zuhorn IS, Kalicharan R, Hoekstra D (2002a) Lipoplex-mediated transfection of mammalian cells occurs through the cholesteroldependent clathrin-mediated pathway of endocytosis J Biol Chem 277: 18021-18028 210 Zuhorn IS, Oberle V, Visser WH, Engberts JB, Bakowsky U, Polushkin E, Hoekstra D (2002b) Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency Biophys J 83: 2096-2108 145 APPENDIX A: AMINO ACID SEQUENCES Name: human NGF Sequence: SSSHPIFHRG EFSVCDSVSV WVGDKTTATD IKGKEVMVLG EVNINNSVFK 50 QYFFETKCRD PNPVDSGCRG IDSKHWNSYC TTTHTFVKAL TMDGKQAAWR 100 FIRIDTACVC VLSRKAVRR Name: DsbC-NL4 Sequence: MKKGFMLFTL LTNSGVLYIT YKAPQEKHVI DAEKEMKAIW GTPAVVLSNG AGLVPRGSCT LAAFSGFAQA DDGKHIIQGP TVFTDITCGY CAKDKNKAFD TLVPGYQPPK TTHTFVKALT DDAAIQQTLA MYDVSGTAPV CHKLHEQMAD DVMAGKSVAP EMKEFLDEHQ MDGKQAAWRF KMGIKSSDIQ NVTNKMLLKQ YNALGITVRY ASCDVDIADH KMTSGKGSTS IRIDTAC PAPVAGMKTV LNALEKEMIV LAFPRQGLDS YALGVQLGVS GSGHHHHHHS 50 100 150 200 250 KMGIKSSDIQ NVTNKMLLKQ YNALGITVRY ASCDVDIADH KMTSGKGSTS IRIDTACKKK PAPVAGMKTV LNALEKEMIV LAFPRQGLDS YALGVQLGVS GSGHHHHHHS KKKKKKK 50 100 150 200 250 Features: - aa 1-236: DsbC - aa 244-249: His6 tag - aa 259-287: NL4 Name: DsbC-NL4-10K Sequence: MKKGFMLFTL LTNSGVLYIT YKAPQEKHVI DAEKEMKAIW GTPAVVLSNG AGLVPRGSCT LAAFSGFAQA DDGKHIIQGP TVFTDITCGY CAKDKNKAFD TLVPGYQPPK TTHTFVKALT DDAAIQQTLA MYDVSGTAPV CHKLHEQMAD DVMAGKSVAP EMKEFLDEHQ MDGKQAAWRF Features: - aa 1-236: DsbC - aa 244-249: His6 tag - aa 259-297: NL4-10K Name: NL4 Sequence: CTTTHTFVKA LTMDGKQAAW RFIRIDTAC Features: - aa 1-29 correspond to aa 80-108 of nerve growth factor (NGF) and include loop 4, a known receptor binding region - C1 and C29 form a disulfide bridge Name: NL4-10K Sequence: CTTTHTFVKA LTMDGKQAAW RFIRIDTACK KKKKKKKKK Features: - aa 1-29 correspond to aa 80-108 of nerve growth factor (NGF) and include loop 4, a known receptor binding region 146 - C1 and C29 form a disulfide bridge aa 30-39 form a nucleic acid binding domain Name: 10K Sequence: KKKKKKKKKK 147 APPENDIX B: NUCLEIC ACID SEQUENCES NA SEQ Description: Forward primer for NL4 and NL4-10K Sequence: 5’-TGTACCACGA CTCACACC-3’ NA SEQ Description: Reverse primer for NL4 Sequence: 5’-GCAAGCTTTC AACAGGCCGT ATCTATCCG-3’ NA SEQ Description: Reverse primer for NL4-10K Sequence: 5’-GCAAGCTTTC ATTTTTTTTT TTTTTTTTTT TTTTTTTTTT TACAGGCCGT ATCTATCCG-3’ NA SEQ Description: Coding sequence for Sequence: atgaagaaag gttttatgtt gtttactttg tgctcaggct gatgacgcgg caattcaaca tcaaaagcag cgatattcag cccgcgcctg ctgactaaca gcggcgtgtt gtacatcacc tcaggggcca atgtatgacg ttagtggcac ataagatgct gttaaagcag ttgaatgcgc tataaagcgc cgcaggaaaa acacgtcatc ctgtggttac tgccacaaac tgcatgagca tggggatcac cgtgcgttat cttgctttcc gatgcagaga aagaaatgaa agctatctgg agcgtttgat gatgtgatgg caggtaaaag acgtggatat tgccgaccat tacgcacttg ggtactccgg cagttgtgct gagcaatggc gccgccgaaa gagatgaaag aatttctcga gcggtaaagg atcaactagt ggttctggtc gcgggtctgg tgccacgcgg tagttgtacc ggcgctgacc atggatggca agcaggctgc atacggcctg t DsbC-NL4 ttagcggcgt aacgttagcc tagctggcat gatgatggta ggctccggtc ttgaaaaaga accgtgttta aatggcagac cgcgccaggg tgtgcgaaag cgtcgcacca gcgtccagct acacttgttc cgaacaccaa atcaccatca acgactcaca ctggcggttt tttcaggctt aaaatgggca gaagacagtt aacatatcat aatgtcacca gatgatcgtt ctgatattac tacaacgcgc gctggacagc ataaaaacaa gccagttgcg tggcgttagc cgggttacca aaaatgacca ccatcactcc cctttgtcaa atccggatag 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 NA SEQ Description: Coding sequence for Sequence: atgaagaaag gttttatgtt gtttactttg tgctcaggct gatgacgcgg caattcaaca tcaaaagcag cgatattcag cccgcgcctg ctgactaaca gcggcgtgtt gtacatcacc tcaggggcca atgtatgacg ttagtggcac ataagatgct gttaaagcag ttgaatgcgc tataaagcgc cgcaggaaaa acacgtcatc ctgtggttac tgccacaaac tgcatgagca DsbC-NL4-10K ttagcggcgt aacgttagcc tagctggcat gatgatggta ggctccggtc ttgaaaaaga accgtgttta aatggcagac tttcaggctt aaaatgggca gaagacagtt aacatatcat aatgtcacca gatgatcgtt ctgatattac tacaacgcgc 50 100 150 200 250 300 350 400 148 tggggatcac gatgcagaga agcgtttgat acgtggatat ggtactccgg gccgccgaaa gcggtaaagg gcgggtctgg ggcgctgacc atacggcctg cgtgcgttat aagaaatgaa gatgtgatgg tgccgaccat cagttgtgct gagatgaaag atcaactagt tgccacgcgg atggatggca taaaaaaaaa cttgctttcc agctatctgg caggtaaaag tacgcacttg gagcaatggc aatttctcga ggttctggtc tagttgtacc agcaggctgc aaaaaaaaaa cgcgccaggg tgtgcgaaag cgtcgcacca gcgtccagct acacttgttc cgaacaccaa atcaccatca acgactcaca ctggcggttt aaaaaaaaaa gctggacagc ataaaaacaa gccagttgcg tggcgttagc cgggttacca aaaatgacca ccatcactcc cctttgtcaa atccggatag 450 500 550 600 650 700 750 800 850 149 .. .Construction of Nerve Growth Factor Loop 4- Containing Polypeptides for Facilitated Gene Transfer to Neurons Jieming Zeng (MSc, MB) A THESIS SUMMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY... success of gene therapy for neurological disorders In this study, chimeric polypeptides were constructed for targeted gene transfer to cells expressing nerve growth factor (NGF) receptor TrkA... Targeting of nonviral vectors As there is no panacea, there is no versatile vector for gene therapy to all kind of diseases Gene delivery vector has to be customized to fit the requirement of various

Ngày đăng: 16/09/2015, 17:13

Tài liệu cùng người dùng

Tài liệu liên quan