Synthesis and functionalization of micro nano particles for malicious cells detection and elimination

193 512 0
Synthesis and functionalization of micro nano particles for malicious cells detection and elimination

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SYNTHESIS AND FUNCTIONALIZATION OF MICRO/NANO-PARTICLES FOR MALIGNANT CELLS DETECTION AND ELIMINATION HU FEIXIONG NATIONAL UNIVERSITY OF SINGAPORE 2009 SYNTHESIS AND FUNCTIONALIZATION OF MICRO/NANO-PARTICLES FOR MALIGNANT CELLS DETECTION AND ELIMINATION HU FEIXIONG (B. E., M. S., Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGEMENTS First of all, I would like to express my deepest gratutide to my supervisors, Professor Neoh Koon Gee and Professor Kang En-Tang, who have been instrumental in guiding this research and providing useful advice throughout the long period of this research work. I would like to thank them for their patience and unfaltering commitment to their students; for their inspired ideas, which always make me go ahead on my way. Their enthusiasm, sincerity and dedication to scientific research have greatly impressed me and will benefit me in my future career. I would like to thank all my friends and all group members for their valuable helps in both academic issues and in other issues. Particular thanks go to Dr. Cen Lian, Dr. Li Yali and Dr. Shi Zhilong for sharing with me their invaluable experience in the research field. In addition, I have many thanks to give to all technologists, specifically Miss Chew Su Mei and Mr Yuan Zeliang, thanks for kindly help during my research. The financial support for Ph.D study from National University of Singapore is also greatly appreciated. Finally, I would like to express my deepest gratitude and indubtedness to my parents, my grandfather and other relatives for their constant concern love, patience and surpport. Special thanks to my wife, Ma Lanfang, for her love and encouragement. i TABLE OF CONTENTS ACKNOWLEDGEMENTS .i TABLE OF CONTENTS ii SUMMARY .vi NOMENCLATURE viii LIST OF FIGURES ix LIST OF TABLES xiii CHAPTER INTRODUCTION CHAPTER LITERATURE SURVEY 2.1 Effects of Biocides on Bacteria 2.1.1 Potential Targets and Effects of Biocides 2.1.2 Interactions between Cell Membrane and Disinfectants .8 2.1.3 Mechanisms of Antibacterial Action of Quaternary Ammonium Salts.9 2.1.4 Factors Affecting Biocidal Activity .10 2.1.4.1 Electrostatic Interaction between the Cells and the Disinfectants .10 2.2 2.1.4.2 Hydrophobic Chain Length .11 2.1.4.3 Morphological Effect of Disinfectants 12 Magnetic Nanoparticles for Cancer Detection and Treatment .14 2.2.1 Basic Concepts of Magnetism .15 2.2.2 Synthesis Methods of Magnetic Nanoparticles 17 2.2.2.1 Precipitation 18 2.2.2.2 Microemulsions .20 2.2.2.3 Polyols .21 2.2.2.4 High-temperature Decomposition of Organic Precursors .24 2.2.3 Functionalization Magnetic Nanoparticles for Biomedical Applications 25 2.2.3.1 Coprecipitation 25 2.2.3.2 Encapsulation Method 26 2.2.3.3 Deposition Methods 27 2.2.3.4 Surface Initiated Polymerization Processes 29 2.2.4 Magnetic Nanoparticles for Biomedical Applications .30 ii 2.2.4.1 Magnetic Targeted Drug Delivery 30 2.2.4.2 Contrast Agents for Magnetic Resonance Imaging 33 2.2.4.3 Magnetically Induced Hyperthermia Treatment for Malignant Cells 36 CHAPTER ANTIBACTERIAL AND ANTIFUNGAL EFFICACY OF SURFACE FUNCTIONALIZED POLYMERIC BEADS IN REPEATED APPLICATIONS 38 3.1 Introduction 39 3.2 Materials and Methods 42 3.2.1 Materials 42 3.2.2 Preparation of Microbeads .42 3.2.3 Quaternization of the P4VP .42 3.3 3.4 3.2.4 Bulk and Surface Analysis .43 3.2.5 Antibacterial Assay on E. coli .44 3.2.6 Antifungal Assay on A. niger .46 Results and Discussion .49 3.3.1 Properties of Microbeads .49 3.3.2 Antibacterial Characteristics of Beads .54 3.3.3 Antifungal Characteristics of Beads 61 Conclusions .68 CHAPTER SYNTHESIS EVALUATION OF AND IN VITRO TAMOXIFEN-LOADED ANTI-TUMORAL MAGNETITE/PLLA COMPOSITE NANOPARTICLES 69 4.1 Introduction 70 4.2 Materials and Methods 73 4.2.1 Materials 73 4.2.2 Preparation of Magnetic Nanoparticles .73 4.2.3 Preparation of Tamoxifen-loaded Magnetite/PLLA Composite Nanoparticles (TMCN) 74 4.2.4 Characterization of the Magnetic Carrier 75 4.2.4.1 Particle Size and Surface Properties .75 4.2.4.2 Fe3O4 Loading and Tamoxifen Encapsulation Efficiencies 75 4.2.5 In vitro Tamoxifen Release Studies .76 4.2.6 Cell Culture Assay .77 iii 4.3 4.2.6.1 Nanoparticle Uptake by MCF-7 Cells 77 4.2.6.2 Inhibition of MCF-7 Cells Proliferation .77 Results and Discussion .79 4.3.1 Characterization of the Magnetic Carrier 79 4.3.1.1 Fe3O4 Loading and Distribution 79 4.3.1.2 Drug Loading and in vitro Release .83 4.3.1.3 Particle Size, Morphology and Surface Properties .85 4.3.2 4.4 Cell Culture Assay .89 4.3.2.1 Cell Uptake of TMCN 89 4.3.2.2 Cytotoxicity of TMCN against MCF-7 Cells .92 Conclusions .95 CHAPTER SYNTHESIS OF FOLIC ACID FUNCTIONALIZED PLLA- b-PPEGMA POLYMERIC NANOPARTICLES FOR CANCER CELL TARGETING 96 5.1 Introduction 97 5.2 Materials and Methods 100 5.2.1 Materials 100 5.2.2 Preparation of Double-headed Initiator .100 5.2.3 Preparation of PLLA-b-PPEGMA .101 5.2.3.1 2-bromo-2-methylpropionyl End Functionalized Poly(L-lactic acid) .101 5.2.3.2 ATRP of PEGMA .101 5.2.3.3 Conversion of the Terminal Hydroxyl Groups to Chloride 102 5.2.4 Preparation Polymeric of Folic Nanoparticles Acid Functionalized (PNP) with PLLA-b-PPEGMA Encapsulated Magnetic Nanoparticles .103 5.3 5.2.4.1 PNP with Encapsulated Magnetic Nanoparticles .103 5.2.4.2 PNP Surface Functionalized with Folic Acid .104 5.2.5 Cell Culture Assay .105 5.2.6 Characterization .107 Results and Discussion .108 5.3.1 Characterization of PLLA-b-PPEGMA .108 5.3.2 Characterization of PNP 113 5.3.3 Surface Functionalization of the PNP with Folic Acid 115 iv 5.3.4 5.4 Cell Culture Assay .117 Conclusions .125 CHAPTER CELLULAR NANOPARTICLES ATRP RESPONSE “PEGYLATED” VIA TO MAGNETIC SURFACE-INITIATED 126 6.1 Introduction 127 6.2 Materials and Methods 130 6.3 6.4 6.2.1 Materials 130 6.2.2 Surface Initiated Atom Transfer Radical Polymerization 130 6.2.3 Cell Culture 131 6.2.4 Characterization .132 Results and Discussion .133 6.3.1 Physical Properties of the Magnetic Nanoparticles .133 6.3.2 Surface-initiated ATRP of PEGMA 135 6.3.3 Cell Uptake 144 Conclusions .150 CHAPTER CONCLUSIONS 151 CHAPTER RECOMMENDATIONS FOR FURTHER STUDY 155 REFERENCES 159 LIST OF PUBLICATIONS 178 v SUMMARY Micro/nano size particles are very useful vehicles for surface and bulk functionalization due to their high surface/volume ratio and their ability to encapsulate other agents. In this thesis, different approaches of surface and bulk functionalization of micro/nanoparticles for diagnosing or eliminating malignant cells were developed. At the same time, other important properties of particles such as the cytotoxicity and cell uptake were investigated after the functionalization process. A simple technique was first developed for preparing polymeric microparticles for antimicrobial applications. Poly (4-vinyl pyridine)/poly (vinylidene fluoride) (P4VP)/(PVDF) microparticles prepared by the phase inversion technique were used as the substrate. P4VP contributed the antimicrobial groups while PVDF provided the mechanical strength of the beads. The N-alkylation of the P4VP was carried out with alkyl chains of different lengths since the length of the carbon side chains has been shown to affect the antibacterial efficacy of pyridinium-type polymers. Two microorganisms, a Gram-negative bacteria Escherichia coli (E. coli) and a fungi spore Aspergillus niger (A. niger), were chosen to test the antimicrobial efficacy of the microparticles. To obtain a better understanding of the difference in efficacy against these two microbial species, the effect of surface pyridinium groups on cellular components was studied. This technique for preparing antibacterial microparticles has the advantages of ease of mass production and scale up, and the microparticles possess stability for repeated usage. In the second part of the work, magnetic nanoparticles were developed for the detection and elimination of malignant mammalian cells. For in vivo applications, the vi particles to be introduced must be small enough, such that they not clog the blood vessels through which they are guided to the target organ. A new magnetic targeted drug delivery carrier was developed by encapsulating magnetic Fe3O4 seeds and tamoxifen, a drug for human breast cancer, in a biodegradable polymer, poly(L-lactic acid) (PLLA), in the form of nanoparticles. These magnetic nanoparticles can also be used as contrast agents for magnetic resonance imaging (MRI), with which the distribution of the carrier can be visualized in vivo. The encapsulation of tamoxifen in the polymer matrix can extend the release profile over that of other reported methods. The anti-cancer activity of the nanoparticles was evaluated with MCF-7 breast cancer cells. Subsequently, a block polymer, poly(L-lactic acid)-block-poly(poly(ethylene glycol) monomethacrylate) (PLLA-b-PPEGMA), was synthesized for encapsulating the magnetic seeds, and the composite polymer-Fe3O4 nanoparticles were then surface functionalized with folic acid. The uptake of the folic acid functionalized nanoparticles by cancer cells was shown to be enhanced compared to that of nanoparticles without folic acid functionalization. Finally, a new PEGylation strategy was developed to increase the circulation time of magnetic nanoparticles in the blood stream via surface initiated atom transfer radical polymerization (ATRP). A silane initiator was first immobilized on the magnetic nanoparticles surface. Then, copper-mediated ATRP technique was used to graft polymerize poly(ethylene glycol) monomethacrylate (PEGMA) on the magnetic nanoparticles surface. The uptake of the PEGMA-functionalized magnetic nanoparticles by macrophage cells was used to evaluate the applicability of this technique for increasing in vivo half-life of magnetic nanoparticles. vii NOMENCLATURE AOT Sodium dioctylsulphosuccinate A. niger Aspergillus niger BE Binding energy CTAB Cetyltrimethylammonium bromide CTS [4-(chloromethyl)phenyl]trichlorosilane DCM Dichloromethane DMSO Dimethyl sulfoxide E. coli Escherichia coli EPR Enhanced permeability and retention FESEM Field emission scanning electron microscopy FTIR Fourier transform infrared GPC gel permeation chromatography ICP-MS Inductively coupled plasma-mass spectroscopy MPS Mononuclear phagocyte system MRI Magnetic resonance imaging MTT Methylthiazolyldiphenyl-tetrazolium bromide NMP N-methyl-2-pyrrolidone P4VP Poly (4-vinyl pyridine) PEGMA Poly(poly(ethylene glycol) monomethacrylate) PLLA Poly (L-lactic acid) PVDF Poly (vinylidene fluoride) SDS Sodium dodecylsulphate SEM Scanning electron microscopy TEM Transmission electron microscopy TGA Thermogravimetric analysis TMCN Tamoxifen-loaded magnetite/poly(L-lactic acid) composite nanoparticles VSM Vibrating sample magnetometer XPS X-ray photoelectron spectroscopy viii References Fisher, B., J. P. Costantino, D. L. Wickerham, C. K. Redmond, M. Kavanah, W. M. Cronin, V. Vogel, A. Robidoux, N. Dimitrov, J. Atkins, M. Daly, S. Wieand, E. TanChiu, L. Ford and N. Wolmark. Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J. Natl. Cancer Inst., 90, pp.1371-1388. 1998. Fomine, S. M., L. Y. Fomina, R. Jimenez, E. Popova and T. O. Murata. Synthesis and bulk polymerisation of T-shaped enynes. Mendeleev Commun.117-119. 1998. Fontana, G., L. Maniscalco, D. Schillaci, G. Cavallaro and G. Giammona. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv., 12, pp.385-392. 2005. Foss, A. C. and N. A. Peppas. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures. Eur. J. Pharm. Biopharm., 57, pp.447-455. 2004. Franklin, T. J. and G. A. Snow 1981. Biochemistry of antimicrobial action. London, Chapman and Hall Ltd. Fricker, J. Drugs with a magnetic attraction to tumours. Drug Discov. Today, 6, pp.387-389. 2001. Gabizon, A., A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-Shavit, M. M. Qazen and S. Zalipsky. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies. Bioconjugate Chem., 10, pp.289-298. 1999. Gargallo, L., B. Miranda, H. Rios, F. Gonzalez-Nilo and D. Radic. Surface characterization and study of Langmuir films of poly(4-vinylpyridine) quaternized with n-alkylbromide. Polym. Int., 50, pp.858-862. 2001. Gilbert, P. and A. Al-Taae. Antimicrobial activity of some alkyltrimethylammonium bromides. Lett. appl. Microbiol., 1, pp.101-104. 1985. Gomez-Lopera, S. A., J. L. Arias, V. Gallardo and A. V. Delgado. Colloidal stability of magnetite/poly(lactic acid) core/shell nanoparticles. Langmuir, 22, pp.2816-2821. 2006. Goodwin, S., C. Peterson, C. Hoh and C. Bittner. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J. Magn. Magn. Mater., 194, pp.132-139. 1999. 163 References Grapski, J. A. and S. L. Cooper. Synthesis and characterization of non-leaching biocidal polyurethanes. Biomaterials, 22, pp.2239-2246. 2001. Gupta, A. K. and A. S. G. Curtis. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 25, pp.3029-3040. 2004. Haddleton, D. M., C. Waterson, P. J. Derrick, C. B. Jasieczek and A. J. Shooter. Monohydroxy terminally functionalised poly(methyl methacrylate) from atom transfer radical polymerisation. Chem. Commun.683-684. 1997. Hafeli, U., W. Schutt, J. Teller and M. Zborowski, Eds. 1997. Scientific and Clinical Applications of Magnetic Carriers. New York, Plenum Press. Hafeli, U. O. Magnetically modulated therapeutic systems. Int J Pharm, 277, pp.1924. 2004. Harris, J. M. and S. Zalipsky 1997. Poly(ethylene glycol): chemistry and biological applications. Washington DC, American Chemical Society. Heron, M. Deaths: leading causes for 2004. National Vital Statistics Reports, 56, pp.1-96. 2007. Hilger, I., W. Andra, R. Hergt, R. Hiergeist, H. Schubert and W. A. Kaiser. Electromagnetic heating of breast tumors in interventional radiology: In vitro and in vivo studies in human cadavers and mice. Radiology, 218, pp.570-575. 2001. Hilger, I., K. Fruhauf, W. Andra, R. Hiergeist, R. Hergt and W. A. Kaiser. Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad. Radiol., 9, pp.198-202. 2002. Hogt, A. H., J. Dankert and J. Feijen. Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. J. Biomed. Mater. Res., 20, pp.533-545. 1986. Hong, S., P. R. Leroueil, I. J. Majoros, B. G. Orr, J. R. Baker and M. M. B. Holl. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chemistry & Biology, 14, pp.105-113. 2007. Hu, F. X., K. G. Neoh, L. Cen and E. T. Kang. Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization. Biomacromolecules, 7, pp.809-816. 2006. 164 References Huang, J., Z. Huang, E. J. Wolfrum, D. M. Blake, P.-C. Maness, S. Smolinski and W. A. Jacoby. Engineering solutions to indoor air quality problems symposium, Raleigh, NC, July 2000; Air and Water Management Association: Pittsburgh, PA. Huang, S. H., M. H. Liao and D. H. Chen. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog., 19, pp.1095-1100. 2003. Hyeon, T., S. S. Lee, J. Park, Y. Chung and H. Bin Na. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 123, pp.12798-12801. 2001. Iannone, A., R. L. Magin, T. Walczak, M. Federico, H. M. Swartz, A. Tomasi and V. Vannini. Blood clearance of dextran magnetite particles determined by anoninvasive invivo esr method. Magn. Reson. Med., 22, pp.435-442. 1991. Ikeda, T., H. Hirayama, H. Yamaguchi, S. Tazuke and M. Watanabe. Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother., 30, pp.132-136. 1986. Inouye, K., R. Endo, Y. Otsuka, K. Miyashiro, K. Kaneko and T. Ishikawa. Oxygenation of ferrous-ions in reversed micelle and reversed micro-emulsion. J. Phys. Chem., 86, pp.1465-1469. 1982. Ito, A., F. Matsuoka, H. Honda and T. Kobayashi. Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol. Immunother., 53, pp.26-32. 2004. Johannsen, M., A. Jordan, R. Scholz, M. Koch, M. Lein, S. Deger, J. Roigas, K. Jung and S. Loening. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. J. Endourol., 18, pp.495-500. 2004. Johnson, J., T. Kent, J. Koda, C. Peterson, S. Rudge and T. G. The MTC technology: a platform technology for the site-specific delivery of pharmaceutical agents. Eur. Cells Mater., 3, pp.12-15. 2002. Jolivet, J. P. 2000. Metal oxide chemistry and synthesis : from solution to solid state. New York, John Wiley. Jordan, A., P. Wust, R. Scholz, B. Tesche, H. Fahling, T. Mitrovics, T. Vogl, J. CervosNavarro and R. Felix. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia, 12, pp.705-722. 1996. 165 References Kanazawa, A., T. Ikeda and T. Endo. A novel-approach to mode of action of cationic biocides - morphological effect on antibacterial activity. J. Appl. Bacteriol., 78, pp.5560. 1995. Kawabata, N. and M. Nishiguchi. Antibacterial activity of soluble pyridinium-type polymers. Appl. Environ. Microbiol., 54, pp.2532-2535. 1988. Kenawy, E. R., F. I. Abdel-Hay, A. El-Shanshoury and M. H. El-Newehy. Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. J. Polym. Sci. Pol. Chem., 40, pp.2384-2393. 2002. Kenawy, E. R. and Y. A. G. Mahmoud. Biologically active polymers, - Synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups. Macromol. Biosci., 3, pp.107-116. 2003. Kisanga, E. R., J. Gjerde, A. Guerrieri-Gonzaga, F. Pigatto, A. Pesci-Feltri, C. Robertson, D. Serrano, G. Pelosi, A. Decensi and E. A. Lien. Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin. Cancer Res., 10, pp.2336-2343. 2004. Kissel, T., Z. Brich, S. Bantle, I. Lancranjan, F. Nimmerfall and P. Vit. Parenteral depot-systems on the basis of biodegradable polyesters. J. Control. Release, 16, pp.2741. 1991. Kohler, N., G. E. Fryxell and M. Q. Zhang. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc, 126, pp.7206-7211. 2004. Kubaska, S., D. V. Sahani, S. Saini, P. F. Hahn and E. Halpern. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization. Clin. Radiol., 56, pp.410-415. 2001. Kuperman, V. 2000. Magnetic resonance imaging : physical principles and applications. San Diego, Calif., Academic Press. Lacava, L. M., Z. G. M. Lacava, M. F. Da Silva, O. Silva, S. B. Chaves, R. B. Azevedo, F. Pelegrini, C. Gansau, N. Buske, D. Sabolovic and P. C. Morais. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophys J, 80, pp.2483-2486. 2001. 166 References Leamon, C. P., M. A. Parker, I. R. Vlahov, L. C. Xu, J. A. Reddy, M. Vetzel and N. Douglas. Synthesis and biological evaluation of EC20: A new folate-derived, 99mTcbased radiopharmaceutical. Bioconjugate Chem., 13, pp.1200-1210. 2002. Leamon, C. P. and J. A. Reddy. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 56, pp.1127-1141. 2004. Lecolley, F., L. Tao, G. Mantovani, I. Durkin, S. Lautru and D. M. Haddleton. A new approach to bioconjugates for proteins and peptides ("pegylation") utilising living radical polymerisation. Chem Commun2026-2027. 2004. Ledbetter, J. W. and J. R. Bowen. Spectrophotometric determination of the critical micelle concentration of some alkyldimethylbenzylammonium chlorides using fluorescein. Anal. Chem., 41, pp.1345-1347. 1969. Li, G. F., J. D. Fan, R. Jiang and Y. Gao. Cross-linking the linear polymeric chains in the ATRP synthesis of iron oxide/polystyrene core/shell nanoparticles. Chem. Mat., 16, pp.1835-1837. 2004. Li, G. J. and J. R. Shen. A study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. J. Appl. Polym. Sci., 78, pp.676-684. 2000. Li, Y. L., K. G. Neoh, L. Cen and E. T. Kang. Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol Bioeng, 84, pp.305-313. 2003. Liao, M. H. and D. H. Chen. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol. Lett., 23, pp.17231727. 2001. Lin, J., S. Y. Qiu, K. Lewis and A. M. Klibanov. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol. Prog., 18, pp.1082-1086. 2002a. Lin, J., J. C. Tiller, S. B. Lee, K. Lewis and A. M. Klibanov. Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol. Lett., 24, pp.801-805. 2002b. Liu, S. Q., N. Wiradharma, S. J. Gao, Y. W. Tong and Y. Y. Yang. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials, 28, pp.1423-1433. 2007. 167 References Lok, C. Picture perfect - Medical imaging techniques are being adapted to study gene expression and other cellular activities in living animals. Nature, 412, pp.372-374. 2001. Lopezquintela, M. A. and J. Rivas. Chemical-reactions in microemulsions-a powerful method to obtain ultrafine particles. J. Colloid Interface Sci., 158, pp.446-451. 1993. Lu, H. C., G. S. Yi, S. Y. Zhao, D. P. Chen, L. H. Guo and J. Cheng. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J. Mater. Chem., 14, pp.1336-1341. 2004. Lu, Y. J. and P. S. Low. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev., 54, pp.675-693. 2002. Lubbe, A. S., C. Alexiou and C. Bergemann. Clinical applications of magnetic drug targeting. J. Surg. Res., 95, pp.200-206. 2001. Lubbe, A. S., C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J. W. Brock and D. Huhn. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res., 56, pp.4694-4701. 1996a. Lubbe, A. S., C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. J. Lemke, D. Ohlendorf, W. Huhnt and D. Huhn. Clinical experiences with magnetic drag targeting: A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res., 56, pp.4686-4693. 1996b. Lubbe, A. S., C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. J. Lemke, D. Ohlendorf, W. Huhnt and D. Huhn. Clinical experiences with magnetic drug targeting: A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res, 56, pp.4686-4693. 1996c. Maeda, H., J. Wu, T. Sawa, Y. Matsumura and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 65, pp.271-284. 2000. Maillard, S., T. Ameller, J. Gauduchon, A. Gougelet, F. Gouilleux, P. Legrand, V. Marsaud, E. Fattal, B. Sola and J. M. Renoir. Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma. J. Steroid Biochem. Mol. Biol., 94, pp.111-121. 2005. 168 References Massart, R. Preparation of aqueous ferrofluids without using surfactant - behavior as a function of the pH and the counterions. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, 291, pp.1-3. 1980. Massart, R. and V. Cabuil. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium - yield and particle-size control. J. Chim. Phys.-Chim. Biol., 84, pp.967-973. 1987. Matyjaszewski, K., P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Vallant, H. Hoffmann and T. Pakula. Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 32, pp.8716-8724. 1999. Memisoglu-Bilensoy, E., L. Vural, A. Bochot, J. M. Renoir, D. Duchene and A. A. Hincal. Tarnoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. J. Control. Release, 104, pp.489-496. 2005. Mikhaylova, M., D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos and M. Muhammed. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir, 20, pp.2472-2477. 2004. Moghimi, S. M., A. C. Hunter and J. C. Murray. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 53, pp.283-318. 2001. Monsky, W. L., D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchilin, F. Yuan and R. K. Jain. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res., 59, pp.4129-4135. 1999. Mornet, S., S. Vasseur, F. Grasset and E. Duguet. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem, 14, pp.2161-2175. 2004. Moroz, P., S. K. Jones and B. N. Gray. Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperthermia, 18, pp.267-284. 2002. Moulder, J. F., W. F. Stickle, P. E. Sobol and K. Bomben 1992. Handbook of X-ray photoelectron spectroscopy. Eden Prairie, Perkin-Elmer Corporation. Muller, R. H., S. Maaen, H. Weyhers, F. Specht and J. S. Lucks. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int. J. Pharm., 138, pp.85-94. 1996. 169 References Nakagawa, Y., H. Hayashi, T. Tawaratani, H. Kourai, T. Horie and I. Shibasaki. Disinfection of water with quaternary ammonium salts insolubilized on a porous glass surface. Appli. Environ. Microbiol., 47, pp.513-518. 1984. Nakanishi, T., S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai and K. Kataoka. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release, 74, pp.295-302. 2001. Narain, R. Tailor-made protein-glycopolymer bioconjugates. React. Funct. Polym., 66, pp.1589-1595. 2006. Nomura, T., N. Koreeda, F. Yamashita, Y. Takakura and M. Hashida. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm. Res., 15, pp.128-132. 1998. Nonaka, T., Y. Uemura, K. Enishi and S. Kurihara. Antibacterial activity of resincontaining triethylenetetramine side chains and/or thiol groups-metal complexes. J. Appl. Polym. Sci., 62, pp.1651-1659. 1996. Nonaka, T., Y. Uemura, K. Ohse, K. Jyono and S. Kurihara. Preparation of resins containing phenol derivatives from chloromethylstyrene-tetraethyleneglycol dimethacrylate copolymer beads and antibacterial activity of resins. J. Appl. Polym. Sci., 66, pp.1621-1630. 1997. O'Grady, K. Biomedical applications of magnetic nanoparticles. J. Phys. D-Appl. Phys., 36, pp. 2003. O'Regan, R. M. and V. C. Jordan. The evolution of tamoxifen therapy in breast cancer: selective oestrogen-receptor modulators and downregulators. Lancet Oncol., 3, pp.207-214. 2002. Okassa, L. N., H. Marchais, L. Douziech-Eyrolles, S. Cohen-Jonathan, M. Souce, P. Dubois and I. Chourpa. Development and characterization of sub-micron poly(D,Llactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Int. J. Pharm., 302, pp.187-196. 2005. Okon, E., D. Pouliquen, P. Okon, Z. V. Kovaleva, T. P. Stepanova, S. G. Lavit, B. N. Kudryavtsev and P. Jallet. Biodegradation of magnetite dextran nanoparticles in the rat - a histologic and biophysical study. Lab. Invest., 71, pp.895-903. 1994. Osborne, C. K. Drug therapy - Tamoxifen in the treatment of breast cancer. N. Engl. J. Med., 339, pp.1609-1618. 1998. 170 References Oyewumi, M. O. and R. J. Mumper. Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles. Int. J. Pharm., 251, pp.85-97. 2003. Palmacci, S. and L. Josephson. 1993. Synthesis of polysaccharide covered superparamagnetic oxide colloids. US patent 5262176 Pankhurst, Q. A., J. Connolly, S. K. Jones and J. Dobson. Applications of magnetic nanoparticles in biomedicine. J. Phys. D-Appl. Phys., 36, pp.R167-R181. 2003. Park, E. K., S. B. Lee and Y. M. Lee. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 26, pp.1053-1061. 2005. Penner, M. J., C. P. Duncan and B. A. Masri. The in vitro elution characteristics of antibiotic-loaded CMW and Palacos-R bone cements. J. Arthroplast., 14, pp.209-214. 1999. Peracchia, M. T., E. Fattal, D. Desmaele, M. Besnard, J. P. Noel, J. M. Gomis, M. Appel, J. d'Angelo and P. Couvreur. Stealth (R) PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release, 60, pp.121-128. 1999. Perez, J. M., F. J. Simeone, A. Tsourkas, L. Josephson and R. Weissleder. Peroxidase substrate nanosensors for MR imaging. Nano Lett, 4, pp.119-122. 2004. Peyrade, F., M. Frenay, M. C. Etienne, F. Ruch, C. Guillemare, E. Francois, M. Namer, J. M. Ferrero and G. Milano. Age-related difference in tamoxifen disposition. Clin. Pharmacol. Ther., 59, pp.401-410. 1996. Popa, A., C. M. Davidescu, R. Trif, G. Ilia, S. Iliescu and G. Dehelean. Study of quaternary 'onium' salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on gel-type' styrene-divinylbenzene copolymers. React. Funct. Polym., 55, pp.151-158. 2003. Pouchert, C. J. 2001. The Aldrich library of FT-IR spectra. Milwaukee, Aldrich Chemical Co. Inc. Poul, L., S. Ammar, N. Jouini, F. Fievet and F. Villain. Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: A versatile route related to the sol-gel process. J. Sol-Gel Sci. Technol., 26, pp.261-265. 2003. 171 References Pradhan, P., J. Giri, R. Banerjee, J. Bellare and D. Bahadur. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J. Magn. Magn. Mater., 311, pp.282-287. 2007. Qu, S. C., H. B. Yang, D. W. Ren, S. H. Kan, G. T. Zou, D. M. Li and M. H. Li. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid. Interface. Sci., 215, pp.190-192. 1999. Rajamathi, M., M. Ghosh and R. Seshadri. Hydrolysis and amine-capping in a glycol solvent as a route to soluble maghemite -Fe2O3 nanoparticles. Chem. Commun.11521153. 2002. Ramakrishnan, A., R. Dhamodharan and J. Ruhe. Growth of poly(methyl methacrylate) brushes on silicon surfaces by atom transfer radical polymerization. J. Polym. Sci. Pol. Chem., 44, pp.1758-1769. 2006. Ravdin, P. M., S. Green, T. M. Dorr, W. L. McGuire, C. Fabian, R. P. Pugh, R. D. Carter, S. E. Rivkin, J. R. Borst, R. J. Belt, B. Metch and C. K. Osborne. Prognosticsignificance of progesterone-receptor levels in estrogen receptor-positive patients with metastatic breast-cancer treated with tamoxifen - results of a prospective southwestoncology-group study. J. Clin. Oncol., 10, pp.1284-1291. 1992. Reddy, J. A., C. Abburi, H. Hofland, S. J. Howard, I. Vlahov, P. Wils and C. Leamon. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther., 9, pp.1542-1550. 2002. Rockenberger, J., E. C. Scher and A. P. Alivisatos. A new nonhydrolytic singleprecursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc., 121, pp.11595-11596. 1999. Ross, J. F., P. K. Chaudhuri and M. Ratnam. Differential regulation of folate receptor isoforms in normal and malignant-tissues in-vivo and in established cell-linesphysiological and clinical implications. Cancer, 73, pp.2432-2443. 1994. Rudge, S., C. Peterson, C. Vessely, J. Koda, S. Stevens and L. Catterall. Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J. Control. Release, 74, pp.335-340. 2001. Rudge, S. R., T. L. Kurtz, C. R. Vessely, L. G. Catterall and D. L. Williamson. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials, 21, pp.1411-1420. 2000. 172 References Rutqvist, L. E., H. Johansson, T. Signomklao, U. Johansson, T. Fornander and N. Wilking. Adjuvant tamoxifen therapy for early-stage breast-cancer and 2nd primary malignancies. J. Natl. Cancer Inst., 87, pp.645-651. 1995. Sahoo, S. K., J. Panyam, S. Prabha and V. Labhasetwar. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release, 82, pp.105-114. 2002. Saravanan, P., T. A. Jose, P. J. Thomas and G. U. Kulkarni. Submicron particles of Co, Ni and Co-Ni alloys. Bull. Mat. Sci., 24, pp.515-521. 2001. Saul, J. M., A. Annapragada, J. V. Natarajan and R. V. Bellamkonda. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Control. Release, 92, pp.49-67. 2003. Schafer, D. A. Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell Biol., 14, pp.76-81. 2002. Schwertmann, U. and R. M. Cornell 1991. Iron oxides in the laboratory: preparation and characterization. Weinheim, Cambridge, VCH. Shenoy, D. B. and M. A. Amiji. Poly(ethylene oxide)-modified poly(-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 293, pp.261-270. 2005. Shi, Z. L., K. G. Neoh and E. T. Kang. Antibacterial activity of polymeric substrate with surface grafted viologen moieties. Biomaterials, 26, pp.501-508. 2005. Shiho, H., Y. Manabe and N. Kawahashi. Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles. J. Mater. Chem., 10, pp.333-336. 2000. Sudimack, J. and R. J. Lee. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 41, pp.147-162. 2000. Sugimoto, T. 2000. Fine particles : synthesis, characterization, and mechanisms of growth. New York, Marcel Dekker. Sugimoto, T. and E. Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gel. J. Colloid Interface Sci., 74, pp.227-243. 1980. 173 References Sun, S. H., H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. X. Li. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126, pp.273-279. 2004. Sun, Y. and G. Sun. Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process. J. Appl. Polym. Sci., 84, pp.1592-1599. 2002a. Sun, Y. and G. Sun. Synthesis, characterization, and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization. Macromolecules, 35, pp.8909-8912. 2002b. Tan, K. L., B. T. G. Tan, E. T. Kang and K. G. Neoh. X-Ray photoelectron spectroscopic studies of some polyvinylpyridine acceptor complexes. J. Mol. Electron., 6, pp.5-13. 1990. Tao, L., G. Mantovani, F. Lecolley and D. M. Haddleton. -aldehyde terminally functional methacrylic polymers from living radical polymerization: Application in protein conjugation "pegylation". J Am Chem Soc, 126, pp.13220-13221. 2004. Tartaj, P. and C. J. Serna. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J. Am. Chem. Soc., 125, pp.15754-15755. 2003. Tashiro, T. Antibacterial and bacterium adsorbing macromolecules. Macromol. Mater. Eng., 286, pp.63-87. 2001. Thunemann, A. F., D. Schutt, L. Kaufner, U. Pison and H. Mohwald. Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)block-poly(glutamic acid). Langmuir, 22, pp.2351-2357. 2006. Tiefenauer, L. X., A. Tschirky, G. Kuhne and R. Y. Andres. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn. Reson. Imaging, 14, pp.391-402. 1996. Tiller, J. C., S. B. Lee, K. Lewis and A. M. Klibanov. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng., 79, pp.465-471. 2002. Tiller, J. C., C. J. Liao, K. Lewis and A. M. Klibanov. Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. USA, 98, pp.5981-5985. 2001. 174 References Toneguzzo, P., O. Acher, G. Viau, A. Pierrard, F. Fievet-Vincent, F. Fievet and I. Rosenman. Static and dynamic magnetic properties of fine CoNi and FeCoNi particles synthesized by the polyol process. IEEE Trans. Magn., 35, pp.3469-3471. 1999. van de Belt, H., D. Neut, W. Schenk, J. R. van Horn, H. C. van der Mei and H. J. Busscher. Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. Acta Orthop. Scand., 71, pp.625-629. 2000. van de Belt, H., D. Neut, W. Schenk, J. R. van Horn, H. C. van der Mei and H. J. Busscher. Infection of orthopedic implants and the use of antibiotic-loaded bone cements - A review. Acta Orthop. Scand., 72, pp.557-571. 2001. Vestal, C. R. and Z. J. Zhang. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J. Am. Chem. Soc., 124, pp.14312-14313. 2002. Vestal, C. R. and Z. J. Zhang. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J. Am. Chem. Soc., 125, pp.9828-9833. 2003. Viau, G., F. FievetVincent and F. Fievet. Monodisperse iron-based particles: Precipitation in liquid polyols. J. Mater. Chem., 6, pp.1047-1053. 1996a. Viau, G., F. FievetVincent and F. Fievet. Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ion., 84, pp.259-270. 1996b. Viau, G., F. Ravel, O. Acher, F. Fievetvincent and F. Fievet. Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J. Appl. Phys., 76, pp.6570-6572. 1994. Voltairas, P. A., D. I. Fotiadis and L. K. Michalis. Hydrodynamics of magnetic drug targeting. J. Biomech., 35, pp.813-821. 2002. von Werne, T. and T. E. Patten. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces. J. Am. Chem. Soc., 123, pp.7497-7505. 2001. Wang, X. S., R. A. Jackson and S. P. Armes. Facile Synthesis of Acidic Copolymers via Atom Transfer Radical Polymerization in Aqueous Media at Ambient Temperature. Macromolecules, 33, pp.255-257. 2000. 175 References Wang, X. S., S. F. Lascelles, R. A. Jackson and S. P. Armes. Facile synthesis of welldefined water-soluble polymers via atom transfer radical polymerization in aqueous media at ambient temperature. Chem. Commun., 3, pp.1817-1818. 1999. Wang, Y., X. W. Teng, J. S. Wang and H. Yang. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 @ polystyrene core-shell nanoparticles. Nano Lett., 3, pp.789-793. 2003. Weber, D. J. and W. M. Hess 1975. The fungal spore, form and function. New York, Wiley Interscience. Weitman, S. D., R. H. Lark, L. R. Coney, D. W. Fort, V. Frasca, V. R. Zurawski and B. A. Kamen. Distribution of the folate receptor Gp38 in normal and malignant-cell lines and tissues. Cancer Res., 52, pp.3396-3401. 1992a. Weitman, S. D., A. G. Weinberg, L. R. Coney, V. R. Zurawski, D. S. Jennings and B. A. Kamen. Cellular-localization of the folate receptor - potential role in drug toxicity and folate homeostasis. Cancer Res., 52, pp.6708-6711. 1992b. Widder, K. J., A. E. Senyei and D. G. Scarpelli. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med., 58, pp.141146. 1978. Wolfrum, E. J., J. Huang, D. M. Blake, P. C. Maness, Z. Huang, J. Fiest and W. A. Jacoby. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol., 36, pp.3412-3419. 2002. Worley, S. D. and G. Sun. Biocidal polymers. Trends Polym. Sci., 4, pp.364-370. 1996. Wuang, S. C., K. G. Neoh, E. T. Kang, D. W. Pack and D. E. Leckband. Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J. Mater. Chem., 17, pp.3354-3362. 2007. Xu, C., K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang and B. Xu. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc., 126, pp.3392-3393. 2004. Xu, F. J., Y. L. Li, E. T. Kang and K. G. Neoh. Heparin-coupled poly(poly(ethylene glycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces. Biomacromolecules, 6, pp.1759-1768. 2005. 176 References Yamamoto, K., H. Tanaka, M. Sakaguchi and S. Shimada. Well-defined poly(methyl methacrylate) grafted to polyethylene with reverse atom transfer radical polymerization initiated by peroxides. Polymer, 44, pp.7661-7669. 2003. Yan, F., H. Xu, J. Anker, R. Kopelman, B. Ross, A. Rehemtulla and R. Reddy. Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging. J Nanosci Nanotechnol, 4, pp.72-76. 2004. Ying, L., P. Wang, E. T. Kang and K. G. Neoh. Synthesis and characterization of poly(acrylic acid)-graft-poly(vinylidene fluoride) copolymers and pH-sensitive membranes. Macromolecules, 35, pp.673-679. 2002. Yoo, H. S. and T. G. Park. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release, 96, pp.273-283. 2004. Yu, W. H., E. T. Kang and K. G. Neoh. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations. Langmuir, 21, pp.450-456. 2005. Zalipsky, S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjugate Chem., 6, pp.150-165. 1995. Zambaux, M. F., F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie, M. J. Alonso, P. Labrude and C. Vigneron. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release, 50, pp.31-40. 1998. Zhang, M. Q., T. Desai and M. Ferrari. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials, 19, pp.953-960. 1998. Zhang, Y., N. Kohler and M. Q. Zhang. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, pp.15531561. 2002. Zhao, B. and W. J. Brittain. Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci., 25, pp.677-710. 2000. Zheng, W. M., F. Gao and H. C. Gu. Magnetic polymer nanospheres with high and uniform magnetite content. J. Magn. Magn. Mater., 288, pp.403-410. 2005. 177 LIST OF PUBLICATIONS Hu, F. X., K. G. Neoh, L. Cen and E. T. Kang. Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. Biotechnol. Bioeng., 89, pp.474-484. 2005. Hu, F. X., K. G. Neoh, L. Cen and E. T. Kang. Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization. Biomacromolecules, 7, pp.809-816. 2006. Hu, F. X., K. G. Neoh and E. T. Kang. Synthesis of Magnetite/PLA Composite Nanoparticle for Controlled Release of Tamoxifen, 33rd Annual Meeting of Controlled Released Society. July 22-26, 2006. Vienna. Hu, F. X., K. G. Neoh and E. T. Kang. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials, 27, pp.5725-5733. 2006. Hu, F. X., K. G. Neoh and E. T. Kang. Synthesis of folic acid functionalized PLLA-bPPEGMA nanoparticles for cancer cell targeting. Macromol. Rapid Commun., 30, pp.609-614. 2009. 178 [...]... magnetic nanoparticles; (c-f) XPS wide scan and C 1s, Cl 2p and Si 2p core level spectra of CTS-immobilized nanoparticles 138 Figure 6.6 (a) XPS wide scan and (b) C 1s core level spectra of PPEGMAimmobilized nanoparticles after polymerization time of 4 h 140 Figure 6.7 TGA curves of (a) pristine magnetic nanoparticles, (b) CTSimmobilized nanoparticles, (c), (d), (e) PPEGMA-immobilized nanoparticles... nanoparticles The response of macrophage cells to pristine and PPEGMA-immobilized nanoparticles was compared The results showed that the macrophage cells are very effective in cleaning up the pristine magnetic nanoparticles With the PPEGMA-immobilized nanoparticles, the amount of nanoparticles internalized into the cells is greatly reduced to . SYNTHESIS AND FUNCTIONALIZATION OF MICRO/ NANO- PARTICLES FOR MALIGNANT CELLS DETECTION AND ELIMINATION HU FEIXIONG NATIONAL UNIVERSITY OF SINGAPORE. NATIONAL UNIVERSITY OF SINGAPORE 2009 SYNTHESIS AND FUNCTIONALIZATION OF MICRO/ NANO- PARTICLES FOR MALIGNANT CELLS DETECTION AND ELIMINATION HU FEIXIONG (B. E., M. S., Tianjin. technique for preparing antibacterial microparticles has the advantages of ease of mass production and scale up, and the microparticles possess stability for repeated usage. In the second part of

Ngày đăng: 14/09/2015, 14:09

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan