HCV functional genomic protein interactions with NS3 and their role in viral replication

105 280 0
HCV functional genomic  protein interactions with NS3 and their role in viral replication

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

HCV functional genomics: Protein interactions with NS3 and their role in viral replication Khu Yee Ling B. Sc. (Hons) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2004 I Acknowledgements I am indebted to my supervisor, Dr Goh Phuay Yee, for her patience and guidance. Thanks are also due to my committee members, Drs Alan Porter and Thomas Dick for their invaluable advices. I am also grateful to Dr Goh Phuay Yee for the dimerization mutants (Y267S, M288T and T266A) and Dr Tan Yee Joo for useful discussion and help with using the FPLC machine. The presence of wonderful lab members in the CAVR group, both past and present, has made my stay in the institute a memorable experience. I thank them for their friendship and gossip sessions, which were highly useful for de-stressing. Besides the excellent sequencing services provided by Dr Alice Tay, our prophet and guru of all things big and small, I would also like to thank her for all the stimulating conversations we have shared. Closest to my heart, I would like to thank my parents, especially mum, who encourages me, believes in me and been my greatest fan, always. My husband, one of the most important men in my life, thanks for being there whenever I needed you and Yong Teng, the other man in my life, who brought out the patience in me I never knew I have. I Table of Contents ACKNOWLEDGEMENTS I TABLE OF CONTENTS II LIST OF FIGURES IV LIST OF TABLES VII LIST OF PUBLICATIONS VIII LIST OF ABBREVIATIONS IX SUMMARY XI 1. INTRODUCTION 1.1 Medical Importance of HCV 1.2 Molecular biology of HCV 1.2.1 Structural Proteins 1.2.2 Non-structural Proteins 1.3 HCV protein-protein interaction 1.4 Aims and Objectives 11 2. MATERIALS AND METHODS 12 2.1 Construction of Plasmids 12 2.2 Yeast two-hybrid screens 2.2.1 NS3 NS3 interaction 2.2.2 NS3 Host interaction 12 12 13 2.3 Generation of mutations in NS3 helicase 14 2.4 NS3 helicase and helicase mutants expression, purification and analytical gel filtration 16 2.5 Helicase activity assay 17 2.6 In vitro binding assay 18 2.7 FL-NS3, LMP7 expression and purification 18 II 2.8 In vitro protease activity assay 20 2.9 Proteasome activity assay 20 2.10 Immunoprecipitation(IP) 22 2.11 Western blot analysis 22 2.12 Tissue culture 23 3. RESULT 27 3.1 Characterization of NS3-NS3 interaction 27 3.1.1 Delineating the region of self-interaction in NS3 27 3.1.2 Expression and purification of recombinant NS3 helicase for gel filtration analysis 32 3.1.3 Analytical gel filtration of dimerization mutants 37 3.1.4 Correlation between dimer formation and helicase activity 41 3.2 Characterization of NS3-LMP7 interaction 3.2.1 Screening for NS3 host interacting partner 3.2.2 Delineating the region of interaction between NS3 and LMP7. 3.2.3 Expression and purification of recombinant NS3 and LMP7 for in vitro assays 3.2.4 Effect of LMP7 on NS3 protease activity 3.2.5 Effect of NS3 on proteasome activity 45 45 47 4. DISCUSSION 67 4.1 NS3 NS3 interaction 67 4.2 NS3 LMP7 interaction 70 50 53 55 5. CONCLUSION 76 6. REFERENCES 77 III List of Figures FIGURE 1-2. HCV GENOME AND ENCODED VIRAL PROTEINS . FIGURE 2-1. SCHEME SHOWING THE GENERATION OF RANDOM MUTANTS THAT DISRUPT HELICASE INTERACTION. . 15 FIGURE 3-1. A MINIMAL DOMAIN OF NS3 REQUIRED FOR INTERACTION DEFINED BY YEAST-TWO HYBRID ASSAY . 28 FIGURE 3-2. IMMUNOPRECIPITATION BETWEEN FLAG-TAGGED NS3 AND MYC-TAGGED NS3. . 29 FIGURE 3-3. THE NS3 HELICASE INTERACTS IN AN N-TO-N ORIENTATION 30 FIGURE 3-4. MINIMAL REGION FOUND TO INTERACT WITH HELICASE DOMAIN AND ITSELF. 31 FIGURE 3-5. RECOMBIANT NS3 HELICASE EXPRESSION. . 33 FIGURE 3-6. PURIFICATION OF NS3 HELICASE BY FPLC. 33 FIGURE 3-7. GEL FILTRATION OF WILD-TYPE HELICASE. . 34 FIGURE 3-8. GEL FILTRATION OF HELICASE MUTANTS . 36 FIGURE 3-9. POSITIONS OF SOME OF THE MUTANTS THAT DISRUPTED INTERACTION BETWEEN TWO MINIMAL REGIONS . 38 FIGURE 3-10. GEL FILTRATION OF DIMERIZATION MUTANTS. . 40 FIGURE 3-11. HELICASE ASSAYS OF WILD-TYPE HELICASE, MUTANTS Y267 AND AAA. 41 FIGURE 3-12. DIMERIZATION MUTANTS SHOWS REDUCTION IN HELICASE ACTIVITY. 42 FIGURE 3-13. INHIBITION OF HELICASE ACTIVITIES BY THE ADDITIONS OF MUTANT PROTEINS. 44 FIGURE 3-14. RECOMBINANT GST-NS3 AND GST EXPRESSION. . 46 FIGURE 3-15. NS3-LMP7 INTERACTION SHOWN BY IN VITRO BINDING ASSAY 46 IV FIGURE 3-16. LMP7 INTERACTS WITH THE PROTEASE DOMAIN OF NS3. 48 FIGURE 3-17. NS3 INTERACTS WITH THE PROSEQUENCE OF LMP7. . 49 FIGURE 3-18. PURIFICATION OF RECOMBINANT GST-NS3 . 51 FIGURE 3-19. PURIFICATION OF RECOMBINANT LMP7 . 52 FIGURE 3-20. IN VITRO BINDING OF PURIFIED LMP7 TO GST NS3 AND PROTEASE ACTIVITY OF PURIFIED NS3 54 FIGURE 3-21. NS3 BINDS TO THE IMMUNOPROTEASOME COMPLEX. . 56 FIGURE 3-22. CHYMOTRYPSIN-LIKE ACTIVITY OPTIMIZATION IN HELA CELLS USING SUBSTRATE LLVY-AMC . 59 FIGURE 3-23. NS3 DID NOT AFFECT IMMUNOPROTEASOME CHYMOTRYPSIN-LIKE ACTIVITY IN HELA CELLS 59 FIGURE 3-24. TRYPSIN-LIKE ACTIVITY OPTIMIZATION IN HELA CELLS USING SUBSTRATE LRR-AMC 60 FIGURE 3-25. NS3 REDUCES IMMUNOPROTEASOME TRYPSIN-LIKE ACTIVITY IN HELA CELLS. 60 FIGURE 3-26. POST ACIDIC ACTIVITY OPTIMIZATION IN HELA CELLS USING SUBSTRATE LLE-AMC . . 61 FIGURE 3-27. NS3 DID NOT AFFECT IMMUNOPROTEASOME POST ACIDIC ACTIVITY IN HELA CELLS. 61 FIGURE 3-28. CHYMOTRYPSIN-LIKE ACTIVITY OPTIMIZATION IN HUH-7 CELLS USING SUBSTRATE LLVY-AMC . 62 FIGURE 3-29. NS3 DID NOT AFFECT IMMUNOPROTEASOME CHYMOTRYPSIN-LIKE ACTIVITY IN HUH-7 CELLS. 62 FIGURE 3-30. TRYPSIN-LIKE ACTIVITY OPTIMIZATION IN HUH-7 CELLS USING SUBSTRATE LRR-AMC 63 V FIGURE 3-31. NS3 DID NOT AFFECT IMMUNOPROTEASOME TRYPSIN-LIKE ACTIVITY IN HUH-7 CELLS. 63 FIGURE 3-32. POST ACIDIC ACTIVITY OPTIMIZATION IN HUH-7 CELLS USING SUBSTRATE LLE-AMC . . 64 FIGURE 3-33. NS3 DID NOT AFFECT IMMUNOPROTEASOME POST ACIDIC ACTIVITY IN HUH-7 CELLS. 64 FIGURE 3-34. EXPRESSION OF NS3-NS5B VIRAL PROTEINS REDUCES THE LMP7IMMUNOPROPTEASOME ACTIVITY. . 66 VI List of Tables TABLE 2-1. VECTORS USED IN THIS STUDY 24 TABLE 2-2. PLASMIDS USED IN STUDYING NS3-NS3 INTERACTION 25 TABLE 2-3. PLASMIDS USED IN STUDYING NS3 LMP7 INTERACTION 26 VII List of Publications Lim, S. P., Y. L. Khu, W. Hong, A. Tay, A. E. Ting, S. G. Lim, and Y. H. Tan. 2001. Identification and molecular characterization of the complete genome of a Singapore isolate of hepatitis C virus: sequence comparison with other strains and phylogenetic analysis. Virus Genes. 23:89-95. Khu, Y. L., E. Koh, S. P. Lim, Y. H. Tan, S. Brenner, S. G. Lim, W. Hong, and P. Y. Goh. 2001. Mutations that affect dimer formation and helicase activity of the hepatitis C virus helicase. J. Virol. 75:205-214. Khu, Y. L., Y. J. Tan, S. G. Lim, W. Hong, and P. Y. Goh. 2004. Hepatitis C virus nonstructural protein NS3 interacts with LMP7, a component of immunoproteasome, and affects its proteasome activity. Biochem. J. (in press) VIII List of Abbreviations aa Amino acid ABS Absorbance ds Double stranded DTT Dithiothreitol ER Endoplasmic reticulum FPLC Fast-performance liquid chromatography GSH Glutathione GST Glutathione S-transferase HCV Hepatitis C virus HVR Hypervariable region IFN Interferon IFN- Interferon-gamma IgG Immunoglobulin G IPTG Isopropyl-1-thio- -D-galactopyranoside IRES Internal ribosomal entry site ISDR Interferon sensitivity determining region kd Kilo dalton LMP Low molecular weight protein LDLR Low-density lipoprotein receptor NS Non-structural protein nt Nucleotide MHC Major histocompatibility complex NTPase Nucleoside triphosphatase ORF Open reading frame IX References Arendt, C. S., and M. Hochstrasser. 1999. Eukaryotic 20S proteasome catalytic propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18:3575-3585. Agnello, V., G. Abel, M. Elfahal, G. B. Knight, and Q. X. Zhang. 1999. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 96:12766-12771. Bartenschlager, R. L., L. Ahlborn-Laake, J. Mous, and H. Jacobsen. 1993. Nonstructural protein of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 67:3835-3844. Bartenschlager, R. L., L. Ahlborn-Laake, J. Mous, and H. Jacobsen. 1994. Kinetic and structural analysis of hepatitis C virus polyprotein processing. J. Virol. 68:50455055. Behrens, S. E., L. Tomei, and R. De Francesco. 1996. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15:12-22. Belich, M. P., R. J. Glynne, G. Senger, D. Sheer, and J. Trowsdale. 1994. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr. Biol. 4:769-776. Blight, K. J. A. A. Kolykhalov, and C. M. Rice. Efficient initiation of HCV RNA replication in cell culture. 2000. Science 290:1972-1974. Bolten, S. E., D Egger, R. Gosert, G. Schaub, L. Landmann, and K. Bienz. 1998. Intercellular localization of poliovirus plus- and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. J. Virol. 72:8578-8585. 77 Bujalowski, W., M. M. Klonowska, and M. J. Jezewska. 1994. Oligomeric structure of Escherichia coli primary replicative helicase DnaB protein. J. Biol. Chem. 269:31350-31358. Chen, P., and M. Hochstrasser. 1996. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell. 86:961972. Chen, C. J., M. D. Kuo, L. J. Chien, S. L. Hsu, Y. M. Wang, and J. H. Lin. 1997. RNA-protein interactions: involvement of NS3, NS5, and 3’ noncoding regions of Japanese Encephalitis virus genomic RNA. J. Virol. 71:3466-3473. Cho, H. S., N. C. Ha, L. W. Kang, K. M. Chung, S. H. Back, S. K. Jang, and B. H. Oh. 1998. Crystal structure of RNA helicase from genotype 1b hepatitis C virus. J. Biol. Chem. 273:15045-15052. Choo, Q. L., G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood borne non-A non-B viral hepatitis genome. Science 244:359-362. Choo, Q. L., K. H. Richman, J. H. Han, K. Berger, C. Lee, C. Dong, C. Gallegos, D. Corr, A. Medina-Selby, P. J. Barr, A. J. Weiner, D. W. Bradley, G. Kuo, and M. Houghton. 1991. Genetic organization and diversity of the hepatitis C virus. Proc. Natl. Acad. Sci. USA 88:2451-2455. Coux, O., K. Tanaka, and A. L. Goldberg. 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65: 801-847. Craiu, A., M. Gaczynska, T. Akopian, C. F. Gramm, G. Fenteany, A. L. Goldberg, and K. L. Rock. 1997. Lactacystin and clasto-lactacystin -lactone modify multiple proteasome -subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J. Biol. Biol. 272:1343713445. 78 Di Bisceglie, and A. M. Hoofnagle. 2002. Optimal therapy of hepatitis C. Hepatology 36:S121-S127. Dick, T. P., A. K. Nussbaum, M. Deeg, W. Heinemeyer, M. Groll, M. Schirle, W. Keilholz, S. Stevanovic, D. H. Wolf, R. Huber, H. G. Rammensee, and H. Schild. 1998. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273:25637-25646. Driscoll, J., M. G. Brown, D. Finley, and J. J. Monaco 1993. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365:262264. Dusheiko, G., H. Schmilovitz-Weiss, D. Brown, F. McOmish, P. L. Yap, S. Sherlock, N. McIntyre, and P. Simmonds. 1994. Hepatitis C virus genotypes: an investigation of type-specific differences in geographic origin and disease. Hepatology 19:13-18. Enomoto, N., I. Sakuma, Y. Asahina, M. Kurosaki, T. Murakami, C. Yamamoto, Y. Ogura, N. Izumi, F. Marumo, and C. Sato. 1996. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med. 334:77-81. Failla, C., L. Tomei, R. De Francesco. 1994. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J. Virol. 68:3753-3760. Friebe, P., V. Lohmann, N. Krieger, and R. Bartenschlager. 2001. Sequence in the 5’ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 75:12047-12057. Friebe, P., and R. Bartenschlager. 2002. Genetic analysis of sequences in the 3’ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 75:12047-12057. 79 Gaczynska, M., K. L. Rock, and A. L. Goldberg. 1993. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:264-267. Gaczynska, M., K. L. Rock, T. Spies, and A. L. Goldberg. 1994. Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complexencoded genes for LMP2 and LMP7. Proc. Natl. Acad. Sci. USA 91:9213-9217. Gale, M. J., M. J. Korth, N. M. Tang, S. L. Tan, D. A. Hopkins, T. E. Dever, S. J. Polyak, D. R. Gretch, and M. G. Katze. 1997. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstuctural 5A protein. Virology 230:217-227. Gallinari, P., C. Paolini, D. Brennan, C. Nardi, C. Steinkuhler, and R. de Francesco. 1999. Modulation of hepatitis C virus NS3 protease and helicase activities through the interaction with NS4A. Biochemistry 38:5620-5632. Goh, P. Y., Y. J. Tan, S. P. Lim, Y. H. Tan, S. G. Lim, F. Fuller-Pace, and W. Hong. 2004. Cellular RNA helicase p68 relocalized and interacts with the hepatitis C virus NS5B protein and its potential role in HCV RNA replication. J. Virol. (in press). Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov. 1988. A conserve NTP-motif in putative helicase. Nature 33:22. Grakoui, A., D. W. McCourt, C. Wychowski, S. M. Feinstone, and C. M. Rice. 1993. A second hepatitis C virus-encoded proteinase. Proc. Natl. Acad. Sci. USA 90:10583-10587. Griffin, S. D. C., L. P. Beales, D. S. Clarke, O. Worsfold, S. D. Evans, J. Jaeger, M. P. G. Harris, D. J. Rowlands. 2003. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the anti-viral drug, amantadine. Febs Lett. 535:34-38. 80 Groettrup, M., R. Kraft, S. Kostka, S. Standera, R. Stohwasser, and P. M. Kloetzel. 1996. A third interferon gamma induced subunit exchange in the 20S proteasome. Eur. J. Immunol. 26:863-869. Groettrup, M., S. Khan, K. Schwarz, and G. Schmidtke. 2001. Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why?. Biochimie. 83:367-372. Gross, C. H., and S. Shuman. 1996. The QRxGRxGRxxxG motif of the vaccinia virus DexH box RNA helicase NPH-II is required for ATP hydrolysis and RNA unwinding but not for RNA binding. J. Virol. 70:1706-1713. Heilek, G. M., and M. G. Peterson. 1997. A point mutation abolishes the helicase but not the nucleotides triphosphatase activity of hepatitis C virus NS3 protein. J. Virol. 71:6264-6266. Hemelaar, J., F. Bex,, B. Booth, V. Cerundolo, A. McMichael, and S. Daenke. 2001. Human T cell leukemia virus type Tax protein binds to assembled nuclear proteasomes and enhances their proteolytic activity. J. Virol. 75:11106-11115. Hijikata, M., N. Kato, Y. Ootsuyama, M. Nakagawa, and K. Shimotohno. 1991. Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc. Natl. Acad. Sci. USA 88:5547-5551. Hilt, W., and D. H. Wolf. 1996. Proteasomes: destruction as a programme. TIBS. 21:96-102. Hosein, B., C. T. Fang, M. A. Popovsky, J. Ye, M. Zhang, and C. Y. Wang. 1991. Improved serodiagnosis of hepatitis C virus infection with synthetic peptide antigen from capsid protein. Proc. Natl. Acad. Sci. USA 88:3647-3651. Hu, Z., Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang. 1999. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex.J.Virol.73:7231-7240. 81 Hussy, P., H. Langen, J. Mous, and H. Jacobsen. 1996a. Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224:93-104. Hussy, P., G. Schmid, J. Mous, and H. Jacobsen. 1996b. Purification and in vitrophospholabelling of secretory envelope proteins E1 and E2 of hepatitis C virus expressed in insect cells. Virus Res. 45:45-57. Ichihara, A., K. Tanaka, T. Andoh, and N. Shimbara. 1993. Regulation of proteasome expression in developing and transformed cells. Adv. Enzyme Regul. 33:173-180. Ishido, S., T. Fujita, and H. Hotta. 1998. Complex formation of NS5B with NS3 and NS4A proteins of the hepatitis C virus. Biochem. Biophys. Res. Commun. 244:3540. Ishido, S., and H. Hotta. 1998. Complex formation of the nonstructural protein of hepatitis C virus with p53 tumor suppressor. FEBS Lett. 438:258-262. Jager, S., M. Groll, R. Huber, D. H. Wolf, and W. Heinemeyer. 1999. Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J. Mol. Biol. 291:997-1013. Kapoor, M., L. Zhang, M. Ramachandras, J. Kusukawa, K. E. Ebner, and R. Padmanabhan. 1995. Association between NS3 and NS5 proteins of Dengue virus type in the putative RNA replicase is linked to differential phosphorylation of NS5. J. Biol. Chem. 270:19100-19106. Khan, S., M. van den Broek, K. Schwarz, R. de Giuli, P. A. Diener, and M. Groettrup. 2001. Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J. Immunol. 167:68596868. 82 Khu, Y. L., E. Koh, S. P. Lim, Y. H. Tan, S. Brenner, S. G. Lim, W. Hong, and P. Y. Goh. 2001. Mutations that affect dimmer formation and helicase activity of the hepatitis C virus helicase. J. Virol. 75:205-214. Kim, D. W., Y. Gwack, J. H. Han, and J. Choe. 1995. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem. Biophys. Res. Commun. 215:160-166. Kim, D. W., J. Kim, Y. Gwack, J. H. Han, and J. Choe. 1997. Mutational analysis of the hepatitis C virus RNA helicase. J. Virol. 71:9400-9409. Kolykhalov, A. A., K. Mihalik, S. M. Feinstone, and C. M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3’ nonstructural region are essential for viral replication in vivo. J. Virol. 74:20462051. Kuo G., Q. L. Choo, H. J. Alter, G. L. Gitnick, A. G. Redeker, R. H. Purcell, T. Miyamura, J. L. Dienstag, M. J. Alter, C. E. Stevens, G. E. Tegtmeier, F. Bonino, M. Colombo, W. S. Lee, C. Kuo, K. Berger, J. R. Shuster, L. R. Overby, D. W. Bradley, M. Houghton. 1989. An Assay for Circulating Antibodies to a Major Etiologic Virus of Human Non-A, Non-B Hepatitis. Science 244:362-364. Kyono, K. M. Miyashiro, and I. Taguchi. 2002. Human eukaryotic initiation factor 4AII associates with hepatitis C virus NS5B protein in vitro. Biochem. Biophys. Res. Commun. 292:659-666. Lerat, H., M. Honda, M. R. Beard, K. Loesch, J. Sun, Y. Yang, M. Okuda, R. Gosert, S. Y. Xiao, S. A. Weinman, and S. M. Lemon. 2002. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122:352-365. Levin, M. K., and S. S. Patel. 1999. The helicase from hepatitis C virus is active as an oligomer. J. Biol. Chem. 274:31839-31846. 83 Liang, T. J. 1998. Combination therapy for hepatitis C infection. N. Engl. J. Med. 339:1549-1550. Lim, S. P., Y. L. Khu, W. Hong, A. Tay, A. E. Ting, S. G. Lim, and Y. H. Tan. 2001. Identification and molecular characterization of the complete genome of a Singapore isolate of hepatitis C virus: sequence comparison with other strains and phylogenetic analysis. Virus Genes. 23:89-95. Lin, C., and C. M. Rice. 1995. The hepatitis C virus NS3 serine proteinase and NS4A cofactor: establishment of a cell-free trans-processing assay. Proc. Natl. Acad. Sci. USA 92:7622-7626. Lin, C., and J. L. Kim. 1999. Structure-based mutagenesis study of hepatitis C virus NS3 helicase. J. Virol. 73:8798-8807. Lin, C., J. W., Wu, K. Hsiao, and M. S. S. Su. 1997. The hepatitis C virus NS4A protein: interactions with the NS4B and NS5A proteins. J. Virol. 71:6465-6471. Lohmann, V., A. Roos, F. Korner, J. O. Koch, and R. Bartenschlager. 1998. Biochemical and kinetic analyses of NS5B RNA-dependent RNA polymerase of the hepatitis C virus. 1998. Virology 249:108-118. Lohmann, V., F. Korner, J. Koch, U. Herian, L. Theilmann, and R. Bartenschlager. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 285:110-113. Lowe, J., D. Stock, B. Jap, P. Zwickl, W. Baumeister, and R. Huber. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science. 268:533-539. Manser, E., H. Y. Huang, T. H. Loo, X. Q. Chen, J. M. Dong, T. Leung, and L. Lim. 1997. Expression of constitutively active -PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell. Biol. 17:1129-1143. 84 McOmish, F., P. L. Yap, B. C. Dow, E. A. C. Follett, C. Seed, A. J. Keller, T. J. Cobain, T. Krusius, E. Kolho, R. Naukkarinen, C. Lin, C. Lai, S. Leong, G. A. Medgyesi, M. Hejjas, H. Kiyokawa, K. Fukada, T. Cuypers, A. A. Saeed, A. M. Al-Rasheed, M. Lin, and P. Simmonds. 1994. Geographical distribution of hepatitis C virus genotypes in blood donors: an international collaborative survey. J. Clin. Microbiol. 32:884-892. Mechanic, L. E., M. C. Hall, and S. W. Matson. 1999. Escherichia coli DNA helicase II is active as a monomer. J. Biol. Chem. 274:12488-12498. Memon, M. I., and M. A. Memon. 2002. Hepatitis C: an epidemiological review. J. Viral. Hepat. 9:84-100. Mercer, D. F., D. E. Schiller, J. F. Elliott, D. N. Douglas, C. H. Hao, A. Rinfret, W. R. Addison, K. P. Fischer, T. A. Churchill, J. R. T. Lakey, D. L. J. Tyrrell, and N. M. Kneteman. 2001. Hepatitis C virus replication in mice with chimeric human livers. Nature 7:927-933. Michalak, J. P., C. Wychowski, A. Choukhi, J. C. Meunier, S. Ung, C. M. Rice, and J. Dubuisson. 1997. Characterization of truncated forms of hepatitis C virus glycoproteins. J. Gen. Virol. 78:2299-2306. Miller, R. H., and R. H. Purcell. 1990. Hepatitis C virus shares amino acid sequences similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Pro. Natl. Acad. Sci. USA. 87:2057-2061. Miyakawa, Y., H. Okamoto, and M. Mayumi. 1995. Classifying hepatitis C virus genotypes. Mol. Med. Today 1:20-25. Miyamura, T., I. Saito, T. Katayama, S. Kikuchi, G. Kuo, M. Houghton. 1990. Detection of antibody against antigen expressed by molecularly cloned hepatitis C virus cDNA: application to diagnosis and blood screen for posttransfusion hepatitis. Proc. Natl. Acad. Sci. U S A 87:983-987. 85 Moriya, K., H. Yotsuyanagi, Y. Shintani, H. Fujie, K. Ishibashi, Y. Matsuura, T. Miyamura, and K. Koike. 1997. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J. Gen. Virol. 78:1527-1531. Moriya, K., H. Fujie, Y. Shintani, H. Yotsuyanagi, T. Tsutsumi, K. Ishibashi, Y. Matsuura, S. Kimura, T. Miyamura, and K. Koike. 1998. The core protein of the hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med. 4:1065-1067. Mulrad, D., R. Hunter, and R. Parker. 1992. A rapid method for localized mutagenesis of yeast genes. Yeast 8:79-82. Neumann, A. U., N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden, and A. S. Perelson. 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science. 282:103-107. Nussbaum, A. K., T. P. Dick, W. Keilholz, M. Schirle, S. Stevanovic, K. Dietz, W. Heinemeyer, M. Groll, D. H. Wolf, R. Huber, H. G. Rammensee, and H. Schild. 1998. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA. 95:12504-12509. Okuda, M., K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman. 2002. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366-375. Orlowski, M. 1990. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry. 29:10289-10297. Pang, P. S., E. Jankowsky, P. J. Planet, and A. M. Pyle. 2002. The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J. 21:1168-1176. 86 Pause, A., and N. Sonenberg. 1992. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor elF-4A. EMBO J. 11:26432654. Pileri, P., Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi, R. Petracca, A. J. Weiner, M. Houghton, D. Rosa, G, Grandi, and S. Abrignani. 1998. Binding of hepatitis C virus to CD81. Science 282:938-941. Poch, O., I. Sauvaget, M. Delarue, and N. Tordo. 1989. Identification of four conserved motif among RNA-dependent polymerase encoding elements. EMBO J. 8:3867-3874. Prince A. M., B. Bortman, G. F. Grady, W. J. Kuhns, C. Hazzi, R. W. Levine, S. J. Millian. 1974. Long –incubation post-transfusion hepatitis without serological evidence of exposure to hepatitis B virus. Lancet 304:241-246. Porter, D. J. T., S. A., Short, M. H. Hanlon, F. Preugschat, J. E. Wilson, D. H. Willard, and T. G. Consler. 1998. Product release is the major contributor to kcat for the hepatitis C virus helicase-catalyzed strand separation of short duplex DNA. J. Biol. Chem. 273:18906-18914. Robertson, B., G. Myers, C. Howard, T. Brettin, J. Bukh, B. Gaschen, T. Gojobori, G. Maertens, M. Mizokami, O. Nainan, S. Netesov, K. Nishioka, T. Shin-i, P. Simmonds, D. Smith, L. Stuyver, and A. Weiner. 1998. Classification, nomenclature, and database development for hepatitis C virus and related viruses: proposals for standardization. Arch. Virol. 143:2493-2503. Rock, K. L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, and A. L. Goldberg. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 78:761-771. 87 Sakai, A., M. S. Claire, K. Faulk, S. Govindarajan, S. U. Emerson, R. H. Purcell, and J. Bukh. 2003. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc. Natl. Acad. Sci. USA 100:11646-11651. Sakamuro, D., T. Furukawa, and T. Takegami. 1995. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cell. J. Virol. 69:3893-3896. Schmidtke, G., M. Schmidt, and P. M. Kloetzel. 1997. Maturation of mammalian 20S proteasome: purification and characterization of 13S and 16S proteasome precursor complexes. J. Mol. Biol. 268:95-106. Sewell, A. K., D. A. Price, H. Teisserenc, B. L. Booth, U. Gileadi, F. M. Flavin, J. Trowsdale, R. E. Phillips, and V. Cerundolo. 1999. Interferon gamma exposes a crytic cytotoxic T lymphocyte epitope in HIV-1 reverse transcriptase. J. Immunol. 162:7075-7079. Shirota, Y., H. Luo, W. P. Qin, S. Kaneko, T. Yamashita, K. Kobayashi, and S. Murakami. 2002. Hepatitis C virus NS5A binds RNA-dependent RNA polymerase NS5B and modulates RNA-dependent RNA dependent activity. J. Biol. Chem. 277:11149-11155. Sijts, A. J., T. Ruppert, B. Rehermann, M. Schmidt, U. Koszinowski, and P. M. Kloetzel. 2000. Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J. Exp. Med. 191:503-514. Simmonds, P. 1999. Viral heterogeneity of the hepatitis C virus. J. Hepat. 31:S54-S60. Smith, D. B., J. McAllister, C. Casino, and P. Simmonds. 1997. Virus quasispecies: making a mountain out of a molehill. J. Gen. Virol. 78:1511-1519. 88 Sing, W. T., C. L. Lee, S. L. Yeo, S. P. Lim, and M. M. Sim. 2001. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg. Med. Chem. Lett. 11:91-94. Sung, V. M., S. Shimodaira, A. L. Doughty, G. R. Picchio, H. Can, T. S. Yen, K. L. Lindsay, A. M. Levine, and M. M. Lai. 2003. Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J. Virol. 77:2134-46. Suzich, J. A., J. K. Tamura, F. Palmer-Hill, P. Warrener. A. Grakoui, C. M. Rice, S. M. Feinstone, and M. S. Collett. 1993. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J. Virol. 67:6152-6158. Tai, C. L., W. K. Chi, D. S. Chen, and L. H. Hwang. 1996. The helicase activity associated with hepatitis C virus non-structural protein (NS3). J. Virol. 70:8477-8484. Taylor, D. R., S. T. Shi, P. R. Romano, G. N. Barber, and M. M. Lai. 1999. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285:107-110. Tan, S. L., A. Pause, Y. Shi, and N. Sonenberg. 2002. Hepatitis C therapeutics: current status and emerging strategies. 2002. Nat. Rev. Drug Discov. 1:867-881. Tanaka, K., K. Is, and A. Ichihara. 1986. A high molecular weight protease in the cytosol of rat liver. J. Biol. Chem. 261:15197-15203. Tanji, Y., M. Hijikata, S. Satoh, T. Kaneko, and K. Shimotohno. 1995. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J. Virol. 69:1575-1581. 89 Tomei, L., C. Failla, E. Santolini, R. De Francesco, and N. LaMonica. 1993. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J. Virol. 67:4017-4026. Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the - and -subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945951. Wardell, A. D., W. Errington, G. Ciaramella, J. Merson, and M. J. McGarvey. 1999. Characterization and mutational analysis of the helicase and NTPase activities of hepatitis C virus full-length NS3 protein. J. Gen. Virol. 80:701-709. Waxman, L., M. Whitney, B. A. Pollok, L. C. Kuo, and P. L. Darke. 2001. Host cell factor requirement for hepatitis C virus enzyme maturation. Proc. Natl. Acad. Sci. USA 98:13931-13935. Weiner, A. J., H. M. Geysen, C. Christopherson, J. E. Hall, T. J. Mason, G. Saracco, F. Bonino, K. Crawford, C. D. Marion, K. A. Crawford, M. Brunetto, P. J. Barr, T. Miyamura, J. McHutchinson, M. Houghton. 1992. Evidence for immune selection of hepatitis C virus putative envelope glycoprotein variants: potential role in chronic HCV infections. Proc. Natl. Acad. Sci. USA 89:3468-3472. Westaway, E., J. M. Mackenzie, M. T. Kenny, M. K. Jones, and A. A. Khromykh. 1997. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J. Virol. 71:6650-6661. Wong, I., K. L. Chao, W. Bujalowski, and T. M. Lohman. 1992. DNA-induced dimerization of the Escherichia coli Rep helicase. J. Biol. Chem. 267:7596-7610. World Health Organization. 1998. WHO concerns on hepatitis C. Lancet 351:1415 90 World Health Organization. 2004. Global burden of disease for hepatitis C. J. Clin. Pharmacol. 44:20-29. Wunschmann, S., J. D. Medh, D. Klinzmann, W. N. Schmidt, and J. T. Stapleton. 2000. Characterization of hepatitis C and HCV E2 interactions with CD81 and the low-density lipoprotein receptor. J. Virol. 74:10055-10062. Wyatt, C. A., L. Andrus, B. Bortman, F. Huang, D. H. Lee, and A. M. Prince. 1998. Immunity in chimpanzees chronically infected with hepatitis C viruses: role of minor quasispecies in reinfection. J. Virol. 72:1725-1730. Xie, Z. C., J. I. Riezu-Boj, J. J. Lasarte, J. Guillen, J. H. Su, M. P. Civeira, and J. Prieto. 1998. Transmission of hepatitis C virus infection to Tree Shrews. Virology 244:513-520. Yao, N., T. Hesson, M. Cable, Z. Hong, A. D. Kwong, H, V. Le, and P. C. Weber. 1997. Structure of the hepatitis C virus RNA helicase domain. Nat. Struct. Biol. 4:463-467. Zanetti, A. R., L. Romano, and S. Bianchi. 2003. Primary prevention of hepatitis C virus infection. Vaccine 21:692-695. Zein, N. N. 2000. Clinical significance of hepatitis C virus genotypes. Clin. Microbiol. Rev. 13:223-235. Zemel, R., S. Gerechet, H. Greif, L. Bachmatove, Y. Birk, A. Golan-Goldhirsh, M. Kunin, Y. Berdichevsky, I. Benhar, and R. Tur-Kaspa. 2001. Cell transformation induced by hepatitis C virus NS3 serine protease. J. Viral. Hepat. 8:96-102. Zhao, X., Z. Y. Tang, B. Klumpp, G. Wolff-Vorbeck, H. Barth, S. Levy, F. von Weizsacker, H. E. Blum, and T. F. Baumert. 2002. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J. Clin. Invest. 109:221-232. 91 Zignego, A. L., D. Macchia, M. Monti, V. Thiers, M. Mazzetti, M. Foschi, E. Maggi, S. Romagnani, P. Gentilini, and C. Brechot. 1992. Infection of peripheral mononuclear blood cells by hepatitis C virus. J. Hepatol. 15:382-386. 92 [...]... polymerase 68 5B 3’UTR (U/UC) The HCV ORF is flanked by 5’ and 3’ UTR The structural proteins (shaded) are located in the N terminus with the nonstructural proteins residing in the remainder of the genome Figure 1-1 HCV Genome and encoded viral proteins RNA Binding nucleocapsid Putative function MW kDa 5’UTR IRES Structural Proteins 1.2.2 Non-structural Proteins The NS proteins of HCV encode enzymes or regulatory... for studying HCV infection (Mercer et al., 2001) The generation of HCV- replicon systems, where the expression of the HCV NS proteins drives the self -replication of subgenomic HCV RNAs (Lohamnn et al., 1999; Blight et al., 2000), will also undoubtedly help accelerate our understanding of HCV replication and propagation 8 1.3 HCV protein- protein interaction Viral proteins are known to interact with one... (HCV) is one of the major causes of liver diseases worldwide The non-structural protein 3 (NS3) of HCV, which is both a protease as well as a helicase, plays important roles in the processing of the viral polyprotein and the replication of viral RNA This thesis attempts to answer several questions with regards to viral and host interacting proteins of NS3, which may eventually assist in the understanding... important for minus strand synthesis (Friebe et al., 2002) 3 1.2.1 Structural Proteins The HCV polyprotein is cleaved co- and post-translationally at several sites by both viral encoded and host cellular proteases into mature viral proteins About 10 distinct viral proteins have been identified which include at least three structural, Core, E1 and E2 (and p7), six non-structural (NS) proteins, NS2, NS3, NS4A... understanding these mechanisms of evasion from host immune surveillance, and will be useful for the development of anti -HCV therapies This thesis aims to identify both viral and host interacting partners to NS3, a pivotal player in HCV replication, in the hope of providing new insights into understanding function and effect of these interactions Yeast-two hybrid screens were set up to identify HCV proteins... host proteins that interact with NS3, using a spleen cDNA library The functions of these interactions were investigated and discussed in two parts The first section describes the characterization of NS3 self-interaction, while the second part covers the interaction between NS3 and host proteins, in particular, between NS3 and LMP7 11 2 Materials and Methods 2.1 Construction of Plasmids The NS3 coding... interaction between NS3 and a cellular protein, LMP7 NS3 was found to bind strongly with itself and the minimal region required for this interaction was mapped to a specific subdomain of 174 amino acids in the N terminus of the helicase region Random mutations in this minimal region were generated by PCR, and mutants that failed to interact with a wild-type minimal fragment were isolated using yeast two-hybrid... on protein synthesis machineries in the host for viral protein translation, and other cellular components for their replication HCV proteins were reported to associate with several host proteins E2 binds the putative cellular receptors, CD81 and the low-density lipoprotein receptor (LDLR) (Pileri et al., 1998; Agnello et al., 1999; Wunschmann et al., 2000), which may act as receptors for HCV entry into... signal peptidases The core protein is strongly basic in nature and interacts with viral RNA to form the nucleocapsid (Hussy et al., 1996a) This highly conserved protein is very immunogenic and is used frequently for antibody detection in patient sera (Hosein et al., 1991) Glycoproteins E1 and E2 are the viral envelope proteins (Hussy, 1996b) These two proteins form heterodimers and dimerization is suggested... motifs of NS3 are highly conserved in the Flaviviridae family and among different HCV genotypes (Miller and Purcell, 1990) Productive replication was also abrogated in vivo when NS3 is mutated at the active sites, making this protein an attractive target for drug discovery (Kolykhalov et al., 2000) Besides the obvious role of NS3 in viral replication, this protein may also play a role in regulating cell . I HCV functional genomics: Protein interactions with NS3 and their role in viral replication Khu Yee Ling B. Sc. (Hons) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE. with regards to viral and host interacting proteins of NS3, which may eventually assist in the understanding of the mechanism of HCV replication and pathogenesis. Yeast two- hybrid assays and. XI 1. INTRODUCTION 1 1.1 Medical Importance of HCV 1 1.2 Molecular biology of HCV 3 1.2.1 Structural Proteins 4 1.2.2 Non-structural Proteins 6 1.3 HCV protein- protein interaction 9 1.4 Aims and

Ngày đăng: 16/09/2015, 17:12

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan