Polyimides modifications and carbon molecular sieves derived from polyimides for gas separation

225 397 0
Polyimides modifications and carbon molecular sieves derived from polyimides for gas separation

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

POLYIMIDES MODIFICATIONS AND CARBON MOLECULAR SIEVES DERIVED FROM POLYIMIDES FOR GAS SEPARATION Shao Lu (M.Sc. HIT) A Dissertation Submitted for the Degree of Doctor of Philosophy Department of Chemistry National University of Singapore 2005 Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu ACKNOWLEDGEMENT I would like to thank all whose who have provided me the guidance and support on my path route to complete the Ph.D. thesis. First of all, I am very grateful to Prof. Neal Chung Tai-Shung, Prof. Goh Suat Hong and Dr. Pramoda Kumari Pallathadka for their enlightening instructions not only on academic aspect but on the personal character shaping. Many thanks to Dr. Glen Wensley for supplying me the raw materials. Special thanks are due to Dr. Liu Ye for providing me the materials for my research and Dr. Chao Chun for his useful help to direct me in my initial research work. I would like to acknowledge the financial support from the A*Star and NUS with the grant numbers of R-279-000-113-304 and R-279-000-108-112. I thank all the people for their suggestions including Dr. Li Dong Fei, Dr. Li Xue Dong, Dr. Goh Ho Wee, Dr. Huang Xu Dong, Miss Teo May May, Miss Shi Meng, Miss Tin Pei Shi, Miss Wang Yan, Miss Chng Mei Lin, Miss Guo Wei Fen, Miss Jiang Lanying, Miss Qiao Xiang Yi, Mr. Zhou Chun, Mr Xiao You Chang, Mr. Xiong Jun Ying, Mr Wang Kai Yu, Mr. Li Yi, and Mr. Liu Rui Xue. I would also extend my thanks and appreciation to my other friends in IMRE and NUS. No doubt, the unconditional love from my family provides me the strongest moral i Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu support to pursue my academic achievement. I would like share in the accomplishment with my family, who make it meaningful. ii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu TABLE OF CONTENTS ACKNOWLEGEMENT i TABLE OF CONTENTS iii SUMMARY xi NOMENCLATURE xiv LIST OF TABLES xviii LIST OF FIGURES xx CHAPTER INTRODUCTION AND OVERVIEW 1.1 Membranes for Gas Separation 1.1.1 Membrane definition and history review 1.1.2 Polymeric membrane materials 1.1.3 Equilibrium state in rubbery polymers and non-equilibrium state in glassy polymers 1.1.4 Plasticization phenomena in glassy polymers 1.2 Polyimide as Membrane Materials for Gas Separation 1.3 Polyimide Modification 1.3.1 Thermal modification 1.3.2 UV modification 10 1.3.3 Ion beam modification 12 1.3.4 Interpenetrating networks (IPNs) 12 1.3.5 Chemical modification 13 iii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu 1.4 Carbon Molecular Sieve Membranes (CMSMs) for Gas Separation 14 1.5 Fabrication Factors Affecting Gas Transport Properties of CMSMs 15 1.6 Industrial Applications of Membrane Gas Separation Technology 17 1.6.1 Oxygen enrichment 17 1.6.2 Nitrogen enrichment 18 1.6.3 Hydrogen recovery 19 1.6.4 Natural gas separation 20 1.7 Research Objectives and Dissertation Outline 20 CHAPTER BACKGROUND AND THEORY 23 2.1 Fundamentals 23 2.2 Gas Transport Mechanisms in Membranes 24 2.3 Gas Transport in Rubbery Polymers 26 2.4 Gas Transport in Glassy Polymers 28 2.5 Factors Affecting Gas Transport in Glassy Polymers 32 2.5.1 Gas physicochemical properties 32 2.5.2 Separation conditions 33 2.5.3 Polymer physicochemical properties 34 CHAPTER EXPERIMENTAL AND METHOD 37 3.1 Materials 37 3.2 Dense Membrane Preparation 37 iv Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu 3.3 Membrane Chemical Modification and Following Thermal Annealing 38 3.4 Thermal Treatment and Carbonization Procedure 38 3.5 Pure Gas Permeation Characterization 39 3.6 Mixed Gas Permeation Characterization 40 3.7 Pure Gas Sorption Characterization 41 3.8 Characterization of Physical and Chemical Properties 41 3.8.1 Fourier transform infrared (FTIR) spectrometer 41 3.8.2 Thermogravimetric analysis (TGA) 42 3.8.3 X-ray photoelectron spectroscopy (XPS) 42 3.8.4 Gel content test 43 3.8.5 Measurement of density 43 3.8.6 TGA-FTIR 44 3.8.7 Ultraviolet (UV) spectra 44 3.8.8 Scanning electron microscope (SEM) 44 3.8.9 Wide-angle x-ray diffractometer (WAXD) 45 3.8.10 Polarizing light microscope (PLM) 45 3.8.11 Inherent viscosity (IV) 46 3.8.12 Differential scanning calorimetry (DSC) 46 CHAPTER TRANSPORT PROPERTIES OF CROSS-LINKED POLYIMIDE MEMBRANES INDUCED BY DIFFERENT GENERATIONS OF 47 DIAMINOBUTANE (DAB) DENDRIMERS v Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu 4.1 Introduction 47 4.2 Experimental 49 4.2.1 Materials and dense membrane preparation 49 4.2.2 Membrane modification 50 4.2.3 Characterization 51 4.2.4 Measurements of gas transport properties 53 54 4.3 Results and Discussion 4.3.1 Characterization of 6FDA-durene films cross-linked by DAB dendrimers 54 4.3.2 Gas transport properties of G1 cross-linked films: general features 59 4.3.3 A comparison of gas transport properties of G1, G2 and G3 cross-linked 64 films 4.3.4 A comparison of gas transport properties of cross-linked films with the upper 67 bound materials 69 4.4 Conclusions CHAPTER THE EFFECT OF 1,3-CYCLOHEXANEBIS ( METHYLAMINE) MODIFICATION ON GAS TRANSPORT AND PLASTICIZATION 70 RESISTANCE OF POLYIMIDE MEMBRANES 5.1 Introduction 70 5.2 Experimental 72 5.2.1 Materials and dense membrane preparation 72 5.2.2 Membrane chemical modification and thermal annealing 73 vi Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu 5.2.3 Characterization 74 5.2.4 Measurements of gas transport properties 75 76 5.3 Results and Discussion 5.3.1 Characterization of modified polyimide films 76 5.3.2 Gas sorption 88 5.3.3 Gas transport properties of modified films 91 5.3.4 The effects of thermal annealing on the CO2 plasticization resistance 95 98 5.4 Conclusions CHAPTER POLYIMIDE MODIFICATION BY A LINEAR ALIPHATIC DIAMINE TO ENHANCE TRANSPORT PERFORMANCE AND 100 PLASTICIZATION RESISTANCE 6.1 Introduction 100 6.2 Experimental 102 6.2.1 Materials and preparation methods 102 6.2.2 Diamino chemical and thermal modification of polyimides 103 6.2.3 Chemical and physical characterization of modified polyimides 104 6.2.4 Measurements of transport properties 105 107 6.3 Results and Discussion 6.3.1 Chemical characterization of unmodified and modified 6FDA-durene 107 6.3.2 Physical characterizations of unmodified and modified 6FDA-durene 112 6.3.3 Transport properties 117 vii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu 6.3.4 CO2 plasticization resistance of unmodified and modified 6FDA-durene 122 6.3.5 Mixed gas permeation tests 124 6.4 Conclusions 127 CHAPTER THE EVOLUTION OF PHYSICOCHEMICAL AND TRANSPORT PROPERTIES OF 6FDA-DURENE TOWARD CARBON MEMBRANES; FROM POLYMER, INTERMEDIATE TO CARBON 129 7.1 Introduction 129 7.2 Experimental 131 7.2.1 Membrane preparations 131 7.2.2 Annealing and carbonization procedure 132 7.2.3 Transport property measurements of membranes 133 7.2.4 Characterization of treated membranes 134 7.3 Results and Discussion 135 7.3.1 The evolution of physicochemical properties of 6FDA-durene during carbonization 135 7.3.2 Transport property of intermediate and carbon membranes treated by P1 protocol 144 7.3.3 A performance comparison between thermally treated 6FDA-durene carbon membranes and the upper bound data 148 7.4 Conclusions 150 viii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu CHAPTER CASTING SOLVENT EFFECTS ON MORPHOLOGIES, GAS TRANSPORT PROPERTIES OF A NOVEL 6FDA/PMDA-TMMDA POLYIMIDE MEMBRANE AND ITS DERIVED CARBON MEMBRANES 152 8.1 Introduction 152 8.2 Experimental 154 8.2.1 Materials 154 8.2.2 Membrane preparations 155 8.2.3 Characterizations 156 8.2.4 Measurements of gas transport properties 158 8.2.5 Preparation of carbon molecular sieves membranes (CMSMs) 160 8.3 Results and Discussion 161 8.3.1 6FDA/PMDA-TMMDA membranes cast from different solvents 161 8.3.2 PLM, XRD, FTIR and gas sorption characterizations 162 8.3.3 Gas transport properties of membranes cast from different solvents 165 8.3.4 A comparison of the current permeability data with literature values 168 8.3.5 Effects of different membrane morphology on pyrolysis and CMSM structures 169 8.3.6 Gas transport properties of carbon molecular sieve membranes (CMSMs) 172 8.4 Conclusions 175 CHAPTER COCLUSIONS AND RECOMMENDATIONS 177 ix Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation [37] Shao Lu W. C. Wang, E. J. Kramer, W. G. Sachse, J. Polym. Sci., Polym. Phys. Ed. 20 (1982) 1371. [38] E. S. Sander, S. M. Jordan, R. Subramanian, J. Membr. Sci. 74 (1992) 29. [39] A. F. Ismail, W. Lorna, Sep. Purif. Tech. 27 (2002) 173. [40] J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Ind. Eng. Chem. Res., 41 (2002) 6139. [41] W. J. Koros, R. Mahajan, J. Membr. Sci. 175 (2000) 181 [42] H. Ohya, V. V. Kudryavtsev, S. I. Semenova, Polyimide Membranes: Applications, Fabrications, and Properties, Gordon and Breach Publishers, Tokyo, 1996. [43] T. S. Chung, R. E. Kafchinski, J. Membr. Sci. 75 (1992) 181. [44] M. R. Coleman, W. J. Koros, Macromolecules 32 (1999) 3106. [45] T.S. Chung, R.E. Kafchinski, J. Appl. Polym. Sci. 65 (1997) 1555. [46] C. Staudt-Bickel, Soft Materials, (2003) 277. [47] S. H. Park, K. J. Kim, W. W. So, S. J. Moon, S. B. Lee, Macromolecular Research 11 (2003) 157. [48] M. Mi, T. Hirose, J. Polym. Res. (1996) 11. [49] S. Matsui, H. Sato, T. Nakagawa, J. Membr. Sci. 141 (1998) 31. [50] M. Al-Masri, H. R. Kricheldorf, D. Fritsch, Macromolecules 32 (1999) 7853. [51] A. Bos, I. G. M. Punt, M. Wessling, H. Strathmann, Sep. Purif. Tech. 14 (1998) 27. - 185 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation [52] Shao Lu J. N. Barsema, S. D. Klijnstra, J. H. Balster, N. F. A. Van der Vegt, G. H. Koops, M. Wessling, J. Membr. Sci. 238 (2004) 93. [53] J. J. Krol, M. Boerrigter, G. H. Koops, J. Membr. Sci. 184 (2001) 275. [54] H. Kawakami, M. Mikawa, S. Nagaoka, J. Membr. Sci. 118 (1996) 223. [55] S. I. Kuroda, K. Mita, Eur. Polym. J. 25 (1989) 611. [56] H. Yanagishita, C. Maejima, D. Kitamoto, T, Nakane, J. Membr. Sci. 86 (1994) 231. [57] Y. Liu, C. Y. Pan, M. X. Ding, J. P. Xu, J. Appl. Polym. Sci. 73 (1999) 521. [58] Y. Liu, M. X. Ding, J. P. Xu, J. Appl. Polym. Sci. 58 (1995) 485. [59] J. Pfeifer, O. Rohde, Proceedings of Second International Conference on Polyimide, Ellenville, New York, (1985) 130. [60] O. Rohde, P. Smolka, P. A. Falcigno, Polym. Eng. Sci. 32 (1992) 1623. [61] A. A. Lin, V. R. Sastri, G. Tesoro, A. Reiser, R. Eachus, Macromolecules 21 (1988) 1165. [62] J. C. Scaiano, J. C. Netto-Ferreira, A. F. Baknell, R. D. Small, Polym. Eng. Sci. 29 (1989) 621. [63] W. F. Burgone, M. Langsam, M. E. Ford, J. P. Casey, U.S. Patent, 4.931.182 (1990). [64] M. Langsam, W. F. Burgoyne, J. P. Casey, M. E. Ford, U.S. Patent, 4.952.220 1989. [65] X. L. Xu, J. Y. Dolveck, G. Boiteux, M. Escoubes, M. Monchanin, J. P. Dupin, J. Davenas, J. Appl. Polym. Sci. 55 (1995) 99. - 186 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation [66] Shao Lu H. M. Clearfield, B. K. Furman, F. Bailey, N. Sheth, S. Purushothaman, Mat. Res. Soc. Symp. Proc. 264 (1992) 237. [67] M. Escoubes, J. Y. Dolveck, J. Davenas, X. L. Xu, J. Boiteux, Necl. Instr. and Meth. in Phys. Res. B 105 (1995) 130. [68] A. Bos, I. G. M. Punt, M. Wessling, H. Strathmann, J. Polym. Sci. Part B: Polym. Phys. 36 (1998) 1547. [69] M. E. Rezac, B. Schoeberl, J. Membr. Sci. 156 (1999) 211. [70] M. E. Rezac, E. T. Sorensen, H. W. Beckham, J. Membr. Sci. 136 (1997) 249. [71] J. D. Wind, D. R. Paul, W. J. Koros, J. Membr. Sci. 228 (2004) 227. [72] J. D. Wind, S. M. Sirard, D. R. Paul, P. F. Green, K. P. Johnston, W. J. Koros, Macromolecules 36 (2003) 6433. [73] J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Macromolecules 36 (2003) 1882. [74] Y. Liu, R. Wang, T. S. Chung, J. Membr. Sci. 189 (2001) 231. [75] C. Cao, T. S. Chung, Y. Liu, R. Wong, K. P. Pramoda, J. Membr. Sci. 216 (2003) 257. [76] P. S. Tin, T. S. Chung, Y. Liu, R. Wang, S. L. Liu, K. P. Pramoda, J. Membr. Sci., 225 (2003) 77. [77] J. Z. Ren, R. Wang, T. S. Chung D. F. Li, Y. Liu, J. Membr. Sci. 222 (2003) 133. [78] Y. C. Xiao, T. S. Chung, M. L. Chng, Langmuir 20 (2004) 8230. - 187 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation [79] Shao Lu T. S. Chung, M. L. Chng, K. P. Pramoda, Y. C. Xiao, Langmuir 20 (2004) 2966. [80] K. Keizer, H. Verweij, Chemtech. (1996) 37. [81] H. P. Hsieh, Membr. Mater. Proc. 84 (1990) 1. [82] A. J. Bird, D. L. Trimm, Carbon 21 (1983) 177. [83] H. J. Schroeter, Gas Sep. Purif. (1993) 247. [84] H. Kita, H. Maeda, K. Tanaka, K. Okamoto, Polym. Mater. Sci. Eng. 77 (1997) 323. [85] M. B. Shiflett, H. C. Foley, J. Membr. Sci. 179 (2000) 275. [86] H. Wang, L. Zhang, G. R. Gavalas, J. Membr. Sci. 177 (2000) 25. [87] H. Hatori, M. Shiraishi, H. Nakata, S. Yoshitomi, Carbon 30 (1992) 305. [88] J. Petersen, M. Matsuda, K. Haraya, J. Membr. Sci. 131 (1997) 85. [89] J. Gilron, A. Soffer, J. Membr. Sci. 209 (2002) 339. [90] M.B. Rao, S. Sircar, J. Membr. Sci. 85 (1993) 253. [91] W. L. Zhou, M. Yoshino, H. Kita, K. Okamoto, J. Membr. Sci. 217 (2003) 55. [92] W. Wei, H. Q. Hu, L. B. You, G. H. Chen, Carbon 40 (2002) 465. [93] J. N. Barsema, N. F. A. Van der Vegt, G. H. Koops, M. Wessling, Adv. Funct. Mater. 15 (2005) 69. [94] H. B. Park, Y. K. Kim, J. M. Lee, S. Y. Lee, M. Y. Lee, J. Membr. Sci. 229 (2004) 117. [95] Y. Kusuki, H. Shimazak, N. Tanihara, S. Nakanishi, T. Yoshinaga, J. Membr. Sci. 134 (1997) 245. - 188 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [96] T. A. Centeno, A. B. Fuertes, Sep. Purif. Tech. 25 (2001) 379. [97] C. Liang, G. Sha, S. Guo, Carbon 37 (1999) 1391. [98] K. Kusakabe, M. Yamamoto, S. Morooka, J. Membr. Sci. 149 (1998) 59. [99] A. B. Fuertes, Carbon 39 (2001) 697. [100] A. L. Cabrera, J. E. Zehner, C. G. Coe, T. R. Gaffney, T. S. Farris, Carbon 31 (1993) 969. [101] K. Chihara, M. Suzuki, Carbon 17 (1979) 339. [102] I. Menendez, A. B. Fuertes, Carbon 39 (2001) 733. [103] C. W. Jones, W. J. Koros, Ind. Eng. Chem. Res. 34 (1995) 164. [104] J. Petersen, M. Matsuda, K. Haraya, J. Membr. Sci. 131 (1997) 85. [105] W. J. Koros, C. W. Jones, U. S. patent 5288304, 1994. [106] K. Scott, Handbook of Industrial Membranes, Elsevier Advanced Technology, UK, 1995. [107] P. S. Puri, Gas Separation Membranes Current Status, La Chimica eI’Industria, 78 (1996) 815. [108] W. S. W. Ho, K. K. Sirkar, Membrane Handbook, Chapman and Hall, New York, NY, 1992. [109] K. Ghosal, B. D. Freeman, Polym. Adv. Technol. (1994) 673. [110] J. I. Kroschwitz, Encyclopaedia of Polymer Science and Engineering, John Wiley & Sons: New York, 1990. [111] A. Singh-Ghosal, W. J. Koros, Ind. Eng. Chem. Res. 38 (1999) 3647. - 189 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [112] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, 1996. [113] W. J. Koros, K. G. Fleming, J. Membr. Sci. 83 (1993) 1. [114] H. P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, 1996. [115] F. W. Billmeyer, Textbook of Polymer Science, 3nd Ed. Wiley-Interscience, New York, 1984. [116] G. K. Fleming, W. J. Koros, Macromolecules 19 (1986) 2285. [117] W. R. Vieth, J. M. Howell, J. H. Hsieh, Dual sorption theory, J. Membr. Sci. (1976) 177. [118] D. Raucher, M. Sefcik, ACS Symp. Ser. 111 (1983) 223. [119] J. G. A. Bitter, Transport Mechanism in Membrane Separation Processes, Plenum Press, New York, 1991. [120] G. G. Lipscomb, AIChE J. 36 (1990) 1505. [121] J. S. Vrentas, C. M. Vrentas, Macromolecules 24 (1991) 2404. [122] T. A. Barbari, R. M. Conforti, J. Polym. Sci.: Phys. Ed. 30 (1992) 1261 [123] G. H. Weiss, J. T. Bender, M. F. Shlesinger, Macromolecules 25 (1992) 990. [124] R. Kirchheim, Macromolecules 25 (1992) 6952. [125] T. Matsuura, Synthetic Membranes and Membrane Separation Process, CRC Press, 1994. [126] G. J. van Amerongen, Rubber Chem. Tech. 37 (1964) 1065. [127] R. T. Chern, N. F. Brown, Macromolecules 23 (1990) 2370. - 190 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [128] A. R. Berens, H. B.Hoopfenber, J. Membr. Sci. 10 (1982) 283. [129] K. Ghosal, R. T. Chern, B. D. Freeman, R. Savariar, J. Polym. Sci. B: Phys. 1994. [130] R. T. Chern, F. R. Sheu, L. Jia, V. T. Stannett, H. B. Hopfenberg, J. Membr. Sci. 35 (1987) 103. [131] W. R. Vieth, Diffusion In and Through Polymers: Principles and Applications, Hanser, New York. 1991. [132] B. D. Freeman, L. Bokobza, P. Gergot, L. Monnerie, F. C. D. Schryver, Macromolecules 23 (1990) 2566. [133] S. A. Stern, J. Membr. Sci. 94 (1994) 1. [134] T. S. Chung, W. H. Lin, R. Vora, J. Membr. Sci. 167 (2000) 55. [135] D. Ayala, A. E. Lozano, J. D. Abajo, C. G. Perez, J. G. Campa, K. V. Peinemann, B. D. Freeman, R. Prabhakar, J. Membr. Sci. 215 (2003) 61. [136] Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara, T. Tamari, J. Membr. Sci. 111 (1996) 169. [137] S. Akira, M. Tsukasa, M. Masatoshi, I. Kenichi, J. Polym. Sci. Part B: Polym. Phys. 38 (2000) 2525. [138] C. Staudt-Bickel, W. J. Koros, J. Membr. Sci. 155 (1999) 145. [139] H. Kita, T. Inada, K. Tanaka, K. Okamoto, J. Membr. Sci. 87 (1994) 139. [140] J. S. Kang, J. Won, H. C. Park, U. Y. Kim, Y. S. Kang, Y. M. Lee, J. Membr. Sci. 169 (2000) 229. - 191 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [141] J. Won, M. H. Kim, Y. S. Kang, H. C. Park, U. Y. Kim, S. C. Choi, S. K. Koh, J. Appl. Polym. Sci. 75 (2000) 1554. [142] X. L. Xu, M. R. Coleman, J. Appl. Polym. Sci. 66 (1997) 459. [143] F. Vogtle, Dendrimers, Springer-Verlag Berlin Heidelberg, 1998. [144] Y. B. Lim, T. Kim, J. W. Lee, S. Kim, H. J. Kim, K. Kim, J. S. Park, Bioconjugate Chem. 13 (2002) 1181. [145] B. H. Zinselmeyer, S. P. Mackay, G. Andreas, J. F. Uchegbu, Pharm. Res. 19 (2002) 960. [146] A. W. Bosman, H .M. Janssen, E. W. Meijer, Chem. Rev. 99 (1999) 1665. [147] E. P. Taylor, R. B. Moore, Polym. Preprints 39 (1998) 391. [148] T. D. Anthopoulos, J. P. J. Markham, E. B. Namdas, I. D. W. Samuel, L. S. Chun, L. Paul. Appl. Phys. Lett. 82 (2003) 4824. [149] J. W. Leon, M. Kawa, M. J. Isophthalate, J. Am. Chem. Soc. 118 (1996) 8847. [150] G. Bar, S. Rubin, R.W. Cutts, T.N. Taylor, A.J. Thomas, Langmuir 12 (1996) 1172. [151] A. S. Kovvali, K .K. Sirkar, Ind. Eng. Chem. Res. 41 (2002) 2287. [152] A. S. Kovvali, K. K. Sirkar, Ind. Eng. Chem. Res. 40 (2001) 2502. [153] A. S. Kovvali, H. Chen, K. K. Sirkar, J. Am. Chem. Soc. 122 (2000) 7594. [154] A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York, 1968. [155] A. S. Michaels, H. J. Bixler, J. Polym. Sci. 50 (1961) 113. - 192 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [156] W. H. Lin, R. H. Vora, T. S. Chung, J. Polym. Sci. B: Phys. 38 (2000) 2703. [157] S. Matsui, T. Ishiguro, A. Higuchi, T. Nakagawa, J. Polym. Sci. Part B: Polym. Phys. 35 (1997) 2259. [158] L.M. Robeson, J. Membr. Sci. 62 (1991) 165. [159] P.H. Abelson, Science 244 (1989) 4911. [160] C. Liu, C. R. Martin, Nature 352 (1991) 50. [161] Y. Seo, S. U. Hong, B. S. Lee, Angew. Chem. Int. Ed. 42 (2003) 1145. [162] J. H. Fang, H. Kita, K. Okamoto, Macromolecules 33 (2000) 4639. [163] H. B. Park, J. K. Kim, S. Y. Nam, Y. M. Lee, J. Membr. Sci. 200 (2003) 59. [164] K. C. Khulbe, C. Feng, T. Matsuura, G. C. Kapantaidakis, M. Wessling, G. H. Koops, J. Membr. Sci. 226 (2003) 63. [165] K. Xu, C. Dannenberg, J. Springer, S. Banerjee, G. Maier, Chem. Mater. 14 (2002) 3271. [166] M. Al-Masri, D. Fritsch, H.R. Kricheldorf, Macromolecules 33 (2000) 7127. [167] M. R. Coleman, W .J. Koros, J. Membr. Sci. 50 (1990) 285. [168] J. Kurdi, A. Y. Tremblay Polymer 44 (2003) 4533. [169] A. Bos, I. Punt, H. Strathmann, M. Wessling, AIChE J. 47 (2001) 1088. [170] L. Shao, T. S. Chung, S. H. Goh, K. P. Pramoda, J. Membr. Sci. 238 (2004) 153. [171] H. K. Yun, K. Cho, J. K. Kim, C. E. Park, Polymer 38 (1997) 827. [172] J.A. Mikroyannidis, J. Polym. Sci. Part A: Polym. Chem. 35 (1997) 1353. [173] M. Hasegawa, K. Horie, Prog. Polym. Sci. 26 (2001) 259. - 193 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [174] D. Wilson, H. D. Stenzenberger, P. M. Hergenrother, Polyimides, Blackie, Glasgow, 1990. [175] J. M. Salley, C. W. Frank, Charge transfer in aromatic polyimides, In M. K. Ghosh, K. L. Mittal (Eds), Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996. [176] W. J. Koros, Sorption and Transport of Gases in Glassy Polymers, Ph.D. dissertation, University of Texas, Austin, TX, 1977. [177] W. R. Vieth, Membrane Systems: Analysis and Design, Oxford University Press, 1988. [178] M. Q. Zhao, Y. L. Liu, R. M. Crooks, D. E. Bergbreiter, J. Am. Chem. Soc. 121 (1999) 923. [179] J. J. Shieh, T. S. Chung, GJ. Polym. Sci. Part B: Polym. Phys. 37 (1999) 2851. [180] A. Y. Houde, S. S. Kulkarni, M. G. Kulkarni, J. Membr. Sci. 95 (1994) 147. [181] R.W. Baker, Membrane Technology and Applications, McGraw-Hill, New York, 2000. [182] W. J. Koros, AIChE J. 50 (2004) 2326. [183] C. Staudt-Bickel, W. J. Koros, J. Membr. Sci. 170 (2000) 205. [184] C. C. Hu, C. S. Chang, R. C. Ruaan, J. Y. Lai, J. Membr. Sci. 226 (2003) 51. [185] D. Ayala, A. E. Lozano, J. Membr. Sci. 215 (2003) 61. [186] W. J. Ward, W. L. Robb, Science 156 (1967) 1481. [187] S. W. Kang, J. H. Kim, J. Won, K. Char, Y. S. Kang, J. Membr. Sci. 248 (2005) 201. - 194 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [188] H. Leblanc, W. J. Ward, S. L. Matson, S. G. Kimura, J. Membr. Sci. (1980) 339. [189] J. D. Way, R. D. Nobel, D. L. Leed, G. M. Ginley, L. A. Jarr, AIChE J. 33 (1987) 480. [190] M. J. Kim, Y. I. Park, K. H. Youm, K. H. Lee, J. Membr. Sci. 245 (2004) 79. [191] T. Yamaguchi, C. A. Koval, R. D. Noble, C. N. Bowman, Chem. Eng. Sci. 51 (1996) 4781. [192] R. Wang, S. L. Liu, T. T. Lin, T. S. Chung, Chem. Eng. Sci. 57 (2002) 967. [193] X. G. Li, I. Kresse, J. Springer, J. Nissen, Y. L Yang, Polymer 42 (2001) 6859. [194] Z. Y. Wang, P. R. Moulinie, Y. P. Handa, J. Polym. Sci. Part B: Polym. Phys. 36 (1998) 425. [195] E. S. Sander, J. Membr. Sci. 37 (1988) 63. [196] K. Ghosal, R. T. Chern, J. Membr. Sci. 72 (1992) 91. [197] R. T. Chern, W. J. Koros, E. S. Sanders, R. Yui, J. Membr. Sci. 15 (1983) 157. [198] K. Ghosal, R. T. Chern, B. D. Freeman, W. H. Daly, I. I. Negulescu, Macromolecules 29 (1996) 4360. [199] R. T. Chern, C. N. Provan, Macromolecules 24 (1991) 2203. [200] R. S. Prabhakar, B. D. Freeman, I. Roman, Macromolecules 37 (2004) 7688. [201] M. B. Rao, S. Sircar, J. Membr. Sci. 110 (1996) 109. [202] K. M. Steel, W. J. Koros, Carbon 41 (2003) 253. [203] A. B. Fuertes, T. A. Centeno, J. Membr. Sci. 144 (1998) 105. [204] C. W. Jones, W. J. Koros, Carbon 32 (1994) 1419. - 195 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [205] L. Shao, T. S. Chung, G. Wensley, S. H. Goh, K. P. Pramoda, J. Membr. Sci. 224 (2004) 77. [206] S. M. Saufi, A. F. Ismail, Carbon 42 (2004) 241. [207] D. Q. Vu, W. J. Koros, S J. Miller, Ind. Eng. Chem. Res. 41 (2004) 367. [208] J. N. Barsema, N. F. A. Van der Vegt, G. H. Koops, M. Wessling, J. Membr. Sci. 205 (2002) 239. [209] S. Wang, M. Zeng, Z. Wang, J. Membr. Sci. 109 (1996) 267. [210] K. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara, Y. Kusuki, Ind. Eng. Chem. Res., 38 (1999) 4424. [211] P. S. Tin, T. S. Chung, Y. Liu, R. Wang, Carbon 42 (2004) 3123. [212] P. S. Tin, T. S. Chung, Macromol. Rapid Commun. 25 (2004) 1247. [213] A. B. Fuertes, D. M. Nevskaia, T. A. Centeno, Micropor Mesopor. Mater. 33 (1999) 115. [214] M. G. Sedigh, M. Jahangiri, P. K. T. Liu, M. Sahimi, T. T. Tsotsis, AIChE J. 46 (2000) 2245. [215] H. Suda, K. Haraya, J. Chem. Soc. Chem. (1997) 93. [216] A. F. Ismail, L. I. B. David, J. Membr. Sci. 193 (2001) 1. [217] K. P. Pramoda, T. S. Chung, S. L. Liu, H. Oikawa, A. Yamaguchi, Polym. Degrad. Stab. 67 (2000) 365. [218] P. S. G. Krishnan, R. H. Vora, S. Veeramani, S. H. Goh, T. S. Chung, Polym. Degrad. Stab. 75 (2002) 273. [219] P. S. G. Krishnan, S. Veeramai, Polym. Degrad. Stab. 81 (2003) 225. - 196 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [220] D. H. Weinkauf, D. R. Paul, Effects of structural order on barrier properties, In W.J. Koros (Eds.), Barrier polymers and structures, American Chemical Society, Washington, 1990. [221] T. Papadopoulos, K. K. Sirkar, J. Membr. Sci. 94 (1994) 163. [222] Y. K. Kim, H. B. Park, Y. M. Lee, Desalination 145 (2002) 389. [223] V. Kolonits, Z. Z. Kolloid, Polymer 226 (1968) 40. [224] K. C. Khulbe, T. Matsuura, G. Lamarche, H. J. Kim, J. Membr. Sci. 135 (1997) 221. [225] K. C. Khulbe, T. Matsuura, G. Lamarche, A. M. Lamarche, J. Membr. Sci. 170 (2000) 81. [226] H. J. Lee, J. Won, H. C. Park, H. Lee, Y. S. Kang, J. Membr. Sci. 178 (2000) 35. [227] K. Tashiro, A. Yoshioka, Macromolecules 35 (2002) 410. [228] S. J. Kim, J. Y. Nam, Y. M. Lee, S. S. Im, Polymer 40 (1999) 5623. [229] J. Wang, A. T. Dibenedetto, J. F. Johnson, S. J. Huang, J. L. Cercena, Polymer 30 (1989) 718. [230] D. Q. Vu, W. J. Koros, S. J. Miller, Ind. Eng. Chem. Res. 41(2002) 367. [231] T. A. Centeno, A. B. Fuertes, J. Membr. Sci. 160 (1999) 201. [232] N. Tanihara, H. Shimazaki, Y. Hirayama, S. Nakanishi, T. Yoshinaga, Y. Kusuki, J. Membr. Sci. 160 (1999) 179. [233] D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 211 (2003) 335. [234] K. M. Steel, W. J. Koros, Ind. Eng. Chem. Res. 41 (2002) 253. - 197 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu [235] K. Lenghaus, G. G. H. Qiao, D. H. Solomon, C. Gomez, F. Rodriguez-Reinoso, Carbon 40 (2002) 743. [236] A. Bos, High Pressure CO2/CH4 Separation with Glassy Polymer MembranesAspect of CO2 Induced Plasticization, Ph.D thesis, University of Twente, The Netherlands, 1996. [237] A. E. Barnabeo, W. S. Creasy, L. M. Robeson, J. Polym. Sci. A: Chem. 13 (1975) 1979. [238] S. L. Liu, R. Wang, Y. Liu, M. L. Chng, T. S. Chung, Polymer 42 (2001) 8847. [239] L. I. B. David, A. F. Ismail, J. Membr. Sci. 213 (2003) 285. [240] H. Suda, K. Haraya, J. Phys. Chem. B 101 (1997) 3988. [241] E. Barbosa-Coutinho, V. M. M. Salim, C. P. Borges, Carbon 41 (2003) 1707. - 198 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu PUBLICATIONS 1. Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers. Journal of Membrane Science, 238 (2004) 153. 2. Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes. Journal of Membrane Science, 244 (2004) 77. 3. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance, Journal of Membrane Science, 256 (2005) 46. 4. The effects of thermal treatements and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films Industrial and Engineering Chemistry Research, 44 (2005) 3059. 5. The evolution of physicochemical and transport properties of 6FDA-durene toward to carbon; from polymeric, intermediate to carbon. - 199 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu Microporous and Mesoporous Materials, 84 (2005) 59. 6. The effects of 1, 3-cyclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranes Journal of Membrane Science, Article in press. - 200 - [...]... PI-CH2Cl2 and CMSMs derived from PI-CH2Cl2 precursors xxiii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Figure 8.9 Shao Lu Absolute permeability difference vs pyrolysis temperatures xxiv Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu CHAPTER ONE: INTRODUCTION 1.1 Membrane for Gas Separation. .. companies have produced commercial gas separation membranes Table 1.1 shows the information on the larger -2- Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu gas separation membrane companies, the types of membranes, and the gas separations of interest [1] Table 1.1 Membrane gas separation companies; membranes/modules and gas separations of interest [1].. .Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu 9.1 Conclusions 177 9.2 Recommendations 181 Publications 199 x Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu SUMMARY This study has discovered a series of novel multi-functional... xvii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu LIST OF TABLES Table 1.1 Membrane gas separation companies; membranes/modules and gas separations of interest Table 1.2 Applications of nitrogen Table 1.3 Comparison of separations for hydrogen recovery from refinery offgas Table 4.1 Elemental composition of 6FDA-durene surface before and after... chains for inhibiting polymer chain packing density to achieve high gas permeability and at the same time, suppression of chain rotational mobility to achieve high gas selectivity However, there are some limitations for -4- Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu achieving both high permeability and selectivity for polymeric membranes from. .. temperature range Among many polymeric materials for gas separation, polyimides have been found to possess high gas permeability as -8- Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu well as high intrinsic permselectivity in comparison to polycarbonate, polysulfone and other materials [42] Aromatic polyimides can be synthesized with different dianhydrides... different solvent cast films (10 atm.; 35°C) Table 8.5 Gas transport performance of polymeric membranes and CMSMs derived from PI-CH2Cl2 and PI-DMF membranes (10 atm.; 35°C) xix Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu LIST OF FIGURES Figure 1.1 Trade-off line of polymeric O2/N2 selectivity and O2 permeability Figure 1.2 Simha-Boyer model Figure... Figure 1.4 - 10 - Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu O C hv H2C H OH C + H2C H2C C OH Figure 1.4 Mechanism of UV crosslinking of BTDA-based polyimides [61] The benzophenone carbonyl group in polyimides is excited by UV light and abstracts a hydrogen from an alkyl group in a different polymer chain Therefore, the formed radicals will... wavelength and color properties of modified 6FDA-durene and thermal treated Matrimid xviii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Table 8.1 Casting conditions and physical Shao Lu properties of 6FDA/PMDA-TMMDA (PI) polyimide films cast from different solvents Table 8.2 Solubility parameters of 6FDA/PMDA-TMMDA and solvents Table 8.3 Gas transport... structures and the Charge Transfer Complexes (CTCs) formations P84 co -polyimides can be thermally treated at a temperature of 350 to 380 ℃ to improve gas transport properties [55, 56] It is found that the permeability of thermally treated membranes decreases with increasing pressure and does not show a -9- Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation . xvii Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu LIST OF TABLES Membrane gas separation companies; membranes/modules and gas separations. cross-linked polyimides was higher in mixed gas tests xi Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation Shao Lu than that in pure gas tests because. Materials and dense membrane preparation 5.2.2 Membrane chemical modification and thermal annealing vi Polyimides Modifications and Carbon Molecular Sieves Derived from Polyimides for Gas Separation

Ngày đăng: 16/09/2015, 15:54

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan