Cu(II) and Ni(II) complexes of n (2 hydroxybenzyl) amino acid ligands synthesis, structures, properties and catecholase activity

82 583 0
Cu(II) and Ni(II) complexes of n (2 hydroxybenzyl) amino acid ligands  synthesis, structures, properties and catecholase activity

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Cu(II) AND Ni(II) COMPLEXES OF N-(2-HYDROXYBENZYL)-AMINO ACID LIGANDS: SYNTHESIS, STRUCTURES, PROPERTIES AND CATECHOLASE ACTIVITY BELLAM SREENIVASULU (M. Sc., S. K. University, A. P. India) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2006 Dedicated to my beloved parents especially To My Father ACKNOWLEDGEMENTS I am greatly indebted to my advisor, Dr. Jagadese J. Vittal for his invaluable guidance, positive criticism, enlightening discussions and constructive suggestions throughout the candidature which immensely helped me in attaining the scientific and scholarly attitude of a researcher. I greatly admire his guidance and wish to express my sincere gratitude for his constant support, patience and supervision at each and every stage of my PhD life. Many thanks to Prof. Song Gao, Peking University, China for low temperature magnetic measurements and calculations. Also, many thanks to the all technicians and staff from EA, NMR, IR, TGA, XRD, micro analytical, analytical and honours laboratories at the Department of Chemistry, NUS. Particularly, I am thankful to Dr. Jagadese J. Vittal for single crystal X-ray data collection, structure solution and refinements of the crystal structures presented in this thesis. I am grateful to my mother, brothers, sisters and all family members for their kind support. Especially, I am thankful to my eldest brother, B. Ravi Kumar for his guardianship, moral support and encouragement all the times. I also express my sincere thanks to the past and present members of our research group and all my friends who have shown their support for their invaluable and helpful discussions. I am also thankful to Dr. Srinivasa Buddudu and Dr. W. Rajendra for their encouragement. I also deeply appreciate National University of Singapore for awarding me a Research Fellowship for my PhD. i Declaration This work described in this thesis was carried at the Department of Chemistry, National University of Singapore from 7th Jan 2002 to 30th Mar 2006 under the supervision of Associate Professor Jagadese J. Vittal. All the work described herein is my own, unless stated to the contrary, and it has not been submitted previously for a degree at this or any other university. Bellam Sreenivasulu 2006 ii Table of Contents Acknowledgements i Declaration ii Table of Contents iii Abbreviations x Copyrights Permission xiv Summary xv List of Compounds Synthesized xviii List of Figures xxvii List of Tables xxxi Publications and Presentations xxxiii Chapter Introduction 1-1 General Introduction 1-2 Coordination preferences of Cu and Ni 1-3 Copper(II) complexes of Schiff base ligands 1-4 Copper(II) complexes with reduced Schiff base ligands 11 1-5 Ni(II) complexes with Schiff base and reduced Schiff base ligands 15 1-6 Solid-state supramolecular transformations by thermal dehydration 18 1-7 Effect of C=O···π interactions on thermal dehydration 19 1-8 Supramolecular Isomerism 20 1-9 Ternary Cu(II) complexes: metal-ligand ratio and pH dependent reactivity 21 1-10 Effect of the chelating ability of the amino acid side arm of the ligands on catecholase activity 1-11 Reduced Schiff base ligands containing 2-pyridinecarboxaldehyde 23 23 iii 1-12 Potential applications of Schiff base and reduced Schiff base complexes 28 1-13 Scope of the current investigation 30 1-14 References 34 Chapter Dinuclear Copper(II) Complexes as Functional Models for the Catechol Oxidase 2-1 Prelude to Parts A and B Part-A 48 Synthesis, Characterization, Structural Properties and Catecholase Activity of Dicopper(II) Complexes of reduced Schiff base Ligands 2-A-1 Introduction 61 2-A-2 Results and Discussion 61 2-A-2-1 Synthesis 61 2-A-2-2 Description of crystal structures 62 2-A-2-2-1 [Cu2 (Scp11)2(MeOH) 2], IIA-1a 64 2-A-2-2-2 [Cu2 (ClScp11)2(DMF)(H2O)]. MeCN, IIA-2a 66 2-A-2-2-3 [Cu2 (MeScp11)2 (MeOH)2].2MeOH, IIA-3a 68 2-A-2-2-4 [Cu2(OHScp11)2(H2O)2], IIA-4 70 2-A-2-2-5 [Cu2(ClSch11)2(MeOH)2].2MeOH, IIA-6a 73 2-A-2-2-6 [{Cu2(Sch12)2}2⋅Cu2(Sch12)2(H2O)2].4H2O, IIA-8 75 2-A-2-2-7 [Cu2(ClSch12)2].2MeOH, IIA-9a 78 2-A-2-2-8 [Cu2(Diala4)2(DMSO)2]⋅2DMSO⋅2Acetone, IIA-12a 79 2-A-3 Physico-chemical studies 82 2-A-3-1 Infrared spectra 82 2-A-3-2 Electronic spectra 83 2-A-3-3 ESI-MS studies 85 iv 2-A-3-4 Thermogravimetric studies 87 2-A-3-5 Magnetic studies of [{Cu2(Sch12)2}2Cu2(Sch12)2(H2O)2].4H2O, IIA-8 89 2-A-4 Catecholase biomimetic studies 90 2-A-5 Summary 95 2-A-6 Experimental 96 2-A-6-1 Synthesis of ligands 96 2-A-6-2 Synthesis of complexes 102 2-A-6-3 Catecholase activity and kinetics measurements 107 2-A-6-4 X-ray crystallography 108 Part-B Dicopper(II) Complexes as Functional Models for the Catecholase Activity: Influence of Weakly Coordinating Sulfonate Group on the Oxidation of 3,5-DTBC 2-B-1 Introduction 112 2-B-2 Results and discussion 113 2-B-2-1 Synthesis 113 2-B-2-2 Description of crystal structures 114 2-B-2-2-1 [Cu2(Sams)2(H2O)2], IIB-1 114 2-B-2-2-2 [Cu2(Saes)2(H2O)2].2H2O, IIB-3 116 2-B-2-2-3 [Cu2(Sae)2].2H2O, IIB-4 119 2-B-2-2-4 [Cu2(Sae)2(DMF)2].2DMF, IIB-5 122 2-B-3 Physico-chemical studies 124 2-B-3-1 Infrared spectra 124 2-B-3-2 Electronic spectra 125 2-B-3-3 Thermogravimetric studies 126 2-B-3-4 Magnetic properties of IIB-1, IIB-3 and IIB-4 127 v 2-B-4 Catecholase activity 129 2-B-5 Summary 133 2-B-6 Experimental 134 2-B-6-1 Preparation of ligands 134 2-B-6-2 Preparation of complexes 135 2-B-6-3 Catecholase activity and kinetics measurements 137 2-B-6-4 X-ray crystallography 137 2-B-7 References Part-C 140 3D Coordination Polymer with Hexagonal Diamondoid Topology displaying Star-like Channels 2-C-1 Introduction 150 2-C-2 Aim of the present investigation 151 2-C-3 Results and Discussion 151 2-C-3-1 Syntheses 151 2-C-3-2 Description of crystal structures 153 2-C-3-2-1 [Cu2(Scp11)2].H2O, IIC-1 153 2-C-3-2-2 [Cu2(Scp11)2(H2O)2]·2Me2CO, IIC-2 158 2-C-4 Physicochemical studies 160 2-C-4-1 Thermogravimetric studies 160 2-C-4-2 X-ray powder diffraction studies 161 2-C-5 Summary 163 2-C-6 Experimental 164 2-C-6-1 Synthesis of complexes 164 2-C-6-2 X-ray crystallography 165 2-C-7 References 167 vi Part-D Experimental Section 2D-1 General 171 2D-2 NMR spectroscopy 171 2D-3 Infrared spectroscopy 171 2D-4 Electronic spectroscopy 171 2D-5 Optical Rotation 171 2D-6 Magnetic susceptibility measurements 172 2D-7 ESI-MS spectroscopy 172 2D-8 Elemental analysis 172 2D-9 Thermogravimetry 173 2D-10 X-ray powder diffraction 173 2D-11 Scanning Electron Microscopy 173 2D-12 Single crystal X-ray crystallography 173 2D-13 References 174 Chapter Cu(II) and Ni(II) Complexes of reduced Schiff base Ligands containing Additional Functional Groups in the Amino Acid side chain 3-1 Introduction 176 3-2 Results and discussion 177 3-2-1 Description of crystal structures 178 3-2-1-1 [Cu(HSglu)(H2O)].H2O, III-2 178 3-2-1-2 [Cu(HMeSglu)(H2O)].2H2O, III-3 181 3-2-1-3 [Ni(HSas)(H2O)], III-5 185 3-2-1-4 [Ni2(Smet)2(H2O)2], III-6 188 vii 3-2-1-5 [Ni(HSapg)2], III-7 192 3-3 Physico-chemical studies 195 3-3-1 Infrared spectra 195 3-3-2 Electronic spectra 196 3-3-3 Thermogravimetric studies 197 3-4 Summary 198 3-5 Experimental 199 3-5-1 Synthesis of ligands 199 3-5-2 Synthesis of complexes 202 3-5-3 X-ray crystallography 204 3-6 References Chapter 206 Ni(II) Helical Staircase Coordination Polymer Encapsulating Helical Water Molecules 4-1 Introduction 210 4-2 Aim of the current investigation 213 4-3 Results and discussion 215 4-3-1 Crystal structure of [(H2O)2⊂{Ni(HSglu)(H2O)2}]⋅ H2O, IV-1 4-4 Physicochemical Studies 215 221 4-4-1 IR spectra 221 4-4-2 Electronic spectra 222 4-4-3 Thermogravimetric studies 222 4-5 Summary 224 4-6 Experimental 224 4-6-1 Synthesis of ligand 224 4-6-2 Synthesis of complex 225 viii Introduction Figure 1-20. Ligands containing aminocyclopentane/cyclohexanecarboxylic acid side arms. As observed in our previous reports, these ligands are also expected to form dicopper(II) complexes upon complexation with Cu(II) ion. Besides the structural and physicochemical characterizations, these dicopper(II) complexes will be investigated as functional models for the Type copper enzyme, catechol oxidase by employing 3,5-DTBC as a model substrate. Emphasis will be made on investigating the effect of para-substituents on the catalytic activity of the complexes. Furthermore, the activity of these complexes will be evaluated under the same experimental conditions, and compared with that of those dicopper(II) complexes that were previously reported by our group. We will investigate the role of weakly coordinating sulfonate group instead of carboxylate in our ligand design, on the structures of Cu(II) complexes as well as on the oxidation of 3,5-DTBC (catecholase activity) (Figure 1-21). In this case, the Schiff base copper complexes will also be synthesized to investigate their structural 31 Introduction differences. Further, the catecholase activity of the complexes will be evaluated. Focus will be on the influence of weakly coordinating sulfonate group on the activity of the complexes and the results will be compared with that of the corresponding carboxylate analogues for further understanding of the factors affecting the catecholase activity of dicopper(II) complexes. Figure 1-21. Ligands with sulfonate donor group. In order to further investigate the effect of the additional reactive functional groups on the side arm of the reduced Schiff base ligands, on the binding mode and hence on the structures, attempts will be made to modify the ligand backbone by incorporating additional functional groups at the amino acid side arm. For this purpose, naturally occurring amino acids such as L-aspartic acid and L-glutamic acid having additional – COO- donor group, L-methionine having –SCH3, and L-aspargine with –CONH2 in their side arm will be utilized to synthesize different yet structurally similar ligands (Figure 1-22). These ligands, with an additional reactive donor group in the side arm, are expected to show interesting connectivity upon complexation with metal ions such as Cu(II) and Ni(II). 32 Introduction Figure 1-22. Ligands with additional reactive donor groups. 33 Introduction 1-14. References 1. a) Sigel, H. (Ed.). Metal Ions in Biological Systems. Marcel Dekker. New York. Vol. 2. (1973); Vol. 12 (1981); Vol. 13 (1981); b) Kaim, W.; Schwederski, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life: An Introduction and Guide. Wiley, New York, 1994; c) C. X. Zhang, H. –C. Liang, K. J. Humphreys, K. D. Karlin, in Advances in Catalytic Activation of Dioxygen by Metal Complexes, (Ed.: L. I. Simandi), Kluwer Academic Publishers, Dordrecht-Boston-London, 2003, pp. 79-121 2. Karlin, K. D.; Zubieta, J. (eds.) Copper Coordination Chemistry: Biochemical & Inorganic Perspectives, Adenine Press, New York, 1983. 3. a) Karlin, K. D.; Tyeklár, Z. (Eds), Bioinorganic Chemistry of Copper; Chapman & Hall: New York, 1993; b) J. Reedjik, Bioinorganic Catalysis, (Ed.: J. Reedjik), 2nd ed., Dekker, New York, 1999. 4. Leussing, D. L. in “Metal Ions in Biological Systems”, Sigel, H. (eds.), Marcel Dekker, New York, 1976, Vol. 5, pp. 2-74. 5. a) Hausinger, R. P. Biochemistry of Nickel, Plenum Press, New York. 1993; b) Bouwman, E.; Reedijk, J. Coord. Chem. Rev. 2005, 249, 1555. 6. Lancaster (Ed.), The Bioinorganic Chemistry of Nickel, VCH, New York, 1988; b) Evans, D. J.; Coord. Chem. Rev. 2005, 249, 1582. 7. a) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry, University Science Books, Mill Vally, CA, 1994; b) Tolman, W. B. Acc. Chem Res. 1997, 30, 227; c) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047; d) Miricia, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013; e) Hatcher, L. Q.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9, 669; f) Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349. 34 Introduction 8. Karlin, K. D.; Zubieta, J.; (eds.), Biological and Inorganic Chemistry, Adenine Press, 1985, 139; b) Sorenson, J. R.; Chem. in Britain, 1984, 1110. 9. Addison, A. W.; Rao, T. N.; Reedjik, J.; van Rijn, J.; Verschoor, G. C.; J. Chem. Soc., Dalton Trans. 1984, 1349. 10. Marlin, D. S.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1998, 37, 240. 11. a) Addison, A.W.; Rao, T. N.; Sinn, E. Inorg. Chem. 1984, 23, 1957; b) Murphy, G.; O’Sullivan, C.; Murphy, B.; Hathaway, B. Inorg. Chem. 1998, 37, 240; c) O’Sullivan, C.; Murphy, G.; Murphy, B.; Hathaway, B. J. Chem. Soc., Dalton Trans. 1999, 1835; d) Marlin, D. S.; Olmstead, M. M.; Mascharak, P. K.; Inorg. Chem. 2001, 40, 7003. 12. Nickel in Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds, 1987, Vol. (Wilkinson, G.; Gillard, R. D.; Mc Cleverty, J. A. (eds.), Pergamon Press, New York, pp. 1-347. 13. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry: A Comprehensive Text, 1980, 4th ed., John Wiley and Sons, New York, pp. 783-798. 14. a) Tomlinson, A. G. Coord. Chem. Rev. 1981, 37, 22; b) Higgins, S. J. Coord. Chem. Rev. 1997, 164, 503; c) Patra, A. K.; Mukherjee, R. Inorg. Chem. 1999, 38, 1388; d) Brooker, S. Coord. Chem. Rev. 2001, 222, 35. 15. a) Lever, A. B. P.; Inorganic Electronic Spectroscopy, 1984, 2nd ed., New York; b) Costamagna, J.; Vargas, J.; Latorre, R.; Alvarado, A.; Mena, G. Coord. Chem. Rev. 1992, 119, 67. 16. a) Snell, E. E.; Braunstein, A.; Severin, E. S.; Torchinsky, V. M.; Pyridoxal Catalysis: Enzymes and Model Systems, Interscience, New York, 1968; b) Casella, L.; Gullotti, M.; Pachioni, G. J. Am. Chem. Soc. 1982, 104, 2386. 35 Introduction 17. a) Metzler, D. E.; Ikawa, M.; Snell, E. E. J. Am. Chem. Soc. 1954, 76, 468; Longenecker, J, B.; Snell, E. E. J. Am. Chem. Soc. 1957, 79, 142; b) Auld, D. S.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 2083; c) Verderas, J. C.; Floss, H. G. Acc. Chem. Res. 1980, 13, 455 and references therein 18. a) Ikawa, M.; Snell, E, E. J. Am. Chem. Soc. 1954, 76, 653; b) Leach, B. E.; Leussing, D. L. J. Am. Chem. Soc. 1971, 93, 3377; c) Weinstein, G. N.; O’Connor, M. J.; Holm, R. H.; Inorg. Chem. 1970, 9, 2104; d) Casella, L.; Gullotti, M. J. J. Am. Chem. Soc. 1981, 103, 6338; e) Casella, L.; Gullotti, M. J.; Pacchionic, G. J. Am. Chem. Soc. 1982, 104, 2386. 19. a) Tatsumoto, K.; Martel, A. E.; Motekaitis, R. J. J. Am. Chem. Soc. 1981, 103, 6197; b) Tatsumoto, K.; Martel, A. E. J. Am. Chem. Soc. 1981, 103, 6203; c) Singh, M. Thermochim. Acta, 1986, 99, 253; d) Nath, M. Thermchim. Acta 1991, 185, 11. 20. a) Snell, E. E.; Fasella, P. M.; Braunstein, A.; Rossi-Fanelli, A.; Chemical and Biological Aspects of Pyridoxal Catalysis, McMillan, New York, 1963; b) G. Marino, G. Sannia, F. Bossa (eds.), Biochemistry of Vitamin B6 and PQQ, Birkhauser Verlag, Basel (Switzerland), 1994. c) Spencer, I. D.; White, R. L. Angew. Chem. Int. Ed. Engl. 1997, 36, 1032; d) Aoki, K.; Hu, N.; H.Yamazaki, Inorg. Chim. Acta 1991, 186, 253. 21. a) Leussing, D. L. in “Metal Ions in Biological Systems”, Sigel, H. (eds.), Marcel Dekker, New York, 1976, Vol. 5, pp. 2-74; c) Dawes, H. M.; Waters, J. M.; Waters, T. N.; Inorg. Chim. Acta 1982, 66, 29; c) M. Singh, Synth. React. Inorg. Met. Org. Chem. 1985, 15, 235; d) Biradar, N. S.; Roddabasanagoudar V. L.; Aminabhavi, T. M. Polyhedron, 1984, 3, 575; e) Aminabhavi, T. M.; 36 Introduction Biradar, N. S.; Karatagi, G. V. Rudzinski, W. E. Inorg. Chim. Acta, 1984, 91, 49. 22. Longenecker, J. B.; Snell, E. E. J. Am. Chem. Soc. 1956, 79, 142. 23. a) Hopgood, D.; Leussing, D. L.; J. Am. Chem. Soc. 1969, 91, 3740; b) Leussing, D. L.; Bai, K. S. Anal. Chem. 1968, 40, 575. 24. Green, R.W.; Sleet, R. J. Aust. J. Chem. 1966, 19, 2101. 25. Felty, W. L.; Ekstrom, C. G.; Leussing, D. L. J. Am. Chem. Soc. 1970, 92, 3006. 26. a) Ueki, T.; Ashida,T.; Sasada, V.; Kakudo, K. Acta. Crystallogr., Sect. B25, 1969 328; b) Ueki, T.; Ashida, T.; Sasada, V.; Kakudo, K. Acta. Crystallogr. 1967, 22, 870; c) Waksman, Y. B.; Barbe, J. M.; Kvick, A. Acta. Crystallogr., Sect. B 44, 1988, 595. 27. Werner, P.E.; Valent, A.; Adelskold, V.; Svajlenova, O. Acta Chem. Scand. Ser. A 37, 1983, 51. 28. a) Korhonen, K.; Hamalainen, R. Acta Chem. Scand. Ser. A 33, 1979, 569. b) Dawes, H. M.; Waters, J. M.; Waters T. N. Inorg. Chim. Acta, 1982, 66, 29. 29. Garcıa-Raso A.; Fiol, J. J.; Lopez-Zafra, A.; Cabrero, A.; Mata, I.; Molins, E. Polyhedron. 1999, 18, 871. 30. Korhonen, K.; Hamalainen, R.; Turpeinen, U. Acta. Crystallogr., Sect. B 37. 1981, 829. 31. Palacios, M. S.; Medina, E.; Manrique, F.G.; Gambardella, P, M. T.; de A. Santos, R.H.; Rodriguez, M.L.; Dance, J. M. Polyhedron, 1989, 8, 2131. 32. Korhonen, K.; Hamalainen, R.; Turpeinen, U. Acta. Crystallogr., Sect. C 40, 1984, 1175. 33. a) Hamalainen, R.; Turpeinen, U.; Ahlgren, M.; Rantala, M. Acta Chem. Scand. Ser. A 32, 1978, 549 ; b) Davies, J.E. Acta. Crystallogr., Sect. C 40, 1984, 903. 37 Introduction 34. Hamalainen, R.; Ahlgren, M.; Turpeinen, U.; Rantala, M. Acta Chem. Scand. Ser. A 32 1978, 235. 35. Garcıa-Raso, A.; Fiol, J. J.; Badenas, F.; Quiros, M. Polyhedron, 1996, 15, 4407. 36. Fujimaki, H.; Oonishi, I.; Muto, F.; Nakahara, A.; Komiyama,Y. Bull. Chem. Soc. Jpn. 44, 1971, 28. 37. a) Garcia-Raso, A.; Fiol, J.; Lopez-Zafra, A.; Mata, I.; Espinosa, E.; Molins, E. Polyhedron, 2000, 19, 673 and references therein; b) Paredes-Garcia, V.; Latorre, R. O.; Spodine, E. Polyhedron, 2004, 23, 1869 and references therein; c) Sanmartin, J.; Bermejo, M. R.; Garcia-deibe, A. M.; Maneiro, M.; Lage, C.; Costa-Filho, A. J. Polyhedron, 2000, 19, 185. 38. a) Dutta, S.; Mondal, S.; Chakravarty, A. R. Polyhedron, 1995, 14, 1163; b) Chakravorty, J.; Dutta, S.; Chakravarty, A. R. J. Chem. Soc., Chem. Commun, 1993, 1091; c) Chakravorty, J.; Dutta, S.; Chandra, S. K.; Basu, P.; Chakravarty, A. R. Inorg. Chem. 1993, 32, 4249; d) Baruah, B.; Rath, S. P.; Chakravarty, A. R. Eur. J. Inorg. Chem. 2004, 1873. 39. a) Kruse, T.; Weyhermuller, T.; Wieghardt, K. Inorg. Chim. Acta 2002, 331, 81; b) Shimazaki, Y.; Huth, S.; Hirota, S.; Yamauchi, O. Inorg. Chim. Acta, 2002, 331, 168; c) Thomas, F.; Gellon, G.; Gautier-Luneau, I.; Saint-Aman, E.; Pierre, J. –L. Angew. Chem. Int. Ed. Engl. 2002, 41, 3047. 40. a) Butcher, R. J.; Mockler, G. M.; McKern, O. Acta Cryst. 2003, E59, m20; b)Butcher, R. J.; Mockler, G. M.; McKern, O. Acta Cryst. 2003, E59, m61. 41. Valent, A.; Melnik, M.; Hudecova, D.; Dudova, B.; Kivekas, R.; Sundberg, M. R. Inorg. Chim. Acta 2002, 340, 15. 42. a) Mukherjee, A.; Rudra, I.; Nethaji, M.; Ramasesha, S.; Chakravarty, A. R. Inorg. Chem. 2003, 42, 463. b) Geetha, K.; Nethaji, M.; Chakravarty, A. R. 38 Introduction Inorg. Chem. 1997, 36, 6134. c) Mukherjee, A.; Saha. M. K.; Nethaji, M.; Chakravarty, A. R. Polyhedron, 2004, 23, 2177. 43. Mukherjee, A.; Nethaji, M.; Chakravarty, A. R. Angew. Chem. Int. Ed. Engl. 2004, 43, 87. 44. Reddy, P. A. N.; Nethaji, M.; Chakravarty, A. R. Inorg. Chim. Acta 2002, 337, 450. 45. Reddy, P. A. N.; Nethaji, M.; Chakravarty, A. R. Eur. J. Inorg. Chem. 2004, 1440. 46. Long, L. S.; Chen, X. M.; Ji, L. N. Inorg. Chem. Commun. 1999, 2, 181. 47. a) Long, L, S.; Yang, S. P.; Tong, Y. X.; Mao, Z. W.; Chen, X. M.; Ji, L. N.; J. Chem. Soc., Dalton Trans. 1999, 1999 and references therein; b) Long, L, S.; Tong, Y. X.; Lu, X. L.; Chen, X. M.; Ji, L. N. Transition. Met. Chem. 1999, 24, 49. 48. a) Matsumoto, N.; Sunatsuki, Y.; Miyasaka, H.; Hashimoto, Y.; Luneau, D.; Tuchagues, J.–P.; Angew. Chem. Int. Ed. Engl.1999, 38, 171; b) Re, N.; Gallo, E.; Floriani, C.; Miyasaka, H.; Matsumoto. N.; Inorg. Chem. 1996, 35, 5964. c) Miyasaka, H.; Matsumoto, N.; Ohkawa, H.; Re, N.; Gallo, E.; Floriani. C. Inorg. Chem. 1997, 36, 670; d) Miyasaka, H.; Matsumoto, N.; Ohkawa, H.; Re, N.; Gallo, E.; Floriani. C. J. Am. Chem. Soc. 1996, 118, 981. 49. Colacio, E.; Ghazi, M.; Kivekas, R.; Moreno, J. M.; Inorg. Chem. 2000, 39, 2882. 50. So, K. W.; Yang, C. T.; Vittal, J. J.; Ranford, J. D. Inorg. Chim. Acta 2003, 349, 135. 51. Sreerama, S. G.; Pal, S. Inorg. Chem. 2005, 44, 6299. 39 Introduction 52. a) Offe, H. A.; Siefken, W.; Domagk, G.; Z. Naturforsch., Teil B 7, 1952, 446; b) Johnson, D. K.; Pippard, M. J.; Murphy, T. B.; Rose, N. J.; J. Pharmacol. Exp. Ther. 1982, 221, 399. 53. a) Lee, P. P.; Yang, C. T.; Fan, D.; Vittal, J. J.; Ranford, J. D. Polyhedron, 2003, 22, 2781; b) Aniscough, E. W.; Brodie, A. M.; Denny, W. A.; Finlay, G.; Gothe, S. A.; Ranford, J. D. J. Inorg. Biochem. 1999, 77, 125; c) Koh, L. L.; Kon, O. L.; Loh, K. W.; Long, Y. C.; Ranford, J. D.; Tan, A. L. C.; Tjan, Y. Y. J. Inorg. Biochem. 1998, 72, 155; d) Aniscough, E. W.; Brodie, A. M.; Dobbs, A. J.; Ranford, J. D.; Waters, J. M. Inorg. Chim. Acta 1998, 267, 27; e) Aniscough, E. W.; Brodie, A. M.; Ranford, J. D.; Waters, J. M. Inorg. Chim. Acta 1995, 236, 83; f) Chan, S. C.; Koh, L. L.; Leung, P. –H.; Ranford, J. D.; Sim, K. Y. Inorg. Chim. Acta 1995, 236, 101. 54. a) Gonzales Perez, J. M.; Guttierrez, J. N.; Dung, N. H.; Viossat, B.; Busnot, A.; Wintenberger, M.; Inorg. Chim. Acta 1991, 184, 243; b) Fehn, A.; Ederer, T.; Mihan, Sh.; Beck, W. J. Metallorg. Chem. 2001, 621, 109. 55. a) Koh, L. L.; Ranford, J. D.; Robinson, W. T.; Stevenson, J. O.; Choo, A. L.; Wu, D. Inorg. Chem. 1996, 35, 6466; b) Wu. D. Q.; Transition Metal Complexes of N-(2-hydroxybenzyl)-amino acids ligands: Physicochemcial, Biological and Model Properties, PhD. Thesis, National University of Singapore, Singapore, 1999. 56. a) Ueki, T.; Ashida, T.; Sasada, V.; Kakudo, K. Acta. Crystallogr. 1967, 22, 870; b) Ueki, T.; Ashida, T.; Sasada, V.; Kakudo, K. Acta. Crystallogr. 1969, B25, 328; c) Korhonen, K.; Hamalainen, R.; Turpeinen, U. Acta. Crystallogr. 1981, B37, 829; d) Korhonen, K.; Hamalainen, R.; Turpeinen, U. Acta. Crystallogr. 1984, C40, 1175; e) Davies, J. E. Acta. Crystallogr. 1984, C40, 40 Introduction 903; f) Bkouche-Waksman, Y. ; Barbe, J. M.; Kvick, A. Acta. Crystallogr. 1988, B44, 595 ; g) Palacios, M. S.; Medina, E.; Manrique, F. G.; P, M. T.; Gambardella, R. H.; Santos, de A.; Rodriguez, M. L. ; Dance, J. M. Polyhedron. 1989, 8, 2131. 57. Yamashita, H.; Koikawa, M.; Toki, T. Mol. Cryst. Liquid Cryst. 2000, 342, 63. 58. Musie, G. T.; Li, X. B.; Powell, D. R. Inorg. Chim. Acta 2003, 348, 69. 59. Rath, R. K.; Nethaji, M.; Chakravarty, A. R. Polyhedron 2001, 20, 2735. 60. a) Coles, S. J.; Hursthouse, M. B.; Kelly, D. G.; Toner, A. J. Polyhedron, 2000, 19, 177; b) Gibson, V. C.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton. Trans. 1999, 827; c) Asgedom, G.; Sreedhara, A.; Kivikoski, J.; Valkonen, J.; Kolehmainen, E.; Rao, C. P. Inorg. Chem. 1996, 35, 5674. 61. Nefkens, G. H. L.; Zwanenburg, B. Tetrahedron, 1985, 41, 6063. 62. a) Suresham, C. A.; Bhattacharya, R. K. J. Chem. Res. (S), 1998, 552; b) Suresham, C. A.; Bhattacharya, R. K. J. Chem. Res. (M), 1998, 2186. 63. Muppidi, V. K.; Zacharias, P. S.; Pal, S. Inorg. Chem. Commun. 2005, 8, 543. 64. Janiak, C. J. Chem. Soc., Dalton. Trans. 2003, 2781. 65. Lu, Z.; Zhang, D.; Gao, S.; Zhu, D. Inorg. Chem. Commun. 2005, 8, 746. 66. Lou, B. Y.; Yuan, D. Q.; Gao, S. Y.; Wang, R. H. Xu, Y.; Han, L.; Hong, M. C.; J. Mol. Struct. 2004, 707, 231. 67. Alan, M. A.; Nethaji, M.; Ray, M. Angew. Chem. Int. Ed. 2003, 42, 1940. 68. Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 509 and references therein. 69. Alam, M. A.; Nethaji, M.; Ray, M. Inorg. Chem. 2005, 44, 1302. 41 Introduction 70. a) Kolodziej, A. F. Prog. Inorg. Chem. 1994, 41, 493; b) Parashar, R. K.; Sharma, R. C.; Kumar, A.; Mohan, G. Inorg. Chim. Acta 1988, 151, 201; c) West, D. X.; Gebremedhin, H.; Butcher, R. J.; Jasinki, J. P.; Liberta, A. E. Polyhedron, 1993, 9, 2489. 71. a) Holm, R. H.; Everett, G. W.; Chakravorty, Sr. A.; Prog. Inorg. Chem. 1966, 7, 83; b) Akine, S.; Nabeshima, T. Inorg. Chem. 2005, 44, 1205 ; c) Costes, J. P.; Dahan, F.; Dominguez-Vera, J. M.; Laurent, J. P. Ruiz, J.; Sotiropoulos. J. Inorg. Chem. 1994, 33, 3908. 72. Mondal, N.; Mitra, S.; Gramilich, V.; Ghodsi, O.; Abdul Malik, K. M. Polyhedron, 2001, 20, 135. 73. a) Koizumi, S.; Nihei, M.; Oshio, H. Chem. Lett. 2003, 32, 812; b) Koga, T.; Furutachi, H.; Nakamura, T.; Fukita, N.; Ohba, M.; Takahashi, K.; Hisashi, O. Inorg. Chem. 1998, 37, 989. 74. Li. X.; Musie, G. T.; Powell, D. R. Inorg. Chim. Acta, 2003, 355, 328. 75. a) Plesch, G.; Friebel, C; Svajlenovfi O.; Kriitsmir-Smogrovi, J. Inorg. Chim. Acta, 1987, 129, 81; b) Plesch, G.; Friebel, C.; Svajlenovfi, O.; KriitsmfirSmogrovi, J. Polyhedron, 1991, 10, 893. c) Plesch, G.; Friebei, C.; Svajlenovfi, O.; Kriitsmir-Smogrovi, J. Polyedron, 1995, 14, 1185. 76. a) Yang, C. T. Inorg. Chim. Acta 2003, 344, 65; b) Yang, C. T.; Moubaraki, B.; Murray, K. S.; Vittal, J. J. J. Chem. Soc., Dalton Trans. 2003, 880. 77. Yang, C. T.; Moubaraki, B.; Murray, K. S.; Vittal, J. J. J. Chem. Soc., Dalton Trans. 2003, 880. 78. a) Ranford, J. D.; Vittal, J. J.; Wu, D.; Yang, X. D. Angew. Chem. Int. Ed. Engl. 1999, 38, 3498; b) Yang, X. D.; Si, L.; Jun, D.; Ranford, J. D. Applied Phys. 42 Introduction Lett. 2001, 78, 2008; c) Vittal, J. J. in Frontiers in Crystal Engineering, Tiekink, E.R.T.; Vittal, J. J.; Eds., Wiley, 2006, pp. 297 and references therein. 79. Ranford, J. D.; Vittal, J. J.; Wu, D. Angew. Chem. Int. Ed. Engl. 1998, 110, 1159. 80. a) Vittal, J. J.; Yang, X. D. Cryst. Growth Des. 2002, 2, 259; b) Yang, X. D. Influence of reduced Schiff base Ligand Substituents on the Solid-State Structures of their Cu(II) and Zn(II) complexes, Ph.D. Thesis, National University of Singapore, Singapore, 2003. 81. Yang, X.; Wu, D.; Ranford, J. D.; Vittal, J. J. Cryst. Growth Des. 2005, 5, 41. 82. a) Hennigar, T. L.; MacQuarie, D. C.; Losier, P.; Rogers, R. D.; Zaworotko, M. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 972; b) Zaworotko, M. J. Chem. Commun. 2001, 1; c) Sarma, J. A. R. P.; Desiraju, G. R. in Crystal Engineering: The Design and Application of Functional Solids (Eds. Zaworotko, M. J.; Seddon, K. R), Kluwer Academic Publishers, Dordrecht, 1999, pp. 325. 83. Yang, X.; Ranford, J. D.; Vittal, J. J. Cryst. Growth Des. 2004, 3, 781, 84. C. T. Yang, B. Moubaraki, K. S. Murray, J. D. Ranford, J. J. Vittal, Inorg. Chem. 2001, 40, 5934. 85. Yang, C. T. Binary and Ternary Copper(II) Complexes containing reduced Schiff base ligands, Ph.D. Thesis, National University of Singapore, Singapore, 2002. 86. a) Yang, C. –T.; Vetrichelvan, M.; Yang, X. D.; Moubaraki, M.; Murray, K. S.; Vittal, J. J. J. Chem. Soc., Dalton Trans. 2004, 1, 113; b) Wang, X. B.; Ding, J.; Vittal, J. J. Inorg. Chim. Acta 2006 (in press) c) Wang, X. B.; Ding, J.; Ranford, J. D.; Vittal, J. J. J. Appl. Phys. 2003, 93, 7819; d) Yang, X. D.; Si, L.; Ding, J.; Ranford, J. D.; Vittal, J. J. Appl. Phys. Lett., 2001, 78, 3502. 43 Introduction 87. Wang, X. B. Synthesis, Structural and Magnetic Properties, and Catecholase activity of Cu(II) and related Metal(II) complexes containing reduced Schiff base Ligands, PhD. Thesis, National University of Singapore, Singapore, 2004. 88. a) Wang, X. B.; Inorg. Chem. Commun. 2003, 6, 1074; b) Wang, X. B.; b) Ranford, J. D.; Vittal, J. J. J. Mol. Struct. 2006, (In press) 89. Wang, X. B.; Vittal, J. J. Inorg. Chem. 2003, 42, 5135. 90. Vittal, J. J.; Wang, X. B.; Ranford, J. D. Inorg. Chem. 2003, 42, 3390. 91. a) Holm, R. H.; O’Connor, M. J. Prog. Inorg. Chem. 1971, 14, 241; b) Garnovskii, A. D.; Sadimenko, A. P.; Sadimenko, M. I.; Garnovskii, D. A. Coord. Chem. Rev. 1998, 173, 31; c) Yamada, S.; Coord. Chem. Rev. 1999, 190192, 537; Gibson, V. C.; Spitzmesser, S. K.; Chem. Rev. 2003, 103, 283-315. 92. a) Wang, R.M.; Hao, C.J.; He, Y.F.; Wang, Y.P.; Li, .B. J. Mol. Catal. 1999, 147, 173; b) Wang, R. M.; Hao, C. J.; He, Y.F.; Xia, C.G.; Wang, J. R.; Wang, Y. P. J. Appl. Polym. Sci. 2003, 75, 1138; c) Wang, R. M.; Hao, C. J.; He, Y. F.; Wang, Y. P.; Xia, C. G. Polym. Adv. Technol. 2002, 13, 6. 93. a) Huang, J. ; Lian, B. ; Qian, Y. ; Zhou, W. Macromolecules. 2002, 35, 4871 ; b) Mitani, M. ; Mohri, J. ; Yoshida, Y. ; Saito, J. ; Ishii, S. ; Tsuru, K. ; Matsui, S. ; Furuyama, R. ; Nakano, T. ; Tanaka, H. ; Cojoh, S. ; Matsugi, T. ; Kashiwa, N. ; Fujita, T. J. Am. Chem. Soc. 2002, 24, 3327; c) Gibson, V.G.; Spitzmesser, S.K. Chem. Rev. 2003, 103 283. 94. a) Berkessel, A.; Frauenkron, M.; Schwenkreis, T. Steinmetz, A. J. Mol. Catal. 1997, 117, 339; b) Canali, L.; Sherrington, D. C.; Deleuze, H. React. Funct. Polym. 1999, 40. 155; c) Kureshy, R. I.; Khan, N. H.; Abdi, S. H. R.; Patel, S. T.; Jasra, R.V. Tetrahedron: Asymmetr. 2001, 12, 433. 44 Introduction 95. a) Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron. 1968, 24, 3655; b) Aratani, T. Pure Appl. Chem. 1985, 57, 1839. 96. Sherrington, D. C. Catal. Today. 2000, 57, 87. 97. (a) Mastrorilli, P.; Nobile, C. F.; Suranna, G. P.; Lopez, L. Tetrahedron, 1995, 51, 7943; b) Srikanth, A.; Nagendrappa, G.; Chandrasekaran, S. Tetrahedron, 2003, 59, 7761. 98. a) Patel, S.A.; Sinha, S.; Mishra, A. N.; Kamath, B.V.; Ram, R. N.; J. Mol. Cat. A: Chem. 2003, 192, 53 ; b) Baleizao, C. ; Cigante, B. ; Garcia, H. ; Corma, A. J. Catal. 2003, 215, 199; c) T. Joseph, S.B. Halligudi, C. Satyanarayan, D.P. Sawant, S.Gopinathan, J. Mol. Catal. 2001, 168, 87; d) Cicco, S.R.; Latronico, M.; Mastrorilli, P. Suranna, G. P.; Nobile, C. F. J. Mol. Catal. A: Chem. 2001, 165, 135 ; f) Gournis, D. ; Louloudi, M. ; Karakassides, M. A.; Kolokytha, C.; Mitopoulou, K. Hadjiliadis, N. Mater. Sci. Eng. 2002, C 22, 113; g) Zhan, B.-Z.; Thomposon, A. Tetrahedron, 2004, 60, 2917; h) Salavati-Niasari, M.; Amiri, A. Appl. Catal. A. Gen. 2005, 290, 46; i) Mostafa, S. I.; Ikeda, S.; Ohtani, B.; J. Mo. Catal A: Chem. 2005, 225, 181. 99. Basheer, C.; Vetrichelvan, M.; Suresh, V.; Lee, H. K.; Tetrahedron Lett. 2006, 47, 957. 100. Iglesias, A. L.; Aguirre, G.; Somanathan, R.; Parra-Hake, M.; Polyhedron, 2005, 23, 3051. 101. a) Flores-Lo´pez, L. Z.; Parra-Hake, M.; Somanathan, R.; Walsh, P.J. Organometallics. 2000, 19, 2153; b) Zhou, X.G.; Huang, J. S.; Ko, P. H.; Cheung, K. K.; Che, C. M. J. Chem. Soc., Dalton Trans. 1999, 3303. 102. Li, Z. ; Fernandez, M.; Jacobsen, E.N. Org. Lett. 1999, 1, 1611. 45 Introduction 103. Dossetter, A.G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem.Int. Ed. Engl. 1999, 38, 2398. 46 [...]... N- (2, 5-dihydroxybenzyl)-L-alanine H2Sams N- (2- hydroxysalicylidene)-aminomethanesulfonic acid H2Saes N- (2- hydroxysalicylidene)-aminoethanesulfonic acid H2Sam N- (2- hydroxybenzyl)- aminomethanesulfonic acid H2Sae N- (2- hydroxybenzyl)- aminoethanesulfonic acid H2Sas N -(2- hydroxybenzyl)- L-aspartic acid H3Sglu N -(2- hydroxybenzyl)- L-glutamic acid H3MeSglu N- (2- hydroxy-5-methylbenzyl)-L-glutamic acid H2Smet N- (2- hydroxybenzyl)- L-methionine... N- (2- hydroxybenzyl)- L-methionine H2Sapg N- (2- hydroxybenzyl)- L-aspargine H2Sbal N- (2- hydroxybenzyl)- β-alanine /N- (2- hydroxybenzyl)- 3-aminopropanoic acid xii Hz hertz Ind Reflns independent reflections IR infra red JA-B coupling constant between nuclei A and B LMCT ligand to metal charge transfer m multiplet Max maximum MeOH methanol MeCN acetonitrile Min minimum mp melting point NMR nuclear magnetic resonance phen... ligands are aminocyclopentane/hexanecarboxylic acids and aminomethane/ethanesulfonic acids containing carboxylate and sulfonate donors respectively The objective of the present study is to investigate the coordination chemistry of these ligands with Cu(II) and Ni(II) and explore the Cu(II) complexes as functional models for the enzyme, catechol oxidase While utilizing the unnatural aminoclopentane/hexanecarboxylic... acetylhydrazones H2Sb Salicylaldehyde benzoylhydrazones H2Salala N- salicylidene-L-alanine H2Salgly N- salicylidene-glycine H2Salphe N- salicylidene-L-phenylalanine H2Sab4 N- (2- hydroxybenzyl)- 4-aminobutyric acid H2Sala N- (2- hydroxybenzyl)- L-alanine H2ClSala N- (2- hydroxy-5-chlorobenzyl)-L-alanine H2MeSala N- (2- hydroxy-5-methylbenzyl)-L-alanine H2Sgly N- (2- hydroxybenzyl)- glycine H2Shis N- (2- hydroxybenzyl)- L-histidine... H2Styr N- (2- hydroxybenzyl)- tyrosine H2Sval N- (2- hydroxybenzyl)- L-valine H2Stryp N- (2- hydroxybenzyl)- tryptophan H2salen Bis(salicylidene) ethylenediamine 3-MeOsalen N, N’-ethylenebis(3-methoxysalicylideneaminato) H2RScp11 N- (2- hydroxy-5-R-benzyl)-1-aminocyclopentatecarboxylic acid H2Scp11 N- (2- hydroxybenzyl)- 1-aminocyclopentatecarboxylic acid xi H2ClScp11 N- (2- hydroxy-5-chlorobenzyl)-1-aminocyclopentatecarboxylic... N- (2- hydroxy-5-chlorobenzyl)-1-aminocyclohexanecarboxylic acid H2MeSch11 N- (2- hydroxy-5-methylbenzyl)-1-aminocyclohexanecarboxylic acid H2Sch12 N- (2- hydroxybenzyl)- 2-aminocyclohexanecarboxylic acid H2ClSch12 N- (2- hydroxy-5-chlorobenzyl)-2-aminocyclohexanecarboxylic acid H2MeSch12 N- (2- hydroxy-5-methylbenzyl)-2-aminocyclohexanecarboxylic acid H3Diala3 N- (2, 3-dihydroxybenzyl)-L-alanine H3Diala4 N- (2, 4-dihydroxybenzyl)-L-alanine H3Diala5 N- (2, 5-dihydroxybenzyl)-L-alanine... interconversion of the complexes 22 2-pyridylmethyl derivatives of reduced Schiff base ligands 24 CPK models of various 1D polymers derived from Hpgly and Hpala ligands 24 Diagrammatic illustration of formation of complexes from Hpgly 26 Solvent dependent reactivity of copper complexes 27 Ligands containing aminocyclopentane/cyclohexanecarboxylic acid side arm 31 Ligands with sulfonate donor group 32 Ligands. .. bond distances (Å) and bond angles (º) for IIA-1a Hydrogen bond distances (Å) and angles (º) for IIA-1a Selected bond distances (Å) and bond angles (º) for IIA-2a Hydrogen bond distances (Å) and angles (º) for IIA-2a Selected bond distances (Å) and bond angles (º) for IIA-3a Hydrogen bond distances (Å) and angles (º) for IIA-3a Selected bond distances (Å) and bond angles (º) for IIA-4 Hydrogen bond... distances (Å) and angles (º) for IIA-4 Selected bond distances (Å) and bond angles (º) for IIA-6a Hydrogen bond distances (Å) and angles (º) for IIA-6a Selected bond distances (Å) and bond angles (º) for IIA-8 Hydrogen bond distances (Å) and angles (º) for IIA-8 Selected bond distances (Å) and bond angles (º) for IIA-9a Hydrogen bond distances (Å) and angles (º) for IIA-9a Selected bond distances (Å) and. .. (Å) and bond angles (º) in III-5 Selected bond lengths (Å) and bond angles (º) for III-6 Hydrogen bond lengths (Å) and bond angles (º) in III-6 Selected bond lengths (Å) and angles (º) for III-7 Hydrogen bond lengths (Å) and bond angles (º) in III-7 Selected IR absorption bands (cm-1) in III-1 - III-7 Electronic absorption bands of III-1 - III-7 TG data of III-1 - III-7 Crystallographic data and structure . H 2 Sam N- (2- hydroxybenzyl)- aminomethanesulfonic acid H 2 Sae N- (2- hydroxybenzyl)- aminoethanesulfonic acid H 2 Sas N -(2- hydroxybenzyl)- L-aspartic acid H 3 Sglu N -(2- hydroxybenzyl)- L-glutamic acid. Chapter 3 Cu(II) and Ni(II) Complexes of reduced Schiff base Ligands containing Additional Functional Groups in the Amino Acid side chain 3-1 Introduction 176 3-2 Results and discussion 177. Cu(II) AND Ni(II) COMPLEXES OF N- (2- HYDROXYBENZYL)- AMINO ACID LIGANDS: SYNTHESIS, STRUCTURES, PROPERTIES AND CATECHOLASE ACTIVITY BELLAM SREENIVASULU

Ngày đăng: 15/09/2015, 17:10

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan