Folk medicine cratoxylum cochinchinense antioxidant but cytotoxic

200 289 0
Folk medicine  cratoxylum cochinchinense  antioxidant but cytotoxic

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

FOLK MEDICINECratoxylum cochinchinense ANTIOXIDANT BUT CYTOTOXIC TANG SOON YEW (BSc (Hons), UNSW, Australia) A thesis submitted for the degree of Doctor of Philosophy Department of Biochemistry NATIONAL UNIVERSITY OF SINGAPORE 2005 ACKNOWLEDGEMENTS Firstly, special thanks to my Family for their support throughout this study. I also wish to thank my supervisors, Professor Barry Halliwell and A/P Matthew Whiteman, for their invaluable guidance and advice as well as patience throughout this study. Special thanks to Professor Yong Eu Leong and Dr. Yap Sook Peng from the Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Singapore for supplying us the Chinese medicinal extracts. This project would not be possible without these extracts, especially Cratoxylum cochinchinense which was harvested from Sook Peng’s garden in Malaysia. My sincere thanks to Professor Sit Kim Ping, Department of Biochemistry, Faculty of Medicine, National University of Singapore for her generous gifts of a number of cell lines used in this study. My sincere thanks also extend to members of the Antioxidants and Oxidants Research Group, in one way or the other, they have been a part of making this thesis possible. Members of the group include Dr. Peng Zhao Feng, Siau Jia Ling, Dr. Andrew Jenner, Lim Kok Seong, Wang Huang Song, Sherry Huang, Long Lee Hua, Chua Siew Hwa, Dr. Wong Boon Seng and Dr. Jetty Lee. Last but not least, many thanks to my friends Chai Phing Chian, Ng Kian Hong, Dr. Mirjam Nordling, members of the Flow Cytometry and Confocal Units and …… ii List of journal publications Tang, S. Y., Whiteman, M., Jenner, A., Peng, Z. F., and Halliwell, B. (2004) Mechanism of cell death induced by an antioxidant extract of Cratoxylum cochinchinense (YCT) in Jurkat T cells: the role of reactive oxygen species and calcium. Free Radic. Biol. Med. 36:1588-1611. Tang, S. Y., Whiteman, M., Peng, Z. F., Jenner, A., Yong, E. L., and Halliwell, B. (2004) Characterization of antioxidant and antiglycation properties and isolation of active ingredients from traditional chinese medicines. Free Radic. Biol. Med. 36:1575-1587. International conference attended during 2001-2005 1st Asia Pacific Conference and Exhibition on Anti-Aging Medicine 2002: From Molecular Mechanisms to Therapies. June 23-26. The 2nd International Conference on Natural Products 2002. 2st Asia Pacific Conference and Exhibition on Anti-Aging Medicine 2003: Diet, Disease, and Lifestyle. Sep 08-11. The 3nd International Conference on Natural Products- A Must for Human Survival. Oct 23-25, 2004. ICCAM (International Congress on Complementary and Alternative Medicines) Herbal Medicines: Ancient Cures, Modern Science. Feb 26-28, 2005. International Networking for Young Scientists Symposium. Cancer Biology-Cell Apoptosis. Mar 1-2, 2005. iii TABLES OF CONTENTS Page Acknowledgements i List of journal publications iii International conference attended during 2001-2005 iii Table of contents iv Abstracts x List of tables xii List of figures xiii List of abbreviations and keywords xvi CHAPTER 1. INTRODUCTION 1.1. Introduction 1.2. Traditional Chinese medicines 1.3. Reactive oxygen species 1.3.1. Hypochlorous acid 1.3.2. Peroxynitrite 1.4. Oxidative stress 10 1.5. Antioxidant defence system 11 1.6. Antioxidant and polyphenolic compounds 13 1.7. Reactive oxygen species in cell signaling 15 1.7.1. Introduction 15 iv 1.7.2. Cellular redox state 1.8. Calcium and its role in cell signaling and cell death 17 19 1.8.1. Introduction 19 1.8.2. Cellular calcium homeostasis 19 1.8.3. Roles of endoplasmic reticulum in cytosolic calcium homeostasis 21 1.8.4. Role of mitochondria in cytosolic calcium homeostasis 22 1.8.5. Calcium and oxidative stress 22 1.8.6. Calcium and cytotoxicity 23 1.9. Mitochondria 25 1.9.1. Mitochondrial structure and function 25 1.9.2. Mitochondrial reactive oxygen species 26 1.10. Cell death 27 1.10.1. Introduction 27 1.10.2. Differences between apoptosis and necrosis 28 1.10.3. Mitochondrial permeability transition and cell death 34 1.10.4. Calcium overload and mitochondrial permeability transition 37 1.10.5. Bcl-2 proteins and cell death 38 1.11. Plasma membrane NADH reductase/ Plasma membrane redox system 39 1.12. Aims of this study 40 CHAPTER 2. EXPERIMENTAL PROCEDURES 2.1. Materials 41 v 2.2. Methods 43 2.2.1. Extract preparation 43 2.2.2. ABTS assay 43 2.2.3. Ascorbate-iron induced lipid peroxidation 44 2.2.4. Total phenolic content 45 2.2.5. Scavenging of DPPH• (2,2-Diphenyl-1-picrylhydrazyl) 45 2.2.6. Superoxide anion (O2•-) scavenging effect 45 2.2.7. Xanthine oxidase (XO) activity 46 2.2.8. Iron-binding activity 46 2.2.9. Non-enzymatic protein glycation 47 2.2.10. Inhibition of hypochlorous acid-induced DNA damage 47 2.2.11. Isolation, purification, and identification of active ingredient from Cratoxylum cochinchinense (WN) 49 2.2.12. Bleomycin-iron dependent DNA damage 50 2.2.13. Peroxynitrite scavenging assays 50 2.2.13.1. Synthesis of Peroxynitrite 50 2.2.13.2. Assessment of pyrogallol red (PR) bleaching by peroxynitrite (ONOO-) 2.2.13.3. Measurement of tyrosine nitration 51 51 2.2.14. Cell culture 52 2.2.15. Cell counting 52 2.2.16. Isolation of human lymphocytes 53 2.2.17. Assessment of cell viability 53 vi 2.2.17.1. MTT assay 54 2.2.17.2. Trypan blue exclusion assay 54 2.2.18. Treatment of Jurkat T cells with YCT 55 2.2.19. O2 electrode assay 55 2.2.20. Cell cycle analysis using flow cytometry 56 2.2.21. Annexin V-FITC and propidium iodide staining of Jurkat T cells 56 2.2.22. Release of lactate dehydrogenase 57 2.2.23. Assessment of cellular and nuclear morphology 57 2.2.24. Caspase and activities 58 2.2.25. Western blot analysis 59 2.2.26. Internucleosomal DNA fragmentation assay 60 2.2.27. Cytofluorimetric measurement of superoxide radicals (O2•-) and other reactive oxygen species (ROS), lipid peroxidation (LPO), intracellular Ca2+ ([Ca2+]i), mitochondrial Ca2+ ([Ca2+]m), mitochondrial transmembrane potential (ΔΨm), intracellular potassium ([k+]i) and sodium ([Na+]i) 60 2.2.28. Multiwell plate reader measurement of lipid peroxidation (LPO) and mitochondrial transmembrane potential (ΔΨm) 63 2.2.29. Intracellular ATP determination 63 2.2.30. Intracellular glutathione measurement 64 2.2.31. Cytochrome c levels 64 2.2.32. Kinetic study of rise in intracellular Ca2+ with Fluo3/ AM 66 vii 2.3. Data analysis 66 CHAPTER 3. RESULTS AND DISCUSSION RESULTS 3.1. Radical scavenging by TCM extracts 67 3.2. Inhibition of ascorbate-iron induced phospholipid peroxidation 70 3.3. Correlation between TEAC values, total phenolic content and DPPH reducing ability 71 3.4. Superoxide scavenging and xanthine oxidase inhibition 72 3.5. Iron-binding activity 73 3.6. Scavenging of hypochlorous acid (HOCl); protection against HOCl-mediated DNA damage 74 3.7. Inhibition of protein glycation 75 3.8. Purification and identification of ‘active’ ingredient from extract WN 76 3.9. Low pro-oxidant effect of YCT extract 79 3.10. Inhibition of PR bleaching and 3-nitrotyrosine formation by YCT 80 3.11. A comparison of our semi-purified extract (YCT) with pure mangiferin 83 DISCUSSION 86 CHAPTER 4. RESULTS AND DISCUSSION RESULTS viii 4.1. Cytotoxicity of YCT by MTT assay and propidium iodide staining 93 4.2. YCT-induced loss of viability in Jurkat T cells but not in normal lymphocytes 97 4.3. Changes in cellular morphology 99 4.4. YCT-induced phosphatidylserine exposure and LDH release 101 4.5. Caspase activities and internucleosomal DNA fragmentation 105 4.6. YCT induces rapid oxidative stress 108 4.7. YCT-induced lipid peroxidation in Jurkat T cells 112 4.8. Mitochondrial Ca2+ overloading and ΔΨm dissipation 115 4.9. Effects of ruthenium red on mitochondrial Ca2+ and ΔΨm 118 4.10. YCT-mediated changes in cytochrome c and ATP levels 120 4.11. Intracellular glutathione content 124 4.12. YCT-mediated mobilization of extracellular Ca2+ 127 4.13. Ca2+ influx through a non-selective cation channel? 131 4.14. The relationship between ROS generation and Ca2+ influx 133 4.15. Ferricyanide inhibit YCT-induced apoptotic signals 24 h after treatment 135 DISCUSSION 138 CHAPTER 5. CONCLUSION 143 CHAPTER 6. REFERENCES 146 APPENDIX A ix Medina, M. A. (1998) Plasma membrane redox systems in tumor cells. In: Asard, H.; Bérczi, A.; Caubergs, R. (eds.), Dordrecht: Kluwer Academics; The Netherlands. Milligan, S. A., Owens, M. W., and Grisham, M. B. (1998) Differential regulation of extracellular signal-regulated kinase and nuclear factor-kappa B signal transduction pathways by hydrogen peroxide and tumor necrosis factor. Arch. Biochem. Biophys. 352:255-262. Mira, L., Fernandez, M.T., Santos, M., Rocha, R., Florencio, M. H., and Jennings, K. R. (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic. Res. 36:1199-1208. Miura, T., Ichiki, H., Iwamoto, N., Kato, M., Kubo, M., Sasaki, H., Okada, M., Ishida, T., Seino, Y and Tanigawa, K. (2001) Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components, mangiferin and its glucoside. Biol. Pharm. Bull. 24:1009-1011. Montero, M., Brini, M., Marsault, R., Alvarez, J., Sitia, R., Pozzan, T., and Rizzuto, R. (1995) Monitoring dynamic changes in free Ca2+ concentrations in the endoplasmic reticulum of intact cells. EMBO J. 14:5467-5475. Moreira, R. R., Carlos, I. Z., and Vilega, W. (2001) Release of intermediate reactive hydrogen peroxide by macrophage cells activated by natural products. Biol. Pharm, Bull. 24:201-204. Morré, D. J. (1998) In Plasma membrane redox systems and their role in biological stress and disease (Eds, Asard, H.; Bérczi, A.; Caubergs, R.) Kluwer Academic Publishers, Dordrecht, The Netherlands. 167 Morré, D. J., and Morré, D. M. (2003) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time-keeping, growth, aging and neurodegenerative diseases. Free Radic. Res. 37:795-808. Morré, D. J., Chueh, P. J., Pletcher, J., Tang, X., Wu, L. Y., and Morré, D. M. (2002) Biochemical basis for the biological clock. Biochemistry 41:11941-11945. Morris, J. C. (1966) The acid ionization constant of HOCl from to 35°. J. Phys. Chem. 70:3798-3805. Mukherjee, S. B., Das, M., Sudhandiran, G., and Shaha, C. (2002) Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J. Biol. Chem. 27:24717-24727. Muruganandan, S., Gupta, S., Kataria, M., Lal, J., and Gupta, P. K. (2002) Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology 176:165-173. Muruganandan, S., Srinivasan, K., Gupta, S., Gupta, P. K., and Lal, J. (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J. Ethnopharmacol. 97:497-501. Nath, R., Raser, K. J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R.V., Yuen, P., Gilbertsen, R.B., and Wang, K. K. (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem. J. 319:683-690. 168 Ng, T. B., Liu, F., and Wang, Z. T. (2000) Antioxidative activity of natural products from plants. Life Sci. 66:709-723. Nguyen, L. H. D. and Harrison, L. J. (1999) Triterpenoid and xanthone constituents of Cratoxylum cochinchinense. Phytochemisty 50:471-476. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T. –T., Yu, V. L., and Miller, D. K. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37-43. Nicotera, P., Hartzell, P., Davis, G., Orrenius, S. (1986) The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca2+ is mediated by the activation of a non-lysosomal proteolytic system. FEBS Lett. 209:139-144. Nobel, C. S., Burgess, D. H., Zhivotovsky, B., Burkitt, M. J., Orrenius, S., and Slater, A. F. (1997) Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme. Chem. Res. Toxicol. 10:636-643. Noguchi, N., Watanabe, A., and Shi, H. (2000) Diverse functions of antioxidants. Free Radic. Res. 33:809-817. Nott, P. E., and Robets, J. C. (1967) The structure of mangiferin. Phytochemistry 6:741747. Nunez-Selles, A. J., Velez Castro, H. T., Aguero-Aguero J., Gonzalez−Gonzalez, J., Naddeo, F., De Simone, F., and Rastelli, L. (2002) Isolation and quantitative analysis 169 of phenolic antioxidants, free sugars, and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. J. Agric. Food Chem. 50:762-766. Orrenius, S. and Hampton, M. B. (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414:552-556. Orrenius, S. Zhivotovsky, B., and Nicotera P. (2003) Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4:552-565. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA 99:1259-1263. Ou, B. X., Huang, D. J., Hampsch-Woodill, M., and Flanagan, J. A. (2003) When east meets west: the relationship between yin-yang and antioxidation-oxidation. FASEB J. 17:127-129. Palomba, L., Sestili, P., Columbaro, M., Falcieri, E., and Cantoni, O. (1999) Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: the effect of the poly-(ADP-ribose)polymerase inhibitor 3aminobenzamide. Biochem. Pharmacol. 58:1743-1750. Pannala, A., Rice-Evans, C. A., Halliwell, B., and Singh, S. (1997) Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem. Biophys. Res. Commun. 232:164-168. Pap, E. H. W., Drummen, G. P. C., Winter, V. J., Kooij, T. W. A., Rijken, P., Wirtz, K. W. A., Op den kamp, J. A. F., Hage, W. J., and Post, J. A. (1999) Ratio-fluorescence 170 microscopy of lipid oxidation in living cells using C11-BODIPY(581/591). FEBS Lett. 453:278-282. Peng, Z. F., Strack, D., Baumert. A., Subramaniam, R., Goh, N. K., Chia, T. F., Tan, S. N., and Chia, L. S. (2003) Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry. 62:219-228. Pero, R. W., Sheng, Y., Olsson, A., Bryngelsson, C., and Lund-Pero, M. (1996) Hypochlorous acid/ N-chloramines are naturally produced DNA repair inhibitors. Carcinogenesis 17:13-18. Petit, P. X., LeCoeur, H., Zorn, E., Dauguet, C., Mignotte, B., and Gougeon, M. L. (1995) Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J. Cell. Biol. 130:157-167. Proskuryakov, S. Y.; Konoplyannikov, A. G.; and Gabai, V. L. (2003) Necrosis: a specific form of programmed cell death? Exp. Cell Res. 283:1-16. Prütz, W. A. (1996) Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 332:110-120. Pryor, W. A. (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48:657-667. Qu, B., Li, Q. T., Wong, K. P., Theresa, M. C., and Halliwell, B. (2001) Mitochondrial damage by the "pro-oxidant" peroxisomal proliferator clofibrate. Free Radic. Biol. Med. 31:659-669. Radi, R., Rodriguez, M., Castro. L., and Telleri, R. (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308:89-95. 171 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237. Reers, M., Smith, T. W., and Chen, L. B. (1991) J-aggregate formation of a carbocyanine as quantitative fluorescent indicator of membrane potential. Biochemistry 30:44804486. Rice-Evans, C. A., Miller, N. J., and Paganga, G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933-956. Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M., and Pozzan, T. (1994) Mitochondrial Ca2+ homeostasis in intact cells. J. Cell Biol. 126:1183-1194. Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763-1766. Roveri, A., Coassin, M., Maiorino, M., Zamburlini, A., van Amsterdam, F. T., Ratti, E., and Ursini, F. (1992) Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch. Biochem. Biophys. 297:265-270. Saeki, K., Kobayashi, N., Inazawa, Y., Zhang, H., Nishitoh, H., Ichijo, H., Saeki, K., Isemura, M., and You, A. (2002) Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochem J. 368:705-720. 172 Sampson, J. B., Rosen, H., and Beckman, J. S. (1996) Peroxynitrite dependent tyrosine nitration catalyzed by superoxide dismutase, myeloperoxidase and horseradish peroxidase. Methds. Enzymol. 269:210-218. Sánchez, G. M., Re, L., Giuliani, A., Núñnez-Sellés, A. J., Davison, G. P., and LeónFernández, O. S. (2000) Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol. Res. 42:565-573. Sato, T., Kawamoto, A., Tamura, A., Tatsumi, Y., and Fujii, T. (1992) Mechanism of antioxidant action of pueraria glycoside (PG)-1 (an isoflavonoid) and mangiferin (a xanthonoid). Chem. Pharm. Bull. 40:721-724. Scaduto, R. C., and Grotyohann, L. W. (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76:469-477. Schraufstatter, I. U., Browne, K., Harris, A., Hyslop, P. A., Jackson, J. H., Quehenberger, O., and Cochrane, C. G. (1990) Mechanisms of hypochlorite injury of target cells. J. Clin. Invest. 85:554-62. Schroeder, P., Klotz, L. O., and Buchczyk, D. P. (2001) Epicatechin selectively prevents nitration but not oxidation reactions of peroxynitrite. Biochem. Biophys. Res. Commun. 285:782-787. Schwab, B. L., Guerini, D., Didszun, C., Bano, D., Ferrando-May, E., Fava, E., Tam, J., Xu, D., Xanthoudakis, S., Nicholson, D. W, Carafoli, E., and Nicotera, P. (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 9:818-831. 173 Schweizer, M., and Richter, C. (1996) Peroxynitrite stimulates the pyridine nucleotidelinked Ca2+ release from intact rat liver mitochondria. Biochemistry 35:4524-4528. Sevanian, A., and Ursini, G. (2000) Lipid peroxidation in membranes and low-density lipoproteins: similarities and differences. Free Radic. Biol. Med. 29:306−311. Shacter, E., Williams, J. A., Hinson, R. M., Senturker, S., and Lee, Y. J. (2000) Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 96:307-313. Shimada, K., Fujikawa, K., Yahara, K., and Nakamura, T. (1992) Antioxidative properties of xanthan on the antoxidation of soybean oil in cyclodextrin emulsion. J. Agirc. Food Chem. 40:945-948. Shimizu, S., Eguchi, Y., Kamiike, W., Waguri, S., Uchiyama, Y., Matsuda, H., and Tsujimoto, Y. (1996) Retardation of chemical hypoxia-induced necrotic cell-death by Bcl-2 and ICE inhibitors--possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12:2045-2050. Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483-7. Sia, G. L., Bennett, G. J., Harrison, L. J., and Sim, K. Y. (1995) Minor xanthones from the bark of Cratoxylum cochinchinense. Phytochemistry 38:1521-1528. Sies, H. (1991) Oxidative stress: from basic research to clinical application. Am. J. Med. 91:31S-38S. Sies, H. (1993) Strategies of antioxidant defense. Eur. J. Biochem. 215:213-219. Sies, H. (1997) Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 82:291-295. 174 Sindambiwe, J. B., Calomme, M., Totte, P. C. J., Pieters, L., Vlietinck, A., and Berghe, D. V. (1999) Screening of seven selected Rwandan medicinal plants for antimicrobial and antiviral activities. J. Ethnopharmacol. 65:71−77. Singleton, V. L., Orthofer, R., and Lamuela-Raventos, R. M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methds. Enzymol. 299:152-178. Smaili, S. S., Hsu, Y. T., Youle, R. J., and Russell, J. T. (2000) Mitochondria in Ca2+ signalling and apoptosis. J. Bioenerg. Biomembr. 32:35-46. Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S. D., Stern, D., Sayre, L. M., Monnier, V. M., and Perry, G. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91:5710−5714. Somlyo, A. P., Bond, M., and Somlyo, A. V. (1985) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314:622-625. Spencer, J. P. E., Whiteman, M., Jenner, A., and Halliwell, B. (2000) Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic. Biol. Med. 28:1039-1050. Sperandio, S., de Belle, I., and Bredesen, D. E. (2000) An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97:14376-14381. Squadrito, G. L., and Pryor, W. A. (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 25:392-403. Squier, M. K. T. and Cohen, J. J. (1997) Calpain, an upstream regulator of thymocyte apoptosis. J. Immunol. 158:3690-3697. 175 Stevenson, M. A., Pollock, S. S., Coleman, C. N., and Calderwood, S. K. (1994) Xirradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res. 54:12-15. Stryer, L. (1995) Biochemistry. 4th ed. W. H. Freeman and Company, New York. Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M. (1992) Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca2+-pump, reduces Ca2+-dependent K+ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107:134-140. Sweeney, A. P., Wyllie, S. G., Shalliker, R. A., and Markham, J. L. (2001) Xanthine oxidase inhibitory activity of selected Australian native plants. J. Ethnopharmacol. 75:273-277. Tang, S. Y., Whiteman, M., Peng, Z. F., Jenner, A., Yong, E. L., and Halliwell, B. (2004) Characterization of antioxidant and antiglycation properties and isolation of active ingredients from Traditional Chinese Medicines. Free Radic. Biol. Med. 36:15751587. Thannickal, V. J., and Fanburg, B. L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L1005-L1028. Thomas, A. P., Bird, G. S., Hajnoczky, G., Robb-Gaspers, L. D., and Putney, J. W. Jr. (1996) Spatial and temporal aspects of cellular calcium signaling. FASEB J. 10:15051517. Tiku, M. L., Shah, R., and Allison, G. T. (2000) Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. J. Biol. Chem. 275:2006920076. 176 Tithof, P. K., Elgayyar, M., Cho, Y., Guan, W., Fisher, A. B., and Peters-Golden, M. (2002) Polycyclic aromatic hydrocarbons present in cigarette smoke cause endothelial cell apoptosis by a phospholipase A2-dependent mechanism. FASEB J. 16:14631464. Trump, B. J., and Berezesky, I. K. (1995) Ca2+-mediated cell injury and cell death. FASEB J. 9:219-228. Tsai, J.- H. M., Harrison, J. G., Martin, J. C., Hamilton, T. P., van der Woerd, M., Jablonsky, M., and Beckman, J. S. (1994) Role of peroxynitrite conformation with its stability and toxicity. J. Am. Chem. Soc. 116:4115-4116. Van den Dobbelsteen, D. J., Nobel, C. S. I., Schlegel, J., Cotgreave, I. A., Orrenius, S., and Slater, A. F. G. (1996) Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J. Biol. Chem. 271:15420-15427. Van Rensburg, C. E., Van Staden, A. M., and Anderson, R. (1991) Inactivation of poly(ADP-ribose) polymerase by hypochlorous acid. Free Radic. Biol. Med. 11:285291. Van Rensburg, C. E., Van Staden, A. M., Anderson, R., and Van Rensburg, E. J. (1992) Hypochlorous acid potentiates hydrogen peroxide-mediated DNA-strand breaks in human mononuclear leucocytes. Mutat. Res. 265:255-261. Van Wyk, B. E., and Wink, M. (2004) Medicinal plants of the worlds: an illustrated scientific guide to important medicinal plants and their uses, 1st ed., USA: Timber Press. Vanderhoek, J. Y., and Lands, W. E. M. (1973) Acetylenic inhibitors of sheep vesicular gland oxygenase. Biochim. Biophys. Acta 296:374-381. 177 Vasant, C., Balamurugan, K., Rajaram, R., and Ramasami, T. (2001) Apoptosis of lymphocytes in the presence of Cr(V) complexes: Roles in Cr(VI)-induced toxicity. Biochem. Biophys. Res. Commun. 285, 1354-1360. Vinson, J. A., and Howard, T. B. (1996) Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. Nutri. Biochem. 7:659−663. Wang, B. E. (2000) Treatment of chronic liver diseases with traditional Chinese medicine. J. Gastoenterol. Hepatol. 15:(Suppl) E67−70. Wang, H., and Joseph, J. A. (2000) Mechanisms of hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic. Biol. Med. 28:1222-1231. Wang, S., Pogue, R., Morré, D. M., and Morré, D. J. (2001) NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperaturecompensated period lengths of 22 and 24 minutes corresponding to different NOX forms. Biochim. Biophys. Acta 1539:192-204. Wang, Z. G. and Ren, J. (2002) Current status and future direction of Chinese herbal medicine. Trends Pharmacol. Sci. 23:347-348. Weis, M., Kass, G. E., and Orrenius, S. (1994) Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants. Biochem. Pharmacol. 47:2147-2156. Weis, M., Schlegel, J., Kass, G. E. N., Holmstrom, T. H., Peters, I., Eriksson, J., Orrenius, S., and Chow, S. C. (1995) Cellular events in Fas/APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp. Cell Res. 219:699-708. Weiss, S. J. (1989) Tissue destruction by neutrophils. N. Engl. J. Med. 320:365-376. 178 Weiss, S. J., Klein, R., Slivka, A., and Wei, M. (1982) Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J. Clin. Invest. 70:598-607. Whiteman, M., Ketsawatsakul, U., and Halliwell, B. (2002) A reassessment of the peroxynitrite scavenging activity of uric acid. Ann. N. Y. Acad. Sci. 962:242-259. Whiteman, M., Spencer, J. P. E., Jenner, A., and Halliwell, B. (1999) Hypochlorous acidinduced DNA base modification: Potentiation by nitrite: Biomarkers of DNA damage by reactive oxygen species. Biochem. Biophys. Res. Commun. 257:572-576. Whiteman, W., Jenner, A., and Halliwell, B. (1997) Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem. Res. Toxicol. 10:1240-1246. Wilasrusmee, C., Kittur, S., Siddiqui, J., Bruch, D., Wilasrusmee, S., and Kittur, D. S. (2002b) In vitro immunomodulatory effects of ten commonly used herbs on murine lymphocytes. J. Altern. Complement Med. 8:467-475. Wilasrusmee, C., Siddiqui, J., Bruch, D., Wilasrusmee, S., Kittur, S., and Kittur, D. S. (2002a) In vitro immunomodulatory effects of herbal products. Am. Surg. 68:860864. Wiseman, H., and Halliwell, B. (1993) Carcinogenic antioxidants: Diethylstilboestrol, hexoestrol and 17 α-ethynyloestradiol. FEBS Lett. 332:159-163. Wong, A., and Cortopassi, G. A. (2002) High-throughput measurement of mitochondrial membrane potential in a neural cell line using a fluorescence plate reader. Biochem. Biophys. Res. Comm. 298:750-754. Wyllie, A. H.; Morris, R. G.; Smith, A. L.; and Dunlop, D. (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142:66-77. 179 Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-1132. Yoshikawa, M., Ninomiya, K., Shimoda, H., Nishida, N., and Matsuda, H. (2002a) Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol. Pharm. Bull. 25:72-76. Yoshikawa, M., Shimoda, H., Nishida, N., Takada, M., and Matsuda, H. (2002b) Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr. 132:1819-1824. Yoshimi, N., Matsunaga, K., Katayama, M., Yamada, Y., Kuno, T., Qiao, Z., Hara, A., Yamahara, J., and Mori, H. (2001) The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Lett. 163:163-170. Zamzami, N., Marchetti, P., Castedo, M., Hirsch, T., Susin, S. A., Masse, B., and Kroemer, G. (1996a) Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 384:5357. Zamzami, N.; Susin, S. A.; Marchetti, P.; Hirsch, T.; Gomez-Monterrey, I.; Castedo, M.; and Kroemer, G. (1996b) Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183:1533-1544. Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J., and Kalyanaraman B. (2003) Superoxide reacts with hydroethidine but forms a 180 fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34:13591368. Zheng, W., and Wang, S. Y. (2001) Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49:5165-5170. Zhivotovsky, B., Samali, A., Gahm, A., and Orrenius, S. (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ. 6:644651. 181 APPENDIX A [...]... membrane redox system PR-pyrogallol red xvi PS-phosphatidylserine ROS-reactive oxygen species RuR-ruthenium red TCM-traditional Chinese medicines TEAC-Trolox equivalents antioxidant capacity tR-retention time YCT -Cratoxylum cochinchinense extract Keywords⎯TCM, Cratoxylum cochinchinense, mangiferin, lipid peroxidation, advanced glycation end products, DNA damage, peroxynitrite, 3-nitrotyrosine, oxidative... is considerable interest in the isolation of more potent antioxidant compounds to treat diseases involving oxidative stress Thirty-three Traditional Chinese Medicine (TCM) extracts were examined for their antioxidant activity using the ABTS (2,2’-azinobis[3-ethylbenzothiazoline-6-sulphonate]) assay Five extracts with high activity (Cratoxylum cochinchinense, Cortex magnoliae officinalis, Psoralea corylifolia... al., 2001) For example, Cratoxylum cochinchinense is a small genus of Southeast Asia trees belonging to the Guttiferae (Bennett and Lee, 1989) It is used in traditional medicine for many purposes (Bremness, 1994) Bennett et al (1993), Sia et al (1995) and Nguyen and Harrison (1999) have described the triterpenoids, tocotrienols and xanthones constituents from the bark of Cratoxylum cochinchinense Mangiferin... towards herbal medicines Herbal-based therapies are now recommended for the treatment of several chronic conditions and degenerative disorders where modern medicines have proved inadequate (Iwu and Gbodossou, 2000) To date, Chinese herbal medicines constitute multi-billion-dollar industries worldwide and more than 1500 herbal products are available in the market as dietary supplements or phytomedicines... high as 90% of the medicines prescribed by doctors or sold over the counter were herbal in origin (Chevallier, 1996) The popularity of herbal medicine returned after the thalidomide tragedy in 1962 in Britain and Germany, when 3000 deformed babies were born to mothers who had taken a sedative chemical medicine during pregnancy (Chevallier, 1996) Moreover, the high cost of Western medicines has encouraged... of ROS; and (3) upregulating or protecting antioxidant defences Direct scavenging of ROS may function by virtue of the capability of antioxidants to donate hydrogen to stabilize reactive and unstable free radicals (Rice−Evans et al., 1996) The ability of phenolic compounds to chelate transition metals has also been suggested to make a contribution to their antioxidant properties, particularly in Fenton... proliferation capability (Das et al., 1992) but are usually still viable although highly sensitive to insults Mayer and Nobel (1994) reported the inhibition of ROS induced activation of caspases by antioxidants such as N-acetyl-L-cysteine (NAC) added externally to augment the cellular antioxidant pool and counteract the actions of ROS Furthermore, overexpression of endogenous antioxidant defence systems such... characterization C cochinchinense out-performed other extracts in most of the assays tested except phospholipid peroxidation inhibition, where P corylifolia L showed a higher activity C cochinchinense was particularly potent in inhibiting the formation of advanced glycation end products on proteins and strongly inhibited hypochlorous acidinduced DNA damage We attempted to isolate the active ingredients from C cochinchinense. .. interventions that can decrease or prevent damages caused by any of the reactive species on biomolecules should be beneficial One such example is antioxidant treatment that may serve to intercept a damaging species 1.5 Antioxidant defence systems Many important antioxidant defence systems have evolved to detoxify reactive species generated from our daily aerobic life (Halliwell, 1996; Sies, 1991) Generally,... which, in turn, is converted by catalase and peroxidases to H2O However, despite these antioxidant defence systems, some ROS still escape to cause damage to biomolecules and repair systems may be needed to back up the inadequacies of antioxidant defences (Halliwell and Gutteridge, 1999) Noguchi et al (2000) have classified antioxidant defence systems into preventative (which suppress the formation of free . FOLK MEDICINE- Cratoxylum cochinchinense ANTIOXIDANT BUT CYTOTOXIC TANG SOON YEW (BSc (Hons), UNSW, Australia). TCM-traditional Chinese medicines TEAC-Trolox equivalents antioxidant capacity t R -retention time YCT -Cratoxylum cochinchinense extract Keywords⎯TCM, Cratoxylum cochinchinense, mangiferin,. A., Peng, Z. F., and Halliwell, B. (2004) Mechanism of cell death induced by an antioxidant extract of Cratoxylum cochinchinense (YCT) in Jurkat T cells: the role of reactive oxygen species and

Ngày đăng: 16/09/2015, 15:53

Từ khóa liên quan

Mục lục

  • TANGSY.pdf

    • Acknowledgements.pdf

      • Acknowledgements.pdf

        • ((m-mitochondrial transmembrane potential

        • BHT-butylated hydroxytoluene

        • FA-flufenamic acid

        • LDH-lactate dehydrogenase

        • LPO-lipid peroxidation

        • NAC-N-acetyl-L-cysteine

        • PBS-phosphate buffered saline

        • PMRS-plasma membrane redox system

        • PS-phosphatidylserine

        • ROS-reactive oxygen species

        • RuR-ruthenium red

        • YCT-Cratoxylum cochinchinense extract

        • Keywords(TCM, Cratoxylum cochinchinense, mangiferin, lipid peroxidation, advanced glycation end products, DNA damage, peroxynitrite, 3-nitrotyrosine, oxidative stress, Ca2+ influx,

        • Thesis-final-1.pdf

          • CHAPTER 1

          • INTRODUCTION

            • 2.1 Materials (parts extracted from and code of Traditional

              • 2.2 Methods

              • 2.2.1 Extract preparation

              • 2.2.2 ABTS assay

              • 2.2.3 Ascorbate-iron induced lipid peroxidation

              • 2.2.5 Scavenging of DPPH( (2,2-Diphenyl-1-picrylhydrazyl)

              • 2.2.6 Superoxide anion (O2(() scavenging effect

Tài liệu cùng người dùng

Tài liệu liên quan