Antiproliferative activity of curcumin analogs on acute promyelocytic leukemia synthesis and mode of action studies

218 405 0
Antiproliferative activity of curcumin analogs on acute promyelocytic leukemia   synthesis and mode of action studies

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ANTI-PROLIFERATIVE ACTIVITY OF CURCUMIN ANALOGS ON ACUTE PROMYELOCYTIC LEUKEMIA: SYNTHESIS AND MODE OF ACTION STUDIES TAN KHENG LIN (B. Sc. (Chemistry) (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACY NATIONAL UNIVERSITY OF SINGAPORE 2013 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirely. I have duly acknowledged all the sources of information which have been used in the thesis. The thesis has also not been submitted for any degree in any university previously. Tan Kheng Lin 12 August 2013 Table of Contents Acknowledgements 11 Conferences and Publications 13 Summary 15 List of Tables .18 List of Figures 20 List of Schemes 24 List of Abbreviations .25 Chapter 1: Introduction . 26 1.1. Leukemia .26 1.2. Acute Promyelocytic Leukemia (APL) .26 1.2.1. The molecular pathogenesis of APL 27 1.2.2. The role of N-CoR in APL pathogenesis .27 1.2.3. Therapeutic Modulation of N-CoR misfolding 30 1.3. Endoplasmic reticulum (ER) stress and the Unfolded Protein Response (UPR) .33 1.3.1 ER stress mechanism 33 1.3.2. Activation of UPR-induced apoptosis .35 1.4. The Proteasome .39 1.4.1. Structure and function of the proteasome 40 1.4.2. Current FDA approved proteasome inhibitors .41 1.5. Curcumin .43 1.5.1. Overview of structure, stability and bioavailability of curcumin 43 1.5.2. Biological activities of curcumin .47 1.5.3. Structural modification of curcumin 49 1.6. Statement of Purpose .52 Chapter 2: Design and Synthesis of Target Compounds 54 2.1. Introduction .54 2.2. Rationale of compound design 55 2.2.1 Overview of design rationale 55 2.2.2. Series I .58 2.2.3. Series II and III 60 2.2.4. Series IV .61 2.2.5. Series V 61 2.2.6. Series VI .62 2.3. Syntheses of Series I-VI: Mechanistic considerations 62 2.3.1. Syntheses of symmetrical analogs of Series I, II and III, IV and V by base-catalyzed aldol condensation 62 2.3.2. Syntheses of oximes .64 2.3.3. Syntheses of symmetrical analogs of Series IV by acid catalyzed aldol condensation .65 2.3.4. Synthesis of asymmetrical analogs of series III using sequential acid-catalyzed aldol condensation .68 2.3.5. Synthesis of asymmetrical analogs of Series IV 68 2.3.6. Synthesis of piperidinone analogs of Series VI .71 2.3.7. Synthesis of analogs containing hydroxyl substituents on phenyl ring .71 2.4. Materials and methods 72 2.4.1. General details .72 2.4.2. General procedure for syntheses of – 3, – 9, 11-15, 18 – 19, 21, 24 – 26, 31 – 33, 201, 206, 30, 36 – 37, 207 – 214, 42 – 44, 47, 228, 229 by aldol condensation under basic conditions. 73 2.4.3. Syntheses of 4, 10 and 22 73 2.4.4. General procedure for syntheses of 16, 17, 20, 23, 34 – 35, 38, 215, 216, 230, 231, 45 – 46 by aldol condensation under acidic conditions .74 2.4.5. 5-Bis-(4-fluoro-phenyl)-penta-1,4-dien-3-one oxime (27) .75 2.4.6. Syntheses of O-methyloximes of 1,5-bis-(fluorophenyl)-penta-1,4dien-3-ones (28 and 29) .75 2.4.7. General procedure for syntheses of 40, 41, 221 – 227 .76 2.4.8. Synthesis of 2-(3-Fluoro-benzylidene)-cyclohexanone (48) .76 2.4.9. Synthesis of (3-[(3-fluorobenzylidene)dihydro-2H-thiopyran4(3H)-one) (49) 76 2.4.10. General procedure for syntheses of 202 – 205, 217 – 220 .77 2.5. Summary .77 Chapter 3: Effects of synthesized compounds on viability of leukemic and non-malignant cells . 78 3.1. Introduction .78 3.2. Materials and methods 79 3.2.1. Cell lines and culture medium .79 3.2.2. Medium and reagents for cell culture 80 3.2.3. Cell viability assay .80 3.3. Results .81 3.3.1. Anti-proliferative activity of curcumin and analogs on leukemic APL cell lines .81 3.3.2. Anti-proliferative activity of curcumin and analogs on leukemic non-APL cell lines .91 3.3.3. Anti-proliferative activity of curcumin and analogs on human nonmalignant cell lines 96 3.4. Discussion .99 3.5. Conclusions .102 Chapter 4: Curcumin and analogs upregulate misfolded N-CoR in APL . 104 4.1. Introduction .104 4.2. Materials and Methods 105 4.2.1. Reagents .105 4.2.2. Cell treatment and lysis using SDS sample buffer .106 4.2.3. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDSPAGE) 107 4.2.4. Western blotting .107 4.2.5. Coomassie blue staining 108 4.2.6. Immunofluoescence .108 4.2.7. Thermal shift assay 109 4.2.8. Surface plasmon resonance (SPR) assay .109 4.2.9. Determination of 20S proteasomal inhibition 110 4.2.10. Inhibition of 26S proteasome activity in NB4 cells .110 4.2.11. High content screening of NF-κB translocation in NB4 cells .111 4.3. Results .112 4.3.1. Determination of N-CoR levels in NB4 cells exposed to APL selective and APL non-selective compounds 112 4.3.2. N-CoR accumulated is in the misfolded state 116 4.3.3. Investigations on the interaction of curcumin and APL selective compounds 11, 22 and 41 with O-Sialoglycoprotein endopeptidase (OSGEP). .118 4.4. Investigations on the inhibition of 20S proteasome by curcumin and APL selective compounds 11, 22 and 41 .122 4.5. Investigations on the inhibition of 26S proteasome in NB4 cells by APL selective compounds (41, 206, 219, 220, 221, 227) and curcumin .124 4.6. Curcuminoids that are proteasome inhibitors similarly inhibit TNFαinduced activation of NF-κB 127 4.7. Discussion .130 4.8. Conclusions .132 Chapter 5: Mode of action studies on the APL selective compound 41. 134 5.1. Introduction .134 5.2. Materials and Methods 135 5.2.1. Microarray analysis 135 5.2.2. NB4 cell treatment and harvest 135 5.2.3. Isolation and purification of mRNA 135 5.2.4. Determination of mRNA integrity .135 5.2.5. Microarray chip hybridization and pathway analysis 136 5.2.6. Validation by real-time PCR 136 5.2.7. Effect on UPR pathways 137 5.2.7.1. Reagents 137 5.2.7.2. Western blot 138 5.2.7.3. Detection of apoptosis through flow cytometry 138 5.3. Results .138 5.3.1. Gene expression profile of NB4 cells treated with compound 41 and curcumin 138 5.3.2. Validation of selected genes identified in microarray analysis .144 5.3.3. Effects of 41, 219 and 227 on ER stress markers in NB4 cells .146 5.3.4. Effects of 41, 219 and 227 on the ER stress sensors PERK and IRE2 .148 5.3.5. Effects of 41, 219 and 227 on apoptotic markers caspases 3, and PARP 151 5.4. Discussion .153 5.5. Conclusion 155 Chapter 6: Evaluation of the hydrolytic stability and Michael acceptor reactivity of selected Series V thiopyranones and Series V thiopyranone dioxides . 156 6.1. Introduction .156 6.2. Materials and methods 156 6.2.1. Determination of hydrolytic stability of 41, 219, 227 and curcumin 156 6.2.2. Determination of Michael acceptor reactivity by NMR 157 6.3. Results .157 6.3.1. Hydrolytic stabilities of 41, 219 and 227 .157 6.3.2. Michael acceptor reactivities of 41 and 227. .159 6.4. Discussion .162 6.5. Conclusion 166 Chapter 7: Conclusions and Future work 167 Bibliography . 171 Appendixes . 181 Table of Contents .181 Appendix 2-1. Spectroscopic data of synthesized compounds 181 Appendix 2-2. Purity data of final compounds as determined by reverse phase HPLC .181 Appendix 3-1. Cell Viability (%) of NB4-R1 cells treated with fixed concentrations (5 µM, 20 µM) of “Inactives” .181 Appendix 4-1. IC50 determination of curcumin and 41 on trypsin-, caspaseand chymotrypsin-like active sites of 20S proteasome 181 Appendix 4-2. Determination of substrates Km. Initial rate of reaction containing each substrate from µM to 200 µM with µg protein of NB4 lysate was measured and Km and Vmax was calculated using the MichaelisMenten equation .181 Appendix 5-1. qRT -PCR reaction conditions 181 Appendix 5-2. List of TaqMan® primers for real-time PCR .181 Appendix 5-3. List of genes involved in DNA replication, cell cycle, apoptosis and proteasomal structure that are significantly regulated by both curcumin and 41 .181 Appendix References .181 10 Compoun d Mobile Phase A Composition RT Area a (min) (%)d c 5e 10 11 12 17 18 20 21 22 38 46 201 e 202 203 e A1 A1 A1 A1 A1 A1 A1 A1 A1 A2 A1 A1 A1 A2 A1 A1 A2 5.0 2.7 3.1 22.0 6.6 7.7 12.1 7.5 5.0 2.8 5.7 4.8 2.5 4.0 5.02 6.46 7.65 204 A1 205 Mobile Phase B Compositionb/ RT Area c (min) (%)d c B1 B1 B2 B1 B1 B1 B1 B1 B1 B4 B1 B1 C1 B3 B1 B1 B2 3.1 3.3 2.8 4.2 3.1 2.4 5.5 3.1 4.0 2.8 2.8 1.7 2.3 4.2 3.68 4.54 3.52 4.56 99.5 98.5 95.5 97.1 99.3 96.9 98.7 98.3 95.4 97.9 100.0 100.0 99.0 98.8 94.75 95.98 91.02 100.0 B1 2.87 A1 4.88 95.76 B1 2.86 206 207 A1 A2 7.83 3.10 98.32 95.50 B1 B1 4.46 2.88 208 209 210 212 213 215 A2 A2 A1 A1 A1 A1 2.41 1.56 3.84 5.49 6.42 4.06 B2 B2 B1 B1 B1 B1 1.71 3.81 2.48 3.46 3.81 2.53 216 217 e 218 e 219 220 A2 A1 A2 A1 A1 3.35 5.55 6.96 4.06 4.18 99.11 95.07 96.59 97.86 98.90 98.12 100.0 94.82 91.56 98.12 96.23 B2 B1 B2 B1 B1 1.91 3.45 2.51 2.53 2.52 221 A2 4.52 B2 3.10 222 223 A2 A2 2.57 5.27 99.50 100.0 97.13 99.7 99.8 94.6 99.3 99.8 96.6 98.6 97.7 96.8 99.0 97.8 99.8 100.0 98.2 94.65 97.08 94.49 100.0 100.0 100.0 98.01 100.0 97.94 96.65 96.38 97.93 98.19 100.0 95.52 95.58 98.44 98.68 100.0 B2 B2 2.13 3.21 99.15 96.32 203 224 A1 2.18 95.71 B1 1.94 225 A1 1.57 B2 1.85 226 A1 1.63 99.33 100.0 B1 1.46 227 e A1 2.35 92.78 B1 2.02 100.0 100.0 100.0 100.0 a Composition of Mobile Phase A: Methanol and Water A1: 80% methanol A2: 70% methanol b Composition of Mobile Phase B: Acetonitrile and Water B1: 80% acetonitrile B2: 70% acetonitrile c Retention time of Major Peak in chromatogram. Chromatogram was run for at least 15 for the detection of the major peak d Area (%) of Major Peak = [Area of Major Peak / Total Area of All Peaks] x 100 e Did not comply with > 95% purity on two solvent systems. Appendix 3-1. Cell Viability (%) of NB4-R1 cells treated with fixed concentrations (5 µM, 20 µM) of “Inactives” Ref no. Cur 10 12 13 15 Compound Linker Keto-enol Substituents 3OCH3, 4OH H 4F H 2F 3F 4F 3OH, 4OCH3 H 2F 4F 204 % NB4-R1 cell viability ± SDa µM 20 µM 4.63 ± 2.5 0.85 ± 0.6 43.83 ± 32.7 1.25 ± 0.6 59.60 ± 8.5 0.99 ± 1.8 83.08 ± 4.6 36.48 ± 5.7 60.11 ± 10.7 47.12 ± 11.9 90.40 ± 10.0 71.60 ± 5.0 91.30 ± 11.2 87.81 ± 9.1 83.18 ± 4.7 73.84 ± 3.7 75.15 ± 12.1 0.52 ± 0.5 56.20 ± 27.9 1.70 ± 2.1 69.24 ± 11.4 1.36 ± 2.0 27 4F 93.83 ± 9.4 86.95 ± 6.5 28 3F 89.08 ± 10.1 69.05 ± 5.7 29 4F 92.11 ± 9.5 77.19 ± 6.9 a Percent growth inhibition of NB4-R1, human acute promyelocytic leukemia (APL) cells resistant to retinoic acid. Activity data performed on three independent experiments, two concentrations (5 and 20 µM), each experiment performed in triplicate. Appendix 4-1. IC50 determination of curcumin and 41 on trypsin-, caspaseand chymotrypsin-like active sites of 20S proteasome. Inhibition of Proteasome T -like activity by Curcumin Inhibition of Proteasome Casp-like activity by Curcumin 100 y it iv t c a e k il T % 50 -50 0.0 0.5 1.0 1.5 150 150 y itv it 100 c a e 50 k il p s a C % y it 100 iv t c a 50 e k il T C % -50 0.0 2.0 0.5 Log [Cur uM] -50 0.0 2.0 50 25 .5 .0 Log [41  M] .5 .0 1.0 1.5 2.0 In h ib itio n o f P ro te a s o m e C T -lik e a c tiv ity b y 100 ty i v tic a e k il T C % 75 50 25 0 .0 0.5 Log [Cur uM] 100 y itv it c a e k i -l p s a C % 75 -2 .0 1.5 In h ib itio n o f P ro te a s o m e C a s p -lik e a c tiv ity b y 100 % 1.0 Log [Cur uM] In h ib itio n o f P ro te a s o m e T -lik e a c tiv ity b y y it iv t c a e k liT Inhibition of Proteasom e CT -like activity by Curcum in .5 .0 Log [41  M] 205 .5 .0 75 50 25 0 .0 .5 .0 Log [41  M] .5 .0 Appendix 4-2. Determination of substrates Km. Initial rate of reaction containing each substrate from µM to 200 µM with µg protein of NB4 lysate was measured and Km and Vmax was calculated using the MichaelisMenten equation. Km Determination T-like e g a e v a e l m c o s C a e M to A r f p o y e ta b R Casp-like CT-like 50 100 150 200 250 [peptide] uM Appendix 5-1. qRT -PCR reaction conditions. Total RNA was isolated as described in Section 5.2.3 and converted to cDNA as described in Section 5.2.6. Real-time PCR of selected genes was carried out using the TaqMan® Gene Expression Assay System (Applied Biosystems, CA, USA) and recorded using the ABI 7500 Fast PCR System (Applied Biosystems, CA, USA). The PCR reaction, conditions and list of TaqMan primers were as follows: Reagents for qRT-PCR reaction using TaqMan® Gene Volume used per Expression Assay System reaction (µL) TaqMan® Gene Expression Master Mix (2X) 10 TaqMan® Gene Expression Assay or ACTB control (20X) RNase-free H2O 206 cDNA template Total volume 20 qRT-PCR assay conditions Step Temperature (˚C) Time Number of Cycles UDG Incubation 50 Hold 95 10 Hold Denaturation 95 15 sec Anneal/Extention 60 AmpliTaq Gold, UP enzyme activation 40 cycles Appendix 5-2. List of TaqMan® primers for real-time PCR Gene Dye Assay number UBE2E1 FAM Hs00979831_m1 EIF2AK2 FAM Hs00169345_m1 SEC62 FAM Hs00162786_m1 LMAN1 FAM Hs01557242_m1 MAP3K7 FAM Hs01105682_m1 THAP5 FAM Hs00973505_g1 ACTB VIC Hs99999903_m1 Calculation of fold-change (with respect to vehicle control) using the comparative Ct method was described as follows: ΔCt =Ct (sample) - Ct (endogenous control) ΔΔCt = ΔCt (sample) - ΔCt (vehicle control) Fold-change = 2-ΔΔCt Where Ct refers to the cycle number at which the increase in fluorescence (i.e. amount of cDNA) crosses a preset threshold. Sample refers to individual gene investigated and endogenous control refers to the housekeeping gene ACTB. 207 Appendix 5-3. List of genes involved in DNA replication, cell cycle, apoptosis and proteasomal structure that are significantly regulated by both curcumin and 41. Class Symbol MCM6 DNA2 DNA replication RFC4 POLD3 BUB1B BUB3 STAG2 CUL1 Cell cycle MCM6 RB1 NRAS YWHAB CHP1 Apoptosis PRKAR1A Function Log2FCa 41 Log2FCa Cur Req for DNA replication initiation and 2.806 2.909 elongation DNA2 is a conserved helicase/nuclease involved in the maintenance of 2.689 2.674 mitochondrial and nuclear DNA stability Replication factor-4 involved in the elongation of primed DNA templates by 2.549 2.482 DNA polymerase delta Required for optimal DNA polymerase 2.425 2.656 delta activity Required for normal mitosis progression. 3.241 3.425 Mitotic checkpoint protein to ensure 3.214 3.337 correct chromosome segregation Component of cohesin complex, a complex required for the cohesion of sister 2.963 3.092 chromatids after DNA replication. Mediate the ubiquitination of proteins involved in cell cycle progression, signal 3.107 3.274 transduction and transcription Req for DNA replication initiation and 2.806 2.909 elongation Active form of RB1 interacts with E2F1 and represses its transcription activity, leading 3.068 3.212 to cell cycle arrest. N-Ras membrane protein that bind GDP/GTP and possess intrinsic GTPase 2.415 2.829 activity 14-3-3 family, interact with RAF1 and CDC25 phosphatases, play a role in linking 2.109 2.350 mitogenic signaling and the cell cycle machinery Calcium-binding protein involved in regulation of vesicular trafficking, plasma 3.545 3.952 membrane Na(+)/H(+) exchanger and gene transcription A cAMP-dependent protein kinase is a component of the signal transduction 208 2.346 2.512 mechanism of certain GPCRs and transduces the signal through phosphorylation of different target proteins PIK3R1 Phosphoinositide 3-kinases capable of phosphorylating 3'OH of inositol ring of phosphoinositides. They are responsible for PIK3CA proliferation, cell survival, degranulation, vesicular trafficking and cell migration. 2.303 2.269 2.188 2.546 PSMB4 β7 subunit of 20S proteasome - catalytic activity not known 3.272 3.310 PSMD7 Non-ATPase subunit of 19S regulatory lid of the 26S proteasome This gene encodes the largest non-ATPase Proteasome subunit of 19S regulator lid, which is PSMD1 responsible for substrate recognition and binding An ATPase subunit of 19S regulatory PSMC6 complex involved in ATP-dependent degradation of ubiquitinated proteins 3.148 3.362 2.894 3.244 2.636 2.456 a Log fold change of gene expression in treated cells relative to vehicle control References References 1. Rosenberg, P. S.; Wilson, K. L.; Anderson, W. F. Are incidence rates of adult leukemia in the United States significantly associated with birth cohort? Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2012, 21, 2159-66. 2. Bennett, J. M.; Catovsky, D.; Daniel, M.-T.; Flandrin, G.; Galton, D. A. G.; Gralnick, H. R.; Sultan, C. Proposals for the Classification of the Acute Leukemias. British Journal of Haemotology 1976, 33, 451-458. 3. de The, H.; Lavau, C.; Marchio, A.; Chomienne, C.; Degos, L.; Dejean, A. The PML-RARa Fusion mRNA generated by the t(15;17) Translocation in Acute Promyelocytic Leukemia encodes a Functionality altered RAR. Cell 1991, 66, 675-684. 4. Lin, R. J.; Egan, D. A.; Evans, R. M. Molecular genetics of acute promyelocytic leukemia. Trends in Genetics 1999, 15, 179-184. 5. Chen, Z.; Brand, N. J.; Chen, A.; Chen, S.-J.; Tong, J.-H.; Wang, Z.Y.; Waxman, S.; Zelent, A. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-ar locus due to a variant t(l ;1 7) translocation associated with acute promyelocytic leukaemia. EMBO J 1993, 12, 1161-1167. 6. Ravandi, F. Therapy-related acute promyelocytic leukemia. Haematologica 2011, 96, 493-5. 209 7. Labrecque, J.; Allan, D.; Chambon, P.; Iscove, N. N.; Lohnes, D.; Hoang, T. Impared Granulocytic Differentiation In Vitro in Hematopoietic Cells Lacking Retinoic Acid Receptors alpha1 and gamma. Blood 1998, 92, 607-615. 8. Khan, M. M.; Nomura, T.; Chiba, T.; Tanaka, K.; Yoshida, H.; Mori, K.; Ishii, S. The Fusion Oncoprotein PML-RAR Induces Endoplasmic Reticulum (ER)-associated Degradation of N-CoR and ER Stress. Journal of Biological Chemistry 2004, 279, 11814-11824. 9. Guenther, M. G.; Lane, W. S.; Fischle, W.; Verdin, E.; Lazar, M. A.; Shiekhatter, R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes and Development 2000, 14, 1048-1057. 10. Battaglia, S.; Maguire, O.; Campbell, M. J. Transcription factor corepressors in cancer biology: roles and targeting. International Journal of Cancer 2010, 2511-2519. 11. Laherty, C. D.; Yang, W.-M.; Sun, J. M.; Davie, J. R.; Seto, E.; Eisenman, R. N. Histone deacetylases associated with the mSin3 Corepreesor mediate Mad Transcriptional Repression. Cell 1997, 89, 349-356. 12. Heinzel, T.; Lavinsky, R. M.; Mullen, T. M.; Soderstrom, M.; Laherty, C. D.; Torchia, J.; Yang, W.-M.; Brard, G.; Ngo, S. D.; Davie, J. R.; Seto, E.; Eisenman, R. N.; Rose, D. W.; Glass, C. K.; Rosenfeld, M. G. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997, 387, 43-48. 13. Khan, M.; Nomura, T.; Kim, H.; Kaul, S. C.; Wadhwa, R.; Shinagawa, T.; Ichikawa-Iwata, E.; Zhong, S.; Pandolfi, P. P.; Ishii, S. Role of PML and PML-RARalpha in Mad-Mediated Transcriptional Repression. Mol Cell 2001, 7, 1233-1243. 14. Bhutani, M. K.; Bishnoi, M.; Kulkarni, S. K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009, 92, 39–43. 15. Zhong, S.; Delva, L.; Rachez, C.; Cenciarelli, C.; Gandini, D.; Zhang, H.; Kalantry, S.; Freedman, L. P.; Pandolfi, P. P. A RA-dependent, tumor growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 1999, 23, 287-295. 16. Khan, M. Interplay of protein misfolding pathway and unfoldedprotein response in acute promyelocytic leukemia. Expert Review in Proteomics 2010, 7, 591-600. 17. Ng, A. P. P.; Howe Fong, J.; Sijin Nin, D.; Hirpara, J. L.; Asou, N.; Chen, C. S.; Pervaiz, S.; Khan, M. Cleavage of Misfolded Nuclear Receptor Corepressor Confers Resistance to Unfolded Protein Response-Induced Apoptosis. Cancer Research 2006, 66, 9903-9912. 18. Ng, A. P. P.; Nin, D. S.; Fong, J. H.; Venkataraman, D.; Chen, C. S.; Khan, M. Therapeutic targeting of nuclear receptor corepressor misfolding in acute promyelocytic leukemia cells with genistein. Molecular Cancer Therapeutics 2007, 6, 2240-2248. 19. Ng, A. P. P.; Chng, W. J.; Khan, M. Curcumin Sensitizes Acute Promyelocytic Leukemia Cells to Unfolded Protein Response-induced Apoptosis by Blocking the Loss of Misfolded N-CoR Protein. Molecular Cancer Research 2011, 9, 1-11. 210 20. Warrell, R. P.; De The, H.; Wang, Z.-Y.; Degos, L. Acute Promyelocytic Leukemia. New England Journal of Medicine 1993, 329, 177190. 21. Collins, S. J. Retinoic acid receptors, hematopoiesis and leukemogenesis. Current Opinion in Hematology 2008, 15, 346-351. 22. Okada, T.; Haze, K.; S., N. A serine protease inhibitor prevents endoplasmic reticulum stress induced cleavage but not transport of the membrane bound transcription factor ATF6. J Biol Chem 2003, 278, 3102432. 23. Glass, C. K.; Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000, 14, 121-141. 24. Yanjun, M.; Hendershot, L. M. The role of the unfolded protein response in tumor development: friend or foe? Nat Rev Cancer 2004, 4, 96677. 25. Kaufman, R. J. Orchestrating the unfolded protein responses in health and diseases. J Clin Invest 2002, 110, 1389-98. 26. Wang, Z. Y.; Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008, 111, 2505-2515. 27. Unnikrishnan, D.; Dutcher, J. P.; Varshneya, N.; Lucariello, R.; Api, M.; Garl, S.; Wiernik, P. H.; Chiaramida, S. Torsades de pointes in patients with leukemia treated with arsenic trioxide. Blood 2001, 97, 1514-6. 28. Rutkowski, D. T.; Kaufman, R. J. A trip to the ER: coping with stress. Trends Cell Biol 2004, 14, 20-28. 29. Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews. Molecular cell biology 2007, 8, 519-529. 30. Verfaillie, T.; Garg, A. D.; Agostinis, P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Letters 2010, In Press. 31. Gillece, P.; Luz, J. M.; Lennarz, W. J.; de la Cruz, F. J.; Romisch, K. Export of a Cysteine-free Misfolded Secretory Protein from the Endoplasmic Reticulum for Degradation Requires Interaction with Protein Disulfide Isomerase. Journal of Cell Biology 1999, 147, 1443-1456. 32. Feldman, D. E.; Frydman, J. Protein folding in vivo: the importance of molecular chaperones. Current Opinion in Structural Biology 2000, 10, 26-33. 33. Koumenis, C.; Naczki, C.; Koritzinsky, M.; Rastani, S.; Diehl, A.; Sonenberg, N.; Koromilas, A.; Wouters, B. G. Regulation of Protein Synthesis by Hypoxia via Activation of the Endoplasmic Reticulum Kinase PERK and Phosphorylation of the Translation Initiation Factor eIF2 Molecular and Cellular Biology 2002, 22, 7405-7416. 34. Harding, H. P.; Zhang, Y.; Zeng, Y.; Novoa, I.; Lu, P. D.; Calfon, M.; Sadri, N.; Yun, C.; Popko, B.; Paules, R.; Stojdl, D. F.; Bell, J. C.; Hettmann, T.; Leiden, J. M.; Ron, D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell 2003, 11, 619633. 35. Szegezdi, E.; Logue, S. E.; Gorman, A. M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO reports 2006, 7, 8805. 36. Yamamoto, K.; Sato, T.; Matsui, T.; Sato, M.; Okada, T.; Yoshida, H.; Harada, A.; Mori, K. Transcriptional induction of mammalian ER quality 211 control proteins is mediated by single or combined action of ATF6alpha and XBP1. Developmental Cell 2007, 13, 365-276. 37. Luo, B.; Lee, A. S. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 2013, 32, 805-18. 38. Brush, M. H.; Weiser, D. C.; Shenolikar, S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Molecular and Cellular Biology 2003, 23, 1292-1303. 39. Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsuijimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene 2010, 29, 2070-2082. 40. Kim, I.; Xu, W.; Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 2008, 7, 1013-1030. 41. Breckenridge, D. G.; Stojanovic, M.; Marcellus, R. C.; Shore, G. C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. Journal of Cell Biology 2003, 160, 1115-1127. 42. Blais, J. D.; Addison, C. L.; Edge, R.; Falls, T.; Zhao, H.; Wary, K.; Koumenis, C.; Harding, H. P.; Ron, D.; Holcik, M.; Bell, J. C. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Molecular and Cellular Biology 2006, 26, 95179532. 43. Drogat, B.; Auguste, P.; Nguyen, D. T.; Bouchecareilh, M.; RPineau, R.; Nalbantoglu, J.; Kaufman, R. J.; Chevet, E.; Bikfalvi, A.; Moenner, M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research 2007, 67, 6700-6707. 44. Nawrocki, S. T.; Carew, J. S.; Pino, M. S.; Highsaw, R. A.; Dunner Jr, K.; Huang, P.; Abbruzzese, J. L.; McConkey, D. J. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Research 2005, 65, 11658-11666. 45. Park, H. S.; Jun, D. Y.; Han, C. R.; Woo, H. J.; Kim, Y. H. Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase p56lck in human Jurkat T cells. Biochemical Pharmacology 2011, 82, 1110-1125. 46. Phillips, L. R.; Wolfe, T. L.; Malspeis, L.; Supko, J. G. Analysis of brefeldin A and the prodrug breflate in plasma by gas chromatography with mass selective detection. Journal of Pharmaceutical and Biomedical Analysis 1998, 16, 1301-1309. 47. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 1994, 79, 13-21. 48. Adams, J. The proteasome: a suitable antineoplastic target. Nature Reviews Cancer 2004, 4, 349-360. 49. Zanotto-Filho, A.; Delgado-Cañedo, A.; Schröder, R.; Becker, M.; Klamt, F.; Moreira, J. C. F. The pharmacological NFκB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells 212 through ROS-mitochondria pathway activation. Cancer Letters 2010, 288, 192-203. 50. Lightcap, E. S.; McCormack, T. A.; Pien, C. S.; Chau, V.; Adams, J.; Elliott, P. J. Proteasome inhibition measurements: clinical applications. Clinical Chem 2000, 46, 673-683. 51. Adams, J. Development of the proteasome inhibitor PS-341. Oncologist 2002, 7, 9-16. 52. Papandreou, C. N.; Daliani, D. D.; Nix, D. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. Journal of clinical oncology 2004, 22, 2108-2121. 53. Papandreou, C. N.; Logothetis, C. J. Bortezomib as a potential treatment for prostate cancer. Cancer Research 2004, 64, 5036-5043. 54. Kubbutat, M. H.; Jones, S. N.; Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 1997, 387, 299-303. 55. Jesenberger, V.; Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nature reviews Molecular Cell Biology 2002, 3, 112-121. 56. Cory, S.; Adams, J. M. The Bcl2 family: regulators of the cellular lifeor-death switch. Nature Reviews Cancer 2002, 2, 647-656. 57. Wang, C.-Y.; Cusack, J. C.; Liu, R.; Baldwin Jr, A. S. Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kB. Nature Medicine 1999, 5, 412-417. 58. Karin, M.; Cao, Y.; Greten, F. R.; Li, Z.-W. Nf-κb in Cancer: From Innocent Bystander to Major Culprit. Nature Reviews Cancer 2002, 2, 301310. 59. Brooks, P.; Fuertes, G.; Murray, R. Z.; Bose, S.; Knecht, E.; Hendil, K. B.; Tanaka, K.; Dyson, J.; Rivett, J. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochemical Journal 2000, 346, 155-161. 60. Bedford, L.; Lowe, J.; Dick, L. R.; Mayer, R. J.; Brownell, J. E. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nature Reviews Drug Discovery 2010, 10, 29-46. 61. Demo, S. D.; Kirk, C. J.; Aujay, M. A.; Buchholz, T. J.; Dajee, M.; Ho, M. N.; Jiang, J.; Laidig, G. J.; Lewis, E. R.; Parlati, F.; Shenk, K. D.; Smyth, M. S.; Sun, C. M.; Vallone, M. K.; Woo, T. M.; Molineaux, C. J.; Bennett, M. K. Antitumor Activity of PR-171, a Novel Irreversible Inhibitor of the Proteasome. Cancer Research 2007, 67, 6383-6391. 62. Dick, L. R.; Fleming, P. E. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discovery Today 2010, 15, 243-249. 63. Kale, A. J.; Moore, B. S. Molecular Mechanisms of Acquired Proteasome Inhibitor Resistance. Journal of Medicinal Chemistry 2012, 55, 10317-10327. 64. Richardson, P. G.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D.; Rajkumar, S. V.; Srkalovic, G.; Alsina, M.; Alexanian, R.; Siegel, D.; Orlowski, R. Z.; Kuter, D.; Limentani, S. A.; Lee, S.; Hideshima, T.; Esseltine, D.-L.; Kauffman, M.; Adams, J.; Schenkein, D. P.; Anderson, K. C. A phase study of bortezomib in relapsed, refractory myeloma. New England Journal of Medicine 2003, 348, 2609-2617. 213 65. Kuhn, D. J.; Chen, Q.; Voorhees, P. M.; Strader, J. S.; Shenk, K. D.; Sun, C. M.; Demo, S. D.; Bennett, M. K.; van Leeuwen, F. W. B.; ChananKhan, A. A.; Orlowski, R. Z. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007, 110, 3281-3290. 66. McConkey, D. J.; Zhu, K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resistance Updates 2008, 11, 164-179. 67. Khan, M. L.; Stewart, A. K. Carfilzomib: a novel second-generation proteasome inhibitor. Future oncology 2011, 7, 607-612. 68. Anand, P.; Thomas, S.; Kunnumakkara, A.; Sundaram, C.; Harikumar, K.; Sung, B.; Tharakan, S.; Misra, K.; Priyadarsini, I.; Rajasekharan, K. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology 2008, 76, 1590-1611. 69. Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M.; Chin, D.; Wagner, A. E.; Rimbach, G. Curcumin--from molecule to biological function. Angew Chem Int Ed Engl 2012, 51, 5308-32. 70. Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Molecular Pharmaceutics 2007, 4, 807-818. 71. Jovanovic, S. V.; Steenken, S.; Boone, C. W.; Simic, M. G. H-Atom Transfer Is A Preferred Antioxidant Mechanism of Curcumin. J. Am. Chem. Soc. 1999, 121, 9677. 72. Wang, Y.-J.; Pan, M.-H.; Cheng, A.-L.; Lin, L.-I.; Ho, Y.-S.; Hsieh, C.-Y.; Lin, J.-K. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis 1997, 15, 1867-1876. 73. Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorganic & Medicinal Chemistry 2009, 17, 2623-2631. 74. Pan, M.-H.; Huang, T.-M.; Lin, J.-K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism and Disposition 1999, 47, 486-494. 75. Ferrari, E.; Pignedoli, F.; Imbriano, C.; Marverti, G.; Basile, V.; Venturi, E.; Saladini, M. Newly synthesized curcumin derivatives: crosstalk between chemico-physical properties and biological activity. J Med Chem 2011, 54, 8066-77. 76. Marcu, M. G.; Y.J., J.; S., L.; E.J., C.; M.J., L.; J., T.; L., N. Curcumin is an inhibitor of p300 histone acetyltransferase. Medicinal Chemistry 2006, 2, 169-174. 77. Mullally, J. E.; Fitzpatrick, F. A. Pharmacophore model for novel inhibitors of ubiquitin isopeptidase that induce p53-independent cell death. Molecular Pharmacology 2002, 62, 351-358. 78. Aleo, E.; Henderson, C. J.; Fontanini, A.; Solazzo, B.; Brancolini, C. Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res 2006, 66, 9235-44. 79. Robinson, T. P.; Ehlers, T.; Hubbard, R. B.; Bai, X.; Arbiser, J. L.; Goldsmith, D. J.; Bowen, J. P. Design, Synthesis, and Biological Evaluation of Angiogenesis Inhibitors: Aromatic Enone and Dienone Analogues of Curcumin. Bioorganic & Medicinal Chemistry Letters 2003, 13, 115-117. 214 80. Qiu, X.; Liu, Z.; Shao, W.-Y.; Liu, X.; Jing, D.-P.; Yu, Y.-J.; An, L.K.; Huang, S.-L.; Bu, X.-Z.; Huang, Z.-S. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors. Bioorganic & Medicinal Chemistry 2008, 16, 8035-8041. 81. Adams, B.; Ferstl, E.; Davis, M.; Herold, M.; Kurtkaya, S.; Camalier, R.; Hollingshead, M.; Kaur, G.; Sausville, E.; Rickles, F. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and antiangiogenesis agents. Bioorganic & Medicinal Chemistry 2004, 12, 3871-3883. 82. Liang, Y.; Yin, D.; Hou, L.; Zheng, T.; Wang, J.; Meng, X.; Lu, Z.; Song, X.; Pan, S.; Jiang, H.; Liu, L. Diphenyl Difluoroketone: A Potent Chemotherapy candidate for Human Hepatocellular Carcinoma. PLOS one 2011, 6, e23908. 83. Kasinski, A. L.; Du, Y.; Thomas, S. L.; Zhao, J.; Sun, S. Y.; Khuri, F. R.; Wang, C. Y.; Shoji, M.; Sun, A.; Snyder, J. P.; Liotta, D.; Fu, H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 2008, 74, 654-661. 84. Adams, B.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y. J.; Sun, A.; Snyder, J. P.; Liotta, D.; Jones, D. P.; Shoji, M. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anti-Cancer Drugs 2005, 16, 263-275. 85. Sun, A.; Lu, Y. J.; Hu, H.; Shoji, M.; Liotta, D. C.; Snyder, J. P. Curcumin analog cytotoxicity against breast cancer cells: exploitation of a redox-dependent mechanism. Bioorg Med Chem Lett 2009, 19, 6627-31. 86. Brown, A.; Shi, Q.; Moore, T. W.; Yoon, Y.; Prussia, A.; Maddox, C.; Liotta, D. C.; Shim, H.; Snyder, J. P. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties. J Med Chem 2013, 56, 3456-66. 87. Lee, K.-H.; Ab. Aziz, F. H.; Syahida, A.; Abas, F.; Shaari, K.; Israf, D. A.; Lajis, N. H. Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and antityrosinase activities. European Journal of Medicinal Chemistry 2009, 44, 3195-3200. 88. Straganz, G. D.; Clieder, A.; Brecker, L.; Ribbons, D. W.; Steiner, W. Acetylacetone-cleaving enzyme Dke1: a novel C–C-bond-cleaving enzyme from Acinetobacter johnsonii. Biochemical Journal 2003, 369, 573-581. 89. Grogan, G. Emergent mechanistic diversity of enzyme-catalysed βdiketone cleavage. Biochemical Journal 2005, 388, 721-730. 90. Milacic, V.; Banerjee, S.; Landis-Piwowar, K. R.; Sarkar, F. H.; Majumdar, A. P. N.; Dou, Q. P. Curcumin Inhibits the Proteasome Activity in Human Colon Cancer Cells In vitro and In vivo. Cancer Research 2008, 68, 7283-7292. 91. Bazzaro, M.; Anchoori, R. K.; Mudiam, M. K. R.; Issaenko, O.; Kumar, S.; Karanam, B.; Lin, Z.; Isaksson Vogel, R.; Gavioli, R.; Destro, F.; Ferretti, V.; Roden, R. B. S.; Khan, S. R. α,β-Unsaturated Carbonyl System of Chalcone-Based Derivatives Is Responsible for Broad Inhibition of Proteasomal Activity and Preferential Killing of Human Papilloma Virus (HPV) Positive Cervical Cancer Cells. Journal of Medicinal Chemistry 2011, 54, 449-456. 215 92. Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an Anti-Cancer Agent: Review of the Gap Between Basic and Clinical Applications Current Medicinal Chemistry 2010, 17, 190-197. 93. Aggarwal, B. B.; Harikumar, K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. International Journal of Biochemical Cell Biology 2009, 41, 40-59. 94. Ali, R. E. Curcumin's Biphasic Hormetic Response on Proteasome Activity and Heat-Shock Protein Synthesis in Human Keratinocytes. Annals of the New York Academy of Sciences 2006, 1067, 394-399. 95. Schonthal, A. H. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol 2013, 85, 653-66. 96. Kubinyi, H. The quantitative analysis of SAR. In Burger's Medicinal chemistry and Drug Discovery, Wolff, M. F., Ed. John Wiley and Sons: NY, 1995; Vol. 1, p 507. 97. Mirza, A.; Desai, R.; Reynisson, J. Known drug space as a metric in exploring the boundaries of drug-like chemical space. European Journal of Medicinal Chemistry 2009, 44, 5006-5011. 98. Álvarez, C.; Álvarez, R.; Corchete, P.; López, J. L.; Pérez-Melero, C.; Peláez, R.; Medarde, M. Diarylmethyloxime and hydrazone derivatives with 5-indolyl moieties as potent inhibitors of tubulin polymerization. Bioorganic & Medicinal Chemistry 2008, 16, 5952-5961. 99. Donald, J. R.; Edwards, M. G.; Taylor, R. J. K. Tandem oxime formation—epoxide ring opening sequences for the preparation of oxazines related to the trichodermamides. Tetrahedron Letters 2007, 48, 5201-5204. 100. Simoni, D.; Rizzi, M.; Rondanin, R.; Baruchello, R.; Marchetti, P.; Invidiata, F. P.; Labbozzetta, M.; Poma, P.; Carina, V.; Notarbartolo, M. Antitumor effects of curcumin and structurally β-diketone modified analogs on multidrug resistant cancer cells. Bioorganic & Medicinal Chemistry Letters 2008, 18, 845-849. 101. Jencks, W. P. Studies on the Mechanism of Oxime and Semicarbazone Formation. Journal of the American Chemical Society 1959, 81, 475-481. 102. Rovnyak, G. C.; Millonig, R. C.; Schwartz, J.; Shu, V. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4,3-c]pyrazoles and related analogs. Journal of Medicinal Chemistry 1982, 25, 1482-1488. 103. Heimlich, B. N.; Wallace, T. J. Kinetics and mechanism of the oxidation of dibenzothiophene in hydrocarbon solution. Tetrahedron 1966, 22, 3571-3579. 104. Das, U.; Doroudi, A.; Das, S.; Bandy, B.; Balzarini, J.; De Clercq, E.; Dimmock, J. R. E,E-2-Benzylidene-6-(nitrobenzylidene)cyclohexanones: Syntheses, cytotoxicity and an examination of some of their electronic, steric, and hydrophobic properties. Bioorganic & Medicinal Chemistry 2008, 16, 6261-6268. 105. Huitric, A. C.; Kumler, W. D. The Infrared and Ultraviolet Spectra, Dipole Moments and Structures of Some New 2-( a-Hydroxy-p-halobenzy1)cyclohexanones and Related Compounds. Organic and biological chemistry 1956, 78, 1147-1151. 106. Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews 2004, 104, 199-250. 216 107. Nason-Burchenal, K.; Maerz, W.; Albanell, J.; Allopenna, J.; Martin, P.; Moore, M. A.; Dmitrovsky, E. Common defects of different retinoic acid resistant promyelocytic leukemia cells are persistent telomerase activity and nuclear body disorganization. Differentiation 1997, 61, 321-311. 108. McDonnell, P. A.; Yanchunas, J.; Newitt, J. A.; Tao, L.; Kiefer, S. E.; Ortega, M.; Kut, S.; Burford, N.; Goldfarb, V.; Duke, G. J. Assessing compound binding to the Eg5 motor domain using a thermal shift assay. Analytical Biochemistry 2009, 392, 59-69. 109. Madeira, A.; Ohman, E.; Nilsson, A.; Sjogren, B.; Andren, P. E.; Svenningsson, P. Coupling surface plasmon resonance to mass spectrometry to discover novel protein-protein interactions. Nat Protoc 2009, 4, 1023-37. 110. Dorsey, B. D.; Iqbal, M.; Chatterjee, S.; Menta, E.; Bernardini, R.; Bernareggi, A.; Cassara, P. G.; Arasmo, G. D.; Ferretti, E.; De Munari, S.; Oliva, A.; Pezzoni, G.; Allievi, C.; Strepponi, I.; Ruggeri, B.; Ator, M. A.; Williams, M.; Mallamo, J. P. Discovery of a potent, selective and orally active Proteasome Inhibitor for the treatment of cancer. J. Med. Chem. 2008, 51, 1068-1072. 111. Dikshit, P.; Goswami, A.; Mishra, A.; Chatterjee, M.; Jana, N. R. Curcumin induces stress response, Neurite outgrowth and prevent NF-kB activation by inhibiting the Proteasome function. Neurotox. Res. 2006, 9, 2937. 112. Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.; Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and Identification of New 4Arylidene Curcumin Analogues as Potential Anticancer Agents Targeting Nuclear Factor-κB Signaling Pathway. Journal of Medicinal Chemistry 2010, 53, 8260-8273. 113. Sato, A.; Kudo, C.; Yamakoshi, H.; Uehara, Y.; Ohori, H.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Curcumin analog GO-Y030 is a novel inhibitor of IKKbeta that suppresses NF-kappaB signaling and induces apoptosis. Cancer science 2011, 102, 1045-51. 114. Tan, K.-L.; Koh, S.-B.; Ee, R. P.-L.; Khan, M.; Go, M.-L. Curcumin Analogues with Potent and Selective Anti-proliferative Activity on Acute Promyelocytic Leukemia: Involvement of Accumulated Misfolded Nuclear Receptor Co-repressor (N-CoR) Protein as a Basis for Selective Activity. ChemMedChem 2012, 7, 1567-1579. 115. MacManus, J. P.; Brewer, L. M.; Whitfield, J. F. The widelydistributed tumor protein, Oncomodulin, is a normal constituent of human and rodent placentas. Cancer Letters 1985, 27, 145-151. 116. Balakrishnan, M. P.; Cilenti, L.; Ambivero, C.; Goto, Y.; Takata, M.; Turkson, J.; Li, X. S.; Zervos, A. S. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death. Biochemical and Biophysical Research Communications 2011, 404, 195-200. 117. Avonto, C.; Taglialatela-Scafati, O.; Pollastro, F.; Minassi, A.; Di Marzo, V.; De Petrocellis, L.; Appendino, G. An NMR spectroscopic method to identify and classify thiol-trapping agents: revival of Michael acceptors for drug discovery? Angew Chem Int Ed Engl 2011, 50, 467-471. 118. Johansson, M. H. Reversible Michael Additions: Covalent Inhibitors and Prodrugs. Mini-Reviews in Med. Chem. 2012, 12, 1330-1344. 217 119. Chung, Y. L.; Go, M. L. Cyclohexanone, Thiopyranone and Thiopyranone Dioxide Analogs of Curcumin: Investigation of cell-based antiproliferative activity and metabolic stability. Final Year Undergraduate Report, Department of Pharmacy NUS 2013, 1-30. 120. Bhagat, S.; Sharma, R.; Chakraborti, A. Dual-activation protocol for tandem cross-aldol condensation: An easy and highly efficient synthesis of α,α′-bis(aryl/alkylmethylidene)ketones. Journal of Molecular Catalysis A: Chemical 2006, 260, 235-240. 121. Yamakoshi, H.; Ohori, H.; Kudo, C.; Sato, A.; Kanoh, N.; Ishioka, C.; Shibata, H.; Iwabuchi, Y. Structure–activity relationship of C5-curcuminoids and synthesis of their molecular probes thereof. Bioorganic & Medicinal Chemistry 2010, 18, 1083-1092. 122. Du, Z.-y.; Liu, R.-r.; Shao, W.-y.; Mao, X.-p.; Ma, L.; Gu, L.-q.; Huang, Z.-s.; Chan, A. S. C. α-Glucosidase inhibition of natural curcuminoids and curcumin analogs. European Journal of Medicinal Chemistry 2006, 41, 213-218. 123. Singh, N.; Pandey, J.; Yadav, A.; Chaturvedi, V.; Bhatnagar, S.; Gaikwad, A. N.; Sinha, S. K.; Kumar, A.; Shukla, P. K.; Tripathi, R. P. A facile synthesis of α,α′-(EE)-bis(benzylidene)-cycloalkanones and their antitubercular evaluations. European Journal of Medicinal Chemistry 2009, 44, 1705-1709. 124. Buolamwini, J. K.; Assefa, H. CoMFA and CoMSIA 3D QSAR and Docking Studies on Conformationally-Restrained cinnamoyl HIV-1 Integrase Inhibitors: Exploration of a binding mode at the active site. Journal of Medicinal Chemistry 2002, 45, 841-852. 125. Kálai, T. s.; Kuppusamy, M. L.; Balog, M. r.; Selvendiran, K.; Rivera, B. K.; Kuppusamy, P.; Hideg, K. l. n. Synthesis of N-Substituted 3,5Bis(arylidene)-4-piperidones with High Antitumor and Antioxidant Activity. Journal of Medicinal Chemistry 2011, 54, 5414-5421. 218 [...]... Lymphoblastic leukemias are categorized into L1 – L3 subtypes base on cytological features such as size, nuclear shape and amount of cytoplasm Myeloid leukemias are categorized into six main types, M1 to M6, depending on the differentiation direction and degree of maturation 1.2 Acute Promyelocytic Leukemia (APL) Acute promyelocytic leukemia (APL) accounts for 10 – 15 % of acute myeloid leukemia (AML) and is... 2-10: Reaction mechanism of asymmetric thiopyranone analogs of series IV 70 Scheme 2-11: Synthesis of selected hydroxyl-substituted benzylidene analogs, 4, 10, 22 71 Scheme 2-12: Protection of alcohols using tetrahydropyran 72 24 List of Abbreviations 13 Carbon-13 nuclear magnetic resonance 1 Proton nuclear magnetic resonance AML Acute myelogenous leukemia Anal Combustion elemental... Acid-catalyzed aldol condensation reaction (X = CH2, S) 66 Scheme 2-6: Synthesis of thiopyranone dioxides from series IV .66 Scheme 2-7: Oxidation of thiopyranone analogs to thiopyranone dioxide in the presence of peracetic acid as oxidizing agent .67 Scheme 2-8: Synthesis of asymmetrical series III and IV analogues, 202 – 205 68 Scheme 2-9: Synthesis of asymmetrical series III and IV analogues,... The aim of this thesis was to test the hypothesis that curcuminoids induce potent growth inhibitory activity on acute promyelocytic leukemia (APL) via the misfolded N-CoR pathway Six series of curcumin analogs comprising of 78 compounds were synthesized and evaluated on two APL cell lines (NB4 and NB4-R1), two leukemic non-APL cell lines (HL60 and K562) and two nonmalignant cell lines (IMR90 and MCF10A)... Keto-enol tautomers of curcumin 45 Figure 1-7: Michael acceptor motifs in curcumin 45 Figure 1-8: Curcumin analogs reported to inhibit ubiquitin isopeptidase activity 46 Figure 1-9: Examples of curcumin analogs 49 Figure 1-10: Monocarbonyl cross-conjugated dienone analogs of curcumin 50 Figure 1-11: Selected examples of C5-Bridged analogs bearing piperidinone ring ... conformational change in PML-RARα that disrupted the physical association of N-CoR and PML-RARα This would destabilize the fusion protein and cause N-CoR to refold to its native conformation Like ATRA, genistein intercepts the association between N-CoR and PML-RARα through conformational effects and in this way circumvents the transcriptional outcomes (repression of RA target genes, derepression of. .. 5th April 2011) – poster presentation  Poster presentation: Synthesis and Evaluation of Curcumin analogs targeting Nuclear Receptor Co-repressor 4 1st PharmSci@Singapore Symposium, 7th American Association for Pharmaceutical Science – Student Chapter (National University of Singapore, 6th – 7th June 2012)  Poster presentation: Synthesis and Evaluation of Curcumin analogs targeting Nuclear Receptor... who has been my source of motivation, my pillar of strength and my confidante in this journey Their continuous encouragement gave me the inspiration and strength to persevere on 12 Conferences and Publications International conferences 1 21st International Symposium for Medicinal Chemistry, EFMC/ISMC (Brussels, Belgium, 5th – 9th Sept 2010)  Poster presentation: Investigation of agents targeting Nuclear... Oral presentation - Manipulation of Nuclear Receptor Co-Repressor by Curcumin analogs in Acute Promyelocytic Leukemia  Best oral presentation award 3 RIKEN Institute Summer Camp 2011 (Tokyo and Hakone, Japan, 26th – 29th Aug 2011)  Poster presentation: Development of Small Molecule Therapeutics targeting Nuclear Receptor Co-Repressor in Acute Promyelocytic Leukemia 4 GPEN, Globalization of Pharmaceutics... increase in local concentrations of repression complexes at RA target promoters lead to transcriptional repression of RA target genes and ultimately, differentiation arrest of promyelocytic cells The role of N-CoR in APL pathogenesis is of particular relevance in this thesis and is elaborated in the following section 1.2.2 The role of N-CoR in APL pathogenesis N-CoR is a component of the generic corepressor . condensation under acidic conditions 74 2.4.5. 5-Bis-(4-fluoro-phenyl)-penta-1,4-dien-3-one oxime (27) 75 2.4.6. Syntheses of O-methyloximes of 1,5-bis-(fluorophenyl)-penta-1, 4- dien-3-ones (28 and. lines 81 3.3.2. Anti-proliferative activity of curcumin and analogs on leukemic non-APL cell lines 91 3.3.3. Anti-proliferative activity of curcumin and analogs on human non- malignant cell lines. for syntheses of 40, 41, 221 – 227 76 2.4.8. Synthesis of 2-( 3-Fluoro-benzylidene)-cyclohexanone (48) 76 2.4.9. Synthesis of ( 3-[ (3-fluorobenzylidene)dihydro-2H-thiopyran- 4(3H)-one) (49) 76 2.4.10.

Ngày đăng: 11/09/2015, 14:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan