Multifunctional nanoparticles of biodegradable polymers for diagnosis and treatment of cancer

210 383 0
Multifunctional nanoparticles of biodegradable polymers for diagnosis and treatment of cancer

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MULTIFUNCTIONAL NANOPARTICLES OF BIODEGRADABLE POLYMERS FOR DIAGNOSIS AND TREATMENT OF CANCER PAN JIE NATIONAL UNIVERSITY OF SINGAPORE 2009 MULTIFUNCTIONAL NANOPARTICLES OF BIODEGRADABLE POLYMERS FOR DIAGNOSIS AND TREATMENT OF CANCER PAN JIE (M. ENG., TIANJIN UNIVERSITY) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGEMENT First of all, I would like to express my deepest gratitude to my supervisor, A/P Feng Si-Shen, for his heartfelt guidance, valuable suggestions, profound discussion and encouragement throughout the entire period of this research work. His enthusiasm, sincerity and dedication to scientific research have greatly impressed me and will benefit me in my future career. I am also thankful to my all colleagues and laboratory officers for their support and assistance. In particular, thanks are due to Dr. Dong Yuancai, Dr. Zhang Zhiping, Ms. Sun Bingfeng, Mr. Prashant Chandrasekharan, Ms. Anitha Panneerselvan, Mr. Liu Yutao, Ms. Anbharasi Vanangamudi, Mr. Gan Chee Wee, Ms. Tan Mei Yee, Dinah, and many other colleagues for their kind help and assistance. It is my great pleasure to work with all of them. I am also indebted to the technical staff of Department of Chemical & Biomolecular Engineering, especially Dr. Yuan Zeliang, Mr. Boey Kok Hong , Mdm Lee Chai Keng, Mdm Li Xiang, Mdm Li Fengmei for their help and support. The research scholarship provided by National University of Singapore is also gratefully acknowledged. Finally, I would like to express my deepest gratitude and indebtedness to my wife, my parents, my daughter, my brother for their love and support. I TABLE OF CONTENTS ACKNOWLEDGEMENT I TABLE OF CONTENTS II SUMMARY X NOMENCLATURE XIII LIST OF FIGURES XV LIST OF TABLES XX Chapter Introduction . 1.1 General background . 1.2 Objective and thesis organization . Chapter Literature Review 2.1 Nanocarriers for Cancer Therapy 2.1.1 Passive and active targeting . 2.1.2 NP carriers for targeted therapy . 10 2.1.2.1 Biodegradable polymer NPs 11 2.1.2.2 Liposomes 12 2.1.2.3 Dendrimers . 13 2.1.2.4 Nucleic-acid-based NPs 13 2.1.2.5 Nanoshells 14 2.1.3 Targeting molecules for the development of targeted NPs 15 2.1.3.1 Folate-based targeting molecules 15 2.1.3.2 Monoclonal antibodies 16 2.1.3.3 Aptamer targeting molecules . 17 2.1.3.4 Oligopeptide-based targeting molecules 19 II 2.2 Molecular Imaging . 20 2.2.1 Introduction . 20 2.2.2 Imaging modalities 22 2.2.2.1 Nuclear imaging 23 2.2.2.2 MR Imaging 25 2.2.2.3 Ultrasound 26 2.2.2.4 Optical Imaging 27 2.2.3 Molecular imaging of cancer . 29 2.2.3.1 Cancer diagnosis and staging 29 2.2.3.2 Tumor characterization . 31 2.2.3.3 Therapy assessment 31 2.2.4 Conclusions . 32 2.3 QDs as Cellular Probes 33 2.3.1 Properties of QDs 33 2.3.2 Synthesis of quantum dots and QDs solubilization . 35 2.3.3 Conjugating QDs with biomolecules 37 2.3.4 Cellular imaging and tracking 40 2.3.5 Tumor targeting and imaging . 41 2.3.6 Cytotoxicity . 42 2.3.7 Prospective 43 Chapter Formulation, Characterization and In Vitro Evaluation of Quantum Dots Loaded in Poly(lactide)-vitamin E TPGS Nanoparticles for Cellular and Molecular Imaging 45 3.1 Introduction . 45 3.2 Materials and Methods . 50 III 3.2.1 Materials . 50 3.2.2 Synthesis of PLA-TPGS copolymer . 51 3.2.3 Preparation of QDs-loaded PLA-TPGS NPs and MAA-coated QDs 51 3.2.4 Characterization of QDs-loaded PLA-TPGS NPs . 52 3.2.4.1 Particle size analysis . 52 3.2.4.2 Surface morphology 52 3.2.4.3 Surface chemistry of QDs-loaded PLA-TPGS NPs . 53 3.2.5 Photophysical characterization . 54 3.2.5.1 Fluorescent images 54 3.2.5.2 Emission spectra . 54 3.2.5.3 The photostability . 54 3.2.6 QDs encapsulation efficiency 55 3.2.7 Cell line experiment 55 3.2.7.1 Cell culture . 55 3.2.7.2 In vitro cellular uptake of QDs-loaded PLA-TPGS NPs 56 3.2.7.3 In vitro cytotoxicity of QDs-loaded PLA-TPGS NPs . 56 3.3 Result and Discussion 57 3.3.1 Characterization of the PLA-TPGS copolymer 57 3.3.2 Characterization of QDs-loaded PLA-TPGS NPs . 58 3.3.2.1 Size and size distribution . 58 3.3.2.2 Surface morphology 59 3.3.2.3 Surface chemistry of QDs-loaded PLA-TPGS NPs . 61 3.3.3 Photophysical characterization . 64 3.3.3.1 Fluorescent colors and emission spectra 64 3.3.3.2 Photostability 67 IV 3.3.4 QDs encapsulation efficiency 69 3.3.5 In vitro evaluation . 69 3.3.5.1 Cellular uptake of nanoparticles 69 3.3.5.2 In vitro cytotoxicity of QDs-loaded PLA-TPGS NPs . 70 3.4 Conclusion . 73 Chapter Targeted Delivery of Paclitaxel Using Folate-decorated Poly(lactide)-vitamin E TPGS Nanoparticles . 75 4.1 Introduction . 75 4.2 Materials and Methods . 78 4.2.1 Materials . 78 4.2.2 Synthesis and characterization of PLA-TPGS copolymer . 79 4.2.3 Synthesis of TPGS-COOH and FOL-NH . 80 4.2.4 Formulation of paclitaxel-loaded NPs with folate-decoration . 81 4.2.5 Characterization of paclitaxel-loaded NPs with folate decoration . 82 4.2.5.1 Particle size and size distribution 82 4.2.5.2 Surface charge 83 4.2.5.3 Surface morphology 83 4.2.5.4 Drug encapsulation efficiency . 83 4.2.6 Surface chemistry 84 4.2.7 In vitro drug release kinetics 84 4.2.8 Cell cultures 84 4.2.9 In vitro cellular uptake of NPs . 85 4.2.10 In vitro cytotoxicity . 86 4.3 Results and Discussion . 87 4.3.1 Characterization of PLA–TPGS copolymers 87 V 4.3.2 Characterization of folate-decorated NPs . 89 4.3.2.1 Size and size distribution . 89 4.3.2.2 Surface charge 89 4.3.2.3 Surface morphology 90 4.3.2.4 Drug encapsulation efficiency . 91 4.3.3 Surface chemistry 91 4.3.4 In vitro drug release . 92 4.3.5 In vitro cellular uptake of NPs . 93 4.3.6 In vitro cytotoxicity . 97 4.4 Conclusion . 99 Chapter Targeting and Imaging Cancer Cells by Folate Decorated, Quantum Dots Loaded Nanoparticles of Biodegradable Polymers 101 5.1 Introduction . 101 5.2 Materials and Methods . 106 5.2.1 Materials . 106 5.2.2 Synthesis of TPGS-COOH and folate-NH 107 5.2.3 Formulation of QDs-loaded NPs with folate-decoration and free QDs . 107 5.2.4 Characterization of QDs-loaded NPs with folate decoration . 109 5.2.4.1 Particle size and size distribution 110 5.2.4.2 Surface charge 110 5.2.4.3 Surface morphology 110 5.2.4.4 Emission spectrum 110 5.2.4.5 QDs encapsulation efficiency 111 5.2.5 Surface chemistry 111 VI 5.2.6 Cell line experiment 112 5.2.6.1 Cell cultures 112 5.2.6.2 In vitro cellular uptake of NPs . 112 5.2.6.3 In vitro cytotoxicity . 113 5.3 Results and Discussion . 114 5.3.1 Characterization of QDs-loaded NPs with folate decoration . 114 5.3.1.1 Size and size distribution . 114 5.3.1.2 Surface charge 115 5.3.1.3 Surface morphology 115 5.3.1.4 Emission Spectrum . 116 5.3.1.5 QDs encapsulation efficiency 116 5.3.2 Surface chemistry 116 5.3.3 In vitro cellular uptake of NPs . 117 5.3.4 In vitro cytotoxicity . 119 5.4 Conclusion . 123 Chapter Multifunctional QDs/ Docetaxel -loaded Poly(lactic-co-glycolic acid) Targeted Nanoparticles for Cancer Cell imaging and Therapy 125 6.1 Introduction . 125 6.2 Materials and Methods . 129 6.2.1. Materials 129 6.2.2 Synthesis of TPGS-COOH 130 6.2.3 Synthesis of FOL-NH 131 6.2.4 Preparation of QDs/docetaxel-loaded PLGA/TPGS-COOH NPs 131 6.2.5 Formulation of QDs/docetaxel-loaded PLGA/TPGS-COOH NPs with FOL conjugation 132 VII 6.2.6 Characterization of TC and FD NPs . 133 6.2.6.1 Particle size and size distribution 133 6.2.6.2 Drug encapsulation and loading efficiency 134 6.2.6.3 Surface charge 134 6.2.6.4 Surface morphology 135 6.2.6.5 Surface chemistry . 135 6.2.7 In vitro drug release . 136 6.2.8 Photophysical characterization . 136 6.2.8.1 Fluorescent images 136 6.2.8.2 Emission spectra . 136 6.2.9 QDs encapsulation and loading efficiency . 137 6.2.10 Cell line experiment . 137 6.2.10.1 Cell cultures 137 6.2.10.2 In vitro cellular uptake of NPs . 138 6.2.10.3 In vitro therapeutic effect and targeting effects 139 6.3 Results and Discussion . 140 6.3.1 Characterization of QDs/docetaxel-loaded NPs 140 6.3.1.1 Particle size and size distribution 140 6.3.1.2 Drug encapsulation and loading efficiency 141 6.3.1.3. Surface charge . 142 6.3.1.4. Surface morphology . 142 6.3.1.5 Surface chemistry . 143 6.3.1.6 In vitro drug release 144 6.3.2 Photophysical characterization of QDs/docetaxel-loaded NPs 146 6.3.2.1 Fluorescent images 146 VIII responses and achievement of minimal residual disease in previously untreated B-chronic lymphocytic leukemia." Blood 104. Ke, S., X. X. Wen, et al. (2003). "Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts." Cancer Research 63(22): 7870-7875. Ke, W. T., S. Y. Lin, et al. (2005). "Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs." Journal of Controlled Release 102(2): 489-507. Khaled, A., S. Guo, et al. (2005). "Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology." Nano Letters 5(9): 1797-1808. Khan, K. D., C. Emmanouilides, et al. (2006). "A phase study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma." Clinical Cancer Research 12(23): 7046-7053. Khin YW and S. S. Feng (2005). "Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs." Biomaterials 26: 2713-2722. Kim, J., J. E. Lee, et al. (2008). "Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery." Advanced Materials 20(3): 478-+. Kim, S. and M. G. Bawendi (2003). "Oligomeric Ligands for luminescent and stable nanocrystal quantum dots." Journal of the American Chemical Society 125(48): 14652-14653. Kirchner, C., T. Liedl, et al. (2005). "Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles." Nano Letters 5(2): 331-338. Kitano, H. (2002). "Systems biology: A brief overview." Science 295(5560): 1662-1664. Kloepfer, J. A. (2003). "Quantum dots as strain- and metabolism-specific microbiological labels." App. Environ. Microbiol. 69: 4205-4213. Kukowska-Latallo, J. F., K. A. Candido, et al. (2005). "Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer." Cancer Research 65(12): 5317-5324. 173 Lang, G. E. (2004). "Pharmacological treatment of diabetic retinopathy." Medikamentöse therapie der diabetischen retinopathie 101(12): 1165-1170. Langer, R. (1990). "New methods of drug delivery." Science 249(4976): 1527-1533. Langer, R. (1995). "1994 Whitaker lecture: Polymers for drug delivery and tissue engineering." Annals of Biomedical Engineering 23(2): 101-111. Langer, R. (1998). "Drug delivery and targeting." Nature 392(6679 SUPPL.): 5-10. Langer, R. and J. Folkman (1976). "Polymers for the sustained release of proteins and other macromolecules." Nature 263(5580): 797-800. Lanza, G. M., K. D. Wallace, et al. (1997). "High-frequency ultrasonic detection of thrombi with a targeted contrast system." Ultrasound in Medicine and Biology 23(6): 863-870. Lardinois, D., W. Weder, et al. (2003). "Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography." New England Journal of Medicine 348(25): 2500-2507. Leamon, C. P. and P. S. Low (1991). "Delivery of Macromolecules into Living Cells a Method That Exploits Folate Receptor Endocytosis." Proceedings of the National Academy of Sciences of the United States of America 88(13): 5572-5576. Leamon, C. P. and J. A. Reddy (2004). "Folate-targeted chemotherapy." Advanced Drug Delivery Reviews 56(8): 1127-1141. Lee, C. C., E. R. Gillies, et al. (2006). "A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas." Proceedings of the National Academy of Sciences of the United States of America 103(45): 16649-16654. Lee, E. S., K. Na, et al. (2002). Polymeric micelle for tumor pH and folate-mediated targeting. 2nd International Symposium on Tumor Targeted Delivery Systems, Bethesda, Maryland. Lee, E. S., K. Na, et al. (2003). "Polymeric micelle for tumor pH and folate-mediated targeting." Journal of Controlled Release 91(1-2): 103-113. Lee, J. F., J. R. Hesselberth, et al. (2004). "Aptamer database." Nucleic Acids Research 32(DATABASE ISS.): D95-D100. 174 Lee, J. F., G. M. Stovall, et al. (2006). "Aptamer therapeutics advance." Current Opinion in Chemical Biology 10(3): 282-289. Lee SH, Z. Z., Feng, S. S. (2007). "Nanoparticles of poly(lactide) - tocopheryl polyethylene glycol(PLA-TPGS) copolymers for protein drug delivery." Biomaterials 28(11): 2041-2050. Lee, Y. K. (2006). "Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting." Macromolecular Research 14(3): 387-393. Leong-Poi, H., J. Christiansen, et al. (2003). "Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins." Circulation 107(3): 455-460. Lewin M, C. N., Tung CH,Tang XW,Cory D,Scadden DT and Weissleder R (2000). "Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells." Nature Biotechnology 18: 410-414. Liang, H. D. and M. J. K. Blomley (2003). "The role of ultrasound in molecular imaging." British Journal of Radiology 76: S140-S150. Lidke, D. S. (2004). "Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction." Nature Biotechnol. 22: 198-203. Lindner, J. R. (2001). "Assessment of inflammation with contrast ultrasound." Progress in Cardiovascular Diseases 44(2): 111-120. Lindner, J. R. (2004). "Molecular imaging with contrast ultrasound and targeted microbubbles." Journal of Nuclear Cardiology 11(2): 215-221. Liu, W., J. G. Liang, et al. (2006). CdSe/ZnS quantum dots loaded solid lipid nanoparticles: Novel luminescent nanocomposite particles. Eco-Materials Processing & Design Vii. 510-511: 170-173. Low, P. S. and A. C. Antony (2004). "Folate receptor-targeted drugs for cancer and inflammatory diseases - Preface." Advanced Drug Delivery Reviews 56(8): 1055-1058. Lu, Y. and P. S. Low (2003). "Immunotherapy of folate receptor-expressing tumors: Review of recent advances and future prospects." Journal of Controlled Release 91(1-2): 17-29. 175 Lu, Y., E. Sega, et al. (2004). "Folate receptor-targeted immunotherapy of cancer: Mechanism and therapeutic potential." Advanced Drug Delivery Reviews 56(8): 1161-1176. Lu, Y. J. and P. S. Low (2002). "Folate-mediated delivery of macromolecular anticancer therapeutic agents." Advanced Drug Delivery Reviews 54(5): 675-693. Lu, Y. J. and P. S. Low (2002). Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. 2nd International Symposium on Tumor Targeted Delivery Systems, Bethesda, Maryland. Maeda, H. and Y. Matsumura (1989). "Tumoritropic and lymphotropic principles of macromolecular drugs." Critical Reviews in Therapeutic Drug Carrier Systems 6(3): 193-210. Massoud TF, G. S. (2003). " Molecular imaging in living subjects: seeing fundamental biological processes in a new light17:." Genes Dev 17: 545-580. Matsumura, Y. and H. Maeda (1986). "A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs." Cancer Research 46(12 I): 6387-6392. Mattoussi, H., M. K. Kuno, et al. (2002). Optical Biosensors: Present and Future: 537-569. Mattoussi, H., J. M. Mauro, et al. (2000). "Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein." Journal of the American Chemical Society 122(49): 12142-12150. Medintz, I. L. (2003). "Self-assembled nanoscale biosensors based on quantum dot FRET donors." Nature Mater. 2: 630-638. Medintz, I. L., H. T. Uyeda, et al. (2005). "Quantum dot bioconjugates for imaging, labelling and sensing." Nature Materials 4(6): 435-446. Michalet, X., F. Pinaud, et al. (2001). "Properties of fluorescent semiconductor nanocrystals and their application to biological labeling." Single Molecules 2(4): 261-276. Michalet, X., F. Pinaud, et al. (2001). Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Les Houches Spring School on Optical Spectroscopy and Microscopy of Single Objects, Les Houches, France. 176 Michalet, X., F. F. Pinaud, et al. (2005). "Quantum dots for live cells, in vivo imaging, and diagnostics." Science 307(5709): 538-544. Miyawaki, A., A. Sawano, et al. (2003). "Lighting up cells: labelling proteins with fluorophores." Nature Cell Biology: S1-S7. Mo, Y. and L. Y. Lim (2005). "Paclitaxel-loaded PLGA nanoparticles: Potentiation of anticancer activity by surface conjugation with wheat germ agglutinin." Journal of Controlled Release 108(2-3): 244-262. Moghimi, S. M., A. C. Hunter, et al. (2001). "Long-circulating and target-specific nanoparticles: Theory to practice." Pharmacological Reviews 53(2): 283-318. Montet, X., K. Montet-Abou, et al. (2006). "Nanoparticle imaging of integrins on tumor cells." Neoplasia 8(3): 214-222. Mrozek, E., C. A. Rhoades, et al. (2005). "Phase I trial of liposomal encapsulated doxorubicin (Myocet?; D-99) and weekly docetaxel in advanced breast cancer patients." Annals of Oncology 16(7): 1087-1093. Mu, L. and S. S. Feng (2002). "Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol (R))." Journal of Controlled Release 80(1-3): 129-144. Mu, L. and S. S. Feng (2003). "A novel controlled release formulation for the anticancer drug paclitaxel (Taxol (R)): PLGA nanoparticles containing vitamin E TPGS." Journal of Controlled Release 86(1): 33-48. Mu, L., M. M. Teo, et al. (2005). "Novel powder formulations for controlled delivery of poorly soluble anticancer drug: Application and investigation of TPGS and PEG in spray-dried particulate system." Journal of Controlled Release 103(3): 565-575. Murugesan, S., P. Mishra, et al. (2008). "Development of Folate-Conjugated PEGylated Poly (d,l-lactide-co-glycolide) Nanoparticulate Carrier for Docetaxel." Current Nanoscience 4: 402-408. Nagasaki, Y., K. Yasugi, et al. (2001). "Sugar-installed block copolymer micelles: Their preparation and specific interaction with lectin molecules." Biomacromolecules 2(4): 1067-1070. Nasongkla, N., X. Shuai, et al. (2004). "cRGD-functionalized polymer micelles for targeted doxorubicin delivery." Angewandte Chemie - International Edition 43(46): 6323-6327. 177 Nellis, D. F., D. L. Ekstrom, et al. (2005). "Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification." Biotechnology Progress 21(1): 205-220. Niemeyer, C. M. (2001). "Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science." Angewandte Chemie-International Edition 40(22): 4128-4158. Nobs, L., F. Buchegger, et al. (2004). "Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting." European Journal of Pharmaceutics and Biopharmaceutics 58(3): 483-490. Nobs, L., F. Buchegger, et al. (2006). "Biodegradable nanoparticles for direct or two-step tumor immunotargeting." Bioconjugate Chemistry 17(1): 139-145. Ntziachristos, V., J. Ripoll, et al. (2002). "Would near-infrared fluorescence signals propagate through large human organs for clinical studies?" Optics Letters 27(5): 333-335. O'Brien, S. M., H. Kantarjian, et al. (2001). "Rituximab dose-escalation trial in chronic lymphocytic leukemia." Journal of Clinical Oncology 19(8): 2165-2170. Owens Iii, D. E. and N. A. Peppas (2006). "Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles." International Journal of Pharmaceutics 307(1): 93-102. Padilla De Jesús , O. L., H. R. Ihre, et al. (2002). "Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation." Bioconjugate Chemistry 13(3): 453-461. Pan, D., J. L. Turner, et al. (2003). "Folic acid-conjugated nanostructured materials designed for cancer cell targeting." Chemical Communications(19): 2400-2401. Pan, J., Y. Wang, et al. (2008). "Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging." Biotechnology and Bioengineering 101(3): 622-633. Pan, J. and S. S. Feng (2008). "Targeted delivery of paclitaxel using folate-decorated poly(lactide) - vitamin E TPGS nanoparticles." Biomaterials 29(17): 2663-2672. Pan, J. and S. S. Feng (2009). "Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers." Biomaterials 30: 1176-1183. 178 Park, E. K., S. Y. Kim, et al. (2005). "Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery." Journal of Controlled Release 109(1-3): 158-168. Park, E. K., S. B. Lee, et al. (2005). "Preparation and characterization of methoxy poly(ethylene glycol)/poly(?-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs." Biomaterials 26(9): 1053-1061. Park, J. M. and S. S. Gambhir (2005). "Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging." Proceedings of the Ieee 93(4): 771-783. Partain, C. L., H. P. Chan, et al. (2005). "Biomedical imaging research opportunities workshop II: Report and recommendations." Radiology 236(2): 389-403. Parveen, S. and S. K. Sahoo (2008). "Polymeric nanoparticles for cancer therapy." Journal of Drug Targeting 16(2): 108-123. Patri, A. K., I. J. Majoros, et al. (2002). "Dendritic polymer macromolecular carriers for drug delivery." Current Opinion in Chemical Biology 6(4): 466-471. Pellegrino, T., L. Manna, et al. (2004). "Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals." Nano Letters 4(4): 703-707. Peng, X. G. (2003). "Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals." Advanced Materials 15(5): 459-463. Peng, X. G., M. C. Schlamp, et al. (1997). "Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility." Journal of the American Chemical Society 119(30): 7019-7029. Peng, Z. A. and X. G. Peng (2001). "Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor." Journal of the American Chemical Society 123(1): 183-184. Perez, C., A. Sanchez, et al. (2001). "Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA." Journal of Controlled Release 75(1-2): 211-224. Phelps, M. E. (2000). "Positron emission tomography provides molecular imaging of biological processes." Proceedings of the National Academy of Sciences of the United States of America 97(16): 9226-9233. 179 Piccart-Gebhart, M. J., M. Procter, et al. (2005). "Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer." New England Journal of Medicine 353(16): 1659-1672. Pinaud, F., D. King, et al. (2004). "Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides." Journal of the American Chemical Society 126(19): 6115-6123. Prasad, S. R., K. S. Jhaveri, et al. (2002). "CT tumor measurement for therapeutic response assessment: Comparison of unidimensional, bidimensional, and volumetric techniques - Initial observations." Radiology 225(2): 416-419. Pridgen, E. M., R. Langer, et al. (2007). "Biodegradable, polymeric nanoparticle delivery systems for cancer therapy." Nanomedicine 2(5): 669-680. Quintana, A., E. Raczka, et al. (2002). "Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor." Pharmaceutical Research 19(9): 1310-1316. Raabe, A., J. Beck, et al. (2005). "Technique and image quality of intraoperative indocyanine green angiography during aneurysm surgery using surgical microscope integrated near-infrared video technology." Zentralblatt Fur Neurochirurgie 66(1): 1-6. Randolph, J. T., P. Waid, et al. (2004). "Nonpeptide Luteinizing Hormone-Releasing Hormone Antagonists Derived from Erythromycin A: Design, Synthesis, and Biological Activity of Cladinose Replacement Analogues." Journal of Medicinal Chemistry 47(5): 1085-1097. Reddy, J. A. and P. S. Low (2000). "Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation." Journal of Controlled Release 64(1-3): 27-37. Rege, B. D., J. P. Y. Kao, et al. (2002). "Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers." European Journal of Pharmaceutical Sciences 16(4-5): 237-246. Reiss, P., J. Bleuse, et al. (2002). "Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion." Nano Letters 2(7): 781-784. Romond, E. H., E. A. Perez, et al. (2005). "Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer." New England Journal of Medicine 353(16): 1673-1684. 180 Ross, J. F., P. K. Chaudhuri, et al. (1994). "Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines: Physiologic and clinical implications." Cancer 73(9): 2432-2443. Rudin, M. and R. Weissleder (2003). "Molecular imaging in drug discovery and development." Nature Reviews Drug Discovery 2(2): 123-131. Sahoo SK, P. J., Prabha S, Labhasetwar V (2002). "Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release." JOURNAL OF CONTROLLED RELEASE 82(1): 105-114. Saul, J. M., A. Annapragada, et al. (2003). "Controlled targeting of liposomal doxorubicin via the folate receptor in vitro." Journal of Controlled Release 92(1-2): 49-67. Saveanu, A., G. Gunz, et al. (2006). "Somatostatin and dopamine-somatostatin multiple ligands directed towards somatostatin and dopamine receptors in pituitary adenomas." Neuroendocrinology 83(3-4): 258-263. Schirner, M., A. Menrad, et al. (2004). Molecular imaging of tumor angiogenesis. Gastroenteropancreatic Neuroendocrine Tumor Disease: Molecular and Cell Biological Aspects. 1014: 67-75. Schneider, D., C. Tuerk, et al. (1992). "Selection of high affinity RNA ligands to the bacteriophage R17 coat protein." Journal of Molecular Biology 228(3): 862-869. Schroeder, J. E., I. Shwek, et al. (2007). "Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles." Journal of Controlled Release 124(1-2): 28-34. Schulke, N., O. A. Varlamova, et al. (2003). "The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy." Proceedings of the National Academy of Sciences of the United States of America 100(22): 12590-12595. Serganova, I., M. Doubrovin, et al. (2004). "Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice." Cancer Research 64(17): 6101-6108. Service, R. F. (2000). "Is nanotechnology dangerous?" Science 290(5496): 1526-1527. 181 Shive, M. S. and J. M. Anderson (1997). Adv. Drug Deliv. Rev. 28(1): 5-24. Shmeeda, H., L. Mak, et al. (2006). "Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors." Molecular Cancer Therapeutics 5(4): 818-824. Sidransky, D. (2002). "Emerging molecular markers of cancer." Nature Reviews Cancer 2(3): 210-219. Slepushkin, V., S. Simoes, et al. (2004). "Sterically stabilized ph-sensitive liposomes." Methods in enzymology 387: 134-147. Slepushkin, V. A., S. Simoes, et al. (1997). "Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo." Journal of Biological Chemistry 272(4): 2382-2388. Slocik, J. M., J. T. Moore, et al. (2002). "Monoclonal antibody recognition of histidine-rich peptide encapsulated nanoclusters." Nano Lett. 2: 169-173. Smith, A. M., H. W. Duan, et al. (2008). "Bioconjugated quantum dots for in vivo molecular and cellular imaging." Advanced Drug Delivery Reviews 60(11): 1226-1240. Smith, A. M., H. W. Duan, et al. (2006). "A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots." Physical Chemistry Chemical Physics 8(33): 3895-3903. Smith, I., M. Procter, et al. (2007). "2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial." Lancet 369(9555): 29-36. Somavarapul, S., S. Pandit, et al. (2005). "Effect of vitamin E TPGS on immune response to nasally delivered diphtheria toxoid loaded poly(caprolactone) microparticles." International Journal of Pharmaceutics 298(2): 344-347. Spanhel, L., M. Haase, et al. (1987). "Photochemistry of Colloidal Semiconductors .20. Surface Modification and Stability of Strong Luminescing Cds Particles." Journal of the American Chemical Society 109(19): 5649-5655. Spibey, C. A., P. Jackson, et al. (2001). "A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence." Electrophoresis 22(5): 829-836. 182 Sudimack, J. and R. J. Lee (2000). "Targeted drug delivery via the folate receptor." Advanced Drug Delivery Reviews 41(2): 147-162. Sukhanova, A., M. Devy, et al. (2004). "Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells." Analytical Biochemistry 324(1): 60-67. Sun BF, R. B., Feng SS (2008). "Multi-functional poly(D,L-lactide-co-glycolide)/ montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer." Biomaterials 29: :475-486. Sutherland, A. J. (2002). "Quantum dots as luminescent probes in biological systems." Current Opinion in Solid State & Materials Science 6(4): 365-370. Talapin, D. V., A. L. Rogach, et al. (2001). "Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture." Nano Letters 1(4): 207-211. Tan, W. B., N. Huang, et al. (2007). "Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications." Journal of Colloid and Interface Science 310(2): 464-470. Tan, W. B. and Y. Zhang (2007). "Multi-functional chitosan nanoparticles encapsulating quantum dots and Gd-DTPA as imaging probes for bio-applications." Journal of Nanoscience and Nanotechnology 7(7): 2389-2393. Tempany, C. M. C. and B. J. McNeil (2001). "Advances in biomedical imaging." Jama-Journal of the American Medical Association 285(5): 562-567. Tobio, M., R. Gref, et al. (1998). "Stealth PLA-PEG nanoparticles as protein carriers for nasal administration." Pharmaceutical Research 15(2): 270-275. Torchilin, V. P. (2005). "Recent advances with liposomes as pharmaceutical carriers." Nature Reviews Drug Discovery 4(2): 145-160. Torchilin, V. P., A. N. Lukyanov, et al. (2003). "Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs." Proceedings of the National Academy of Sciences of the United States of America 100(10): 6039-6044. Townsend, D. W. and T. Beyer (2002). "A combined PET/CT scanner: the path to true image fusion." British Journal of Radiology 75: S24-S30. 183 Traber, M. G., T. D. Schiano, et al. (1994). "Efficacy of water-soluble vitamin E in the treatment of vitamin E malabsorption in short-bowel syndrome." American Journal of Clinical Nutrition 59(6): 1270-1274. Tsien, R. Y. (2005). "Building and breeding molecules to spy on cells and tumors." Febs Letters 579(4): 927-932. Turek, J. J., C. P. Leamon, et al. (1993). "Endocytosis of Folate-Protein Conjugates Ultrastructural-Localization in Kb Cells." Journal of Cell Science 106: 423-430. Turk, M. J., J. A. Reddy, et al. (2002). "Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs." Biochimica et Biophysica Acta - Biomembranes 1559(1): 56-68. Vinores, S. A. (2003). "Technology evaluation: Pegaptanib, Eyetech/Pfizer." Current Opinion in Molecular Therapeutics 5(6): 673-679. Voges, J., R. Reszka, et al. (2003). "Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma." Annals of Neurology 54(4): 479-487. Voss, S. D. and J. B. Kruskal (1998). "Gene therapy: A primer for radiologists." Radiographics 18(6): 1343-1372. Voura, E. B., J. K. Jaiswal, et al. (2004). "Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy." Nature Medicine 10(9): 993-998. Wadehra, N. (2005). Blood 106. Wang, D. S., J. B. He, et al. (2004). "Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation." Nano Letters 4(3): 409-413. Wang, J. L. and L. Maurer (2005). "Positron emission tomography: Applications in drug discovery and drug development." Current Topics in Medicinal Chemistry 5(11): 1053-1075. Wang, X., L. L. Yang, et al. (2008). "Application of nanotechnology in cancer therapy and imaging." Ca-a Cancer Journal for Clinicians 58(2): 97-110. Wang, Y. A., J. J. Li, et al. (2002). "Stabilization of inorganic nanocrystals by organic dendrons." Journal of the American Chemical Society 124(10): 2293-2298. 184 Weinberg, W. C., M. R. Frazier-Jessen, et al. (2005). "Development and regulation of monoclonal antibody products: Challenges and opportunities." Cancer and Metastasis Reviews 24(4): 569-584. Weissleder, R. (1999). "Molecular imaging: Exploring the next frontier." Radiology 212(3): 609-614. Weissleder, R. (2002). "Scaling down imaging: Molecular mapping of cancer in mice." Nature Reviews Cancer 2(1): 11-18. Weissleder, R. and U. Mahmood (2001). "Molecular imaging." Radiology 219(2): 316-333. Weissleder R, N. V. (2003). "Shedding light onto live molecular targets." Nature Medicine 9: 123-128. Weissleder, R., C. H. Tung, et al. (1999). "In vivo imaging of tumors with protease-activated near-infrared fluorescent probes." Nature Biotechnology 17(4): 375-378. Welch, H. G., L. M. Schwartz, et al. (2000). "Are increasing 5-year survival rates evidence of success against cancer?" Jama-Journal of the American Medical Association 283(22): 2975-2978. Wells, A., J. C. S. Souto, et al. (2002). "Luteinizing hormone-releasing hormone agonist limits DU-145 prostate cancer growth by attenuating epidermal growth factor receptor signaling." Clinical Cancer Research 8(4): 1251-1257. Wickline, S. A. and G. M. Lanza (2003). "Nanotechnology for molecular imaging and targeted therapy." Circulation 107(8): 1092-1095. Willis, M. C., B. Collins, et al. (1998). "Liposome-anchored vascular endothelial growth factor aptamers." Bioconjugate Chemistry 9(5): 573-582. Wilson, D. S. and J. W. Szostak (1999). In vitro selection of functional nucleic acids. Annual Review of Biochemistry. 68: 611-647. Win, K. Y. and S. S. Feng (2006). "In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation." Biomaterials 27(10): 2285-2291. Wu, J., Q. Liu, et al. (2006). "A folate receptor-targeted liposomal formulation for paclitaxel." International Journal of Pharmaceutics 316(1-2): 148-153. 185 Wu, X. Y., H. J. Liu, et al. (2003). "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots." Nature Biotechnology 21(1): 41-46. Yamamoto, Y., Y. Nagasaki, et al. (2001). "Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge." Journal of Controlled Release 77(1-2): 27-38. Yang, C. H., K. C. Lin, et al. (2006). Quantum dots CdSe/ZnS-loaded poly(d,l-lactide-co-glycolide) nanoparticles: Physicochemical characterization and application. Progress on Advanced Manufacture for Micro/Nano Technology 2005, Pt and 2. 505-507: 667-672. Yasugi, K., T. Nakamura, et al. (1999). "Sugar-installed polymer micelles: synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end." Macromolecules 32(24): 8024-8032. Yin Win, K. and S. S. Feng (2005). "Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs." Biomaterials 26(15): 2713-2722. Yoo, H. S. and T. G. Park (2004). "Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate." Journal of Controlled Release 100(2): 247-256. Yoo, H. S. and T. G. Park (2004). "Folate receptor targeted biodegradable polymeric doxorubicin micelles." Journal of Controlled Release 96(2): 273-283. Yougen, L. I., Y. D. Tseng, et al. (2004). "Controlled assembly of dendrimer-like DNA." Nature Materials 3(1): 38-42. Yu, L., A. Bridgers, et al. (1999). "Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability." Pharmaceutical Research 16(12): 1812-1817. Zhang, Z. and S. S. Feng (2006). "The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles." Biomaterials 27(21): 4025-4033. Zhang, Z. and S. S. Feng (2006). "Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: Synthesis, formulation, characterization and in vitro drug release." Biomaterials 27(2): 262-270. 186 Zhang, Z., S. Huey Lee, et al. (2007). "Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery." Biomaterials 28(10): 1889-1899. Zhao, M., D. A. Beauregard, et al. (2001). "Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent." Nature Medicine 7(11): 1241-1244. Zhu, G. D., D. L. Arendsen, et al. (2001). "Selective inhibition of ICAM-1 and E-selectin expression in human endothelial cells. 2. Aryl modifications of 4-(Aryloxy)thieno[2,3-c]pyridines with fine-tuning at C-2 carbamides." Journal of Medicinal Chemistry 44(21): 3469-3487. 187 LIST OF PUBLICATIONS 1. Formulation of PLGA-DLPC hybrid nanoparticles for anticancer drug delivery: an investigation on lipid quantity, Liu Yutao, Pan Jie, Feng SS, to be submitted to Biomaterials. 2. Targeted polymer-lipid hybrid nanoparticles: towards versatile anticancer drug delivery systems, Liu Yutao, Li Kai, Pan Jie, Liu Bin, Feng SS, Submitted to Small. (NUS Journal Tier 1, JIF=6.525). 3. Generic strategy of preparing fluorescent conjugated polymer loaded poly(DL-lactide-co-glycolide) nanoparticles for targeted cell imaging,Li Kai, Pan Jie, Liu Yutao, Feng SS, Liu Bin,Submitted to Advanced Functional Materials. (NUS Journal Tier 1, JIF=6.808). 4. Multifunctional docetaxel/QDs-loaded poly (lactic-co-glycolic acid) targeted nanoparticles for diagnosis and cancer therapy, Pan Jie, Liu Yutao, Feng SS, to be submitted to Small. 5. Targeting and imaging cancer cells by folate decorated, quantum dots loaded nanoparticles of biodegradable polymers, Pan Jie, Feng SS, Biomaterials, 30 (2009) :1176-1183. (NUS Journal Tier 1, JIF=6.646). (Ranked by SienceDirect.com as Top 25 Hottest Paper at 17th position in the journal of Biomaterials, Q1 2009) 6. Formulation, characterization and in vitro evaluation of quantum dots-loaded poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging, Pan Jie, Wan Yan, Feng SS, Biotechnology and Bioengineering, 2008, 101(3) :622-633. (NUS Journal Tier 1, JIF=2.936). 7. Targeted delivery of paclitaxel using folate-decorated poly (lactide)-vitamin E TPGS nanoparticles, Pan Jie, Feng SS, Biomaterials,29 (2008) :2663-2672. (NUS Journal Tier 1, JIF=6.646). (Ranked by SienceDirect.com as Top 25 Hottest Paper at 6th position in the journal of Biomaterials, Q2 2008) 188 [...]... degradation rate and hydrophobic/hydrophilic balance and develop the copolymer nanoparticles for cancer chemotherapy and imaging, as well as to prepare targeted nanoparticles for cancer therapy and imaging using a new strategy that is the contents of targeting ligands on the surface of nanoparticles can be controlled through adjusting the component ratio of two polymers First of all, a novel system of poly(lactide... targeted delivery of the drug to the corresponding cancer cells and thus enhance its therapeutic effects and reduced its side effects In Chapter 5, a new strategy was developed to prepare folate-decorated nanoparticles of biodegradable polymers for QDs formulation for targeted and sustained imaging for cancer diagnosis at its early stage Two polymers of poly(lactide)-vitamin E TPGS (PLA-TPGS) and vitamin... effects, and promote a sustainable imaging 2) to synthesize nanoparticles (NPs) of the blend of two component polymers for targeted chemotherapy with paclitaxel used as model drug 3) to develop a new strategy to prepare folate-decorated nanoparticles of biodegradable polymers loading QDs for targeted and sustained imaging for cancer diagnosis at its early stage 4) to prepare biodegradable polymeric multifunctional. .. imaging and medical diagnostics, especially the cancer detection in its early stage Finally, multifunctional NPs of biodegradable polymers loaded with QDs and docetaxel for targeting, therapy and imaging were prepared and characterized In this study, docetaxel and quantum dots were employed as the model anticancer drug and imaging agent, respectively Nanoparticles of polymer blend containing PLGA and TPGS-COOH... pristine drug and the folate-decoration can significantly promote targeted delivery of the drug to the corresponding cancer cells and thus enhance its therapeutic effects and reduced its side effects Next, a new strategy was developed to prepare folate-decorated nanoparticles of biodegradable polymers for QDs formulation for targeted and sustained imaging In order to reduce the cytotoxicity of QDs, two... is feasible for targeted imaging to improve imaging specificity and sensitivity as well as to reduce side effects of QDs to normal cells In Chapter 6, folate-decorated nanoparticles of biodegradable polymers loaded with QDs and docetaxel for targeting, therapy and imaging were prepared and characterized In this study, docetaxel and quantum dots were employed as the model anticancer drug and imaging... drugs Novel biodegradable polymers/ copolymers with desired prolonged residence time in the circulation system and enhanced therapeutic efficacy of the loaded drug are thus needed Currently, surgical intervention, radiation and chemotherapeutic drugs are widely used methods for cancer treatments But these approaches often also kill healthy cells 2 and lead to toxicity for the patients Therefore, the development... blood) (http://en.wikipedia.org/wiki /Cancer) Different from cancer, benign tumors are self-limited, do not invade or metastasize Cancer may affect people at all ages, even fetuses Cancer is the first-leading cause of death in Singapore, and the proportion of cancer deaths in all causes of death was 27.7% in 2007 (http://www.moh.gov.sg) Nanoparticles of biodegradable polymers are prepared from natural... cytotoxicity for both of MCF-7 cells and NIH 3T3 cells Additionally, our findings indicated that under same conditions, cytotoxicity of QDs formulated in the PLA-TPGS/TPGS-COOH NPs is lower for normal cells such as NIH 3T3 cells than that for beast cancer such as MCF-7 breast cancer cells due to folate targeting effect Our study showed that QDs formulated in folate-decorated nanoparticles of PLA-TPGS/TPGS-COOH... against cancer 1.2 Objective and thesis organization The overall purpose in this thesis is to develop nanoparticles of biodegradable polymers for molecular imaging and targeted therapy In particular, the objectives of this thesis include: 3 1) to prepare a novel system of poly(lactide acid) - d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS) nanoparticles (NPs) loading quantum dots (QDs) formulation . MULTIFUNCTIONAL NANOPARTICLES OF BIODEGRADABLE POLYMERS FOR DIAGNOSIS AND TREATMENT OF CANCER PAN JIE NATIONAL UNIVERSITY OF SINGAPORE 2009 MULTIFUNCTIONAL. MULTIFUNCTIONAL NANOPARTICLES OF BIODEGRADABLE POLYMERS FOR DIAGNOSIS AND TREATMENT OF CANCER PAN JIE (M. ENG., TIANJIN UNIVERSITY) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF. degradation rate and hydrophobic/hydrophilic balance and develop the copolymer nanoparticles for cancer chemotherapy and imaging, as well as to prepare targeted nanoparticles for cancer therapy and imaging

Ngày đăng: 14/09/2015, 08:45

Từ khóa liên quan

Mục lục

  • REFERENCES

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan