Role and regulation of juxtanodin in actin cytoskeleton of oligodendrocyte

166 227 0
Role and regulation of juxtanodin in actin cytoskeleton of oligodendrocyte

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ROLE AND REGULATION OF JUXTANODIN IN ACTIN CYTOSKELETON OF OLIGODENDROCYTE MENG JUN NATIONAL UNIVERSITY OF SINGAPORE 2010 ROLE AND REGULATION OF JUXTANODIN IN ACTIN CYTOSKELETON OF OLIGODENDROCYTE MENG JUN (MBBS, MS, Peking University, Beijing, China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ANATOMY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgements ACKNOWLEDGEMENTS It is my great pleasure to present my deeply gratitude to the many people who made this thesis possible. First and foremost, I am extremely grateful to my Ph.D. supervisor, Associate Professor Liang Fengyi, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore. He provides good research direction, offers subjects and resources and penetrates criticism during my Ph.D. study. My sincere appreciation is to Professor Bay Boon Huat, Head of Department of Anatomy, for his constant help and encouragement. I am also very grateful to Professor Ling Eng Ang, the former Head of Department of Anatomy, for his continue encouragement and the opportunity to pursuer my Ph.D. study in NUS. My sincere acknowledgements are also devoted to those colleagues in our research group: Dr. Li Wenbo, Dr. Tran Manh Hung, Dr. Tang Junhong, Mr. Xia Wenhao, Ms. Wu Chun, Ms. Pooneh Memar Ardestani, Ms. Guo Jing and Ms. Wang Xie. The members in our group are warm-hearted and diligent. It is my great honor to work with them. I am also grateful to the administration and research officers in Department of Anatomy, for helping the department to run smoothly and for assisting me in many different ways. Mdm Ang Lye Gek Carolyne, Mdm Teo Li Ching Violet and Mdm Diljit Kour d/o Bachan Singh, Ms. Chan Yee Gek, Ms. Ng Geok Lan and Ms. Yong Eng Siang, deserve special mention. i Acknowledgements I would like to thank my friends in Singapore, especially Dr. Deng Yiyu, Dr. Jiang Boran and Dr. Feng Luo for helping me get through the difficult times, and for all the emotional support, entertainment, and caring they provided. Finally, I must always be grateful to my parents: they raise me and love me. I am deeply indebted to my wife’s love and patience; she supports our new family when I pursue my Ph.D. study. This thesis for PhD degree would be dedicated to her. ii Table of contents TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………….i TABLE OF CONTENTS ……………………………………………………… iii LIST OF TABLES AND FIGURES …………………………………………… .ix LIST OF ABBREVIATIONS ………………………………………………………xi LIST OF PUBLICATIONS ………………………………………………………xvii SUMMARY ………………………………………………………………………xviii CHAPTER INTRODUCTION……………………………………….1 1.1 Oligodendrocyte and its actin cytoskeleton……………………………………… 1.1.1 Oligodendrocyte……………………………………………………………….2 1.1.2 Actin cytoskeleton in oligodendrocyte……………………………………… .2 1.1.2.1 Cytoskeleton and its roles in oligodendrocyte…………………………….2 1.1.2.2 Actin-binding proteins in oligodendrocyte……………………………… .3 1.2 Actin cytoskeleton…………………………………………………………………5 1.2.1 Cytoskeletal elements………………………………………………………… 1.2.2 Actin……………………………………………………………………………7 1.2.3 Actin dynamics……………………………………………………………… 10 1.2.3.1 Nucleation……………………………………………………………… 11 1.2.3.2 Actin filament extension, disassembly and stabilization…………………13 1.2.4 Actin-binding proteins……………………………………………………… .14 1.2.4.1 Actin monomer binding proteins…………………………………………16 iii Table of contents 1.2.4.2 Actin filament capping proteins………………………………………….17 1.2.4.3 Actin filament severing proteins ……………………………………… .19 1.2.4.4 Actin filament bundling/crosslinking proteins………………………… .19 1.2.5 Actin-based cellular structures……………………………………………… 21 1.2.5.1 lamellipodia………………………………………………………………21 1.2.5.2 Filopodia………………………………………………………………….22 1.2.5.3 Stress fibers………………………………………………………………24 1.3 ERM proteins and Juxtanodin……………………………………………………26 1.3.1 ERM proteins…………………………………………………………………26 1.3.1.1 Structure of ERM proteins……………………………………………….26 1.3.1.2 Distribution and functions of ERM proteins…………………………… 28 1.3.1.3 Actin and membrane binding of ERM proteins………………………….29 1.3.1.4 Conformational regulation of ERM proteins…………………………… 30 1.3.1.5 Crosstalk between ERM proteins and Rho GTPases…………………….32 1.3.2 Juxtanodin…………………………………………………………………….36 1.3.2.1 Molecular character and expression of Juxtanodin………………………36 1.3.2.2 JN in myelination and specialization of the node of Ranvier……………38 1.4 The objectives of the current study………………………………………………39 CHAPTER MATERIALS AND METHODS…………………… .41 2.1 Chemicals……………………………………………………………………… .42 2.2 Oligonucleotides………………………………………………………………….42 iv Table of contents 2.3 Plasmids………………………………………………………………………….43 2.4 Cell lines………………………………………………………………………….44 2.5 Molecular biology……………………………………………………………… 46 2.5.1 Polymerase chain reaction…………………………………………………….46 2.5.2 Restriction and electrophoretic separation of DNA on agarose gels………….47 2.5.3 Ligation of DNA…………………………………………………………… .48 2.5.4 Transformation……………………………………………………………… 49 2.5.5 DNA plasmid preparation…………………………………………………….49 2.5.6 DNA sequencing…………………………………………………………… .49 2.5.7 Site-directed mutagenesis…………………………………………………… 50 2.5.8 Western blot………………………………………………………………… 51 2.6 Biochemical methods…………………………………………………………….53 2.6.1 Expression and purification of GST-tagged fusion proteins………………….53 2.6.2 Expression and purification of polyhistidine-tagged fusion proteins…………55 2.6.3 Purification of GST and GST-JN protein by gel filtration FPLC………………56 2.6.4 Buffer-exchange by cut-off centrifugal filters……………………………… .56 2.6.5 BCA protein assay…………………………………………………………….57 2.6.6 Actin filament co-sedimentation assay……………………………………… 57 2.6.7 F-actin bundling assay……………………………………………………… .60 2.6.7 Fluorescent measurement of actin assembly………………………………….60 2.7 Cellular biology………………………………………………………………… 61 2.7.1 Cultivation of cells……………………………………………………………61 v Table of contents 2.7.2 Transfection………………………………………………………………… .62 2.7.2.1 Electroporation of OLN-93 and CHO cells………………………………62 2.7.2.2 Chemical transfection of Cos1 cells with Lipofectamine……………… 62 2.7.3 Treatment of OLN-93 cells with Latrunculin A………………………………63 2.7.4 Immunocytochemistry (ICC)…………………………………………………64 2.7.5 Wound healing assay………………………………………………………….66 2.8 Statistical analysis……………………………………………………………… 68 CHAPTER RESULTS………………………………………………69 3.1 The role of Juxtanodin in actin dynamics……………………………………… 70 3.1.1 Juxtanodin specially bound F-actin………………………………………… 70 3.1.2 Juxtanodin interacted with F-actin through the last C-terminal 14 amino acid residues………………………………………………………………………71 3.1.3 Juxtanodin exhibited isoform preference of actin binding………………… .74 3.1.4 Juxtanodin had no activity of bundling or cross-linking………………… 76 3.1.5 Juxtanodin could not promote actin polymerization…………………………77 3.1.6 Juxtanodin inhibited F-actin disassembly in vitro……………………………79 3.1.7 Juxtanodin increased F-actin content of OLN-93 cells………………………81 3.1.8 Juxtanodin inhibited F-actin disassembly induced by Latrunculin A……… 84 3.2 The effect of Juxtanodin on actin-based cellular structures and behaviors………85 3.2.1 Juxtanodin promoted cellular aborization of OLN-93 cells………………….85 3.2.2 Juxtanodin promoted cell spreading of OLN-93 cells……………………… 87 vi Table of contents 3.2.3 Juxtanodin induced the formation of actin fibers of OLN-93 cells and localized along the side of actin fibers………………………………………88 3.2.4 Juxtanodin inhibited cell mobility by its C-terminal F-actin binding domain.90 3.3 The possible regulation of Juxtanodin by phosphorylation and RhoA GTPase………………………………………………………………………….93 3.3.1 Phosphorylation of T258 of Juxtanodin did not alter its influence on cellular morphology and actin cytoskeleton of OLN-93 cells………………………93 3.3.2 Phosphorylation of S278 of Juxtanodin abolished its influence on cellular morphology of OLN-93 cells……………………………………………….95 3.3.3 Phosphorylation of S278 of Juxtanodin abolished its influence on cellular actin cytoskeleton of OLN-93 cells……………………………………………….97 3.3.4 Inhibition of RhoA magnified the arborization of CHO cells induced by Juxtanodin………………………………………………………………… 99 CHAPTER DISCUSSION…………………………………………101 4.1 Binding of Juxtanodin with F-actin…………………………………………… 102 4.2 Effect of Juxtanodin on actin dynamics……………………………………… .103 4.3 The possible roles of JN in oligodendrocyte differentiation, migration, myelination and specialization of the node of Ranvier……………………… 105 4.4 Significance of regulation of Juxtanodin by phosphorylation and RhoA GTPase……………………………………………………………………… .111 4.5 Conclusions…………………………………………………………………… 115 4.6 Future studies……………………………………………………………………117 vii Table of contents REFERENCES……………………………………………………….119 viii References Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S.Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 2010 Jan;61(1):156-65. Hill CM, Harauz G. Charge effects modulate actin assembly by classic myelin basic protein isoforms. Biochem Biophys Res Commun. 2005 Apr 1;329(1):362-9. Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol. 1996 Oct;135(1):37-51. Hotulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol. 2006 May 8;173(3):383-94. Epub 2006 May 1. Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang Y, Ma W, Yin K, Wen Z, Peng J, Thisse C, Thisse B, Meng A. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development. 2007 Mar;134(5):979-88. Huang L, Wong TY, Lin RC, Furthmayr H. Replacement of threonine 558, a critical site of phosphorylation of moesin in vivo, with aspartate activates F-actin binding of moesin. Regulation by conformational change. J Biol Chem. 1999 Apr 30;274(18):12803-10. Hug C, Jay PY, Reddy I, McNally JG, Bridgman PC, Elson EL, Cooper JA. Capping protein levels influence actin assembly and cell motility in dictyostelium. Cell. 1995 May 19;81(4):591-600. Hughes SC, Fehon RG. Understanding ERM proteins--the awesome power of genetics finally brought to bear. Curr Opin Cell Biol. 2007 Feb;19(1):51-6. Hughes SC, Formstecher E, Fehon RG. Sip1, the Drosophila orthologue of EBP50/NHERF1, functions with the sterile 20 family kinase Slik to regulate Moesin activity. J Cell Sci. 2010 Apr 1;123(Pt 7):1099-107. Huxley HE. Electron Microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol. 1963 Sep;7:281-308. Jaeken L. A new list of functions of the cytoskeleton. IUBMB Life. 2007 Mar;59(3):127-33. 129 References James MF, Manchanda N, Gonzalez-Agosti C, Hartwig JH, Ramesh V. The neurofibromatosis protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem J. 2001 Jun 1;356(Pt 2):377-86. Jiang S, Avraham HK, Park SY, Kim TA, Bu X, Seng S, Avraham S.Process elongation of oligodendrocytes is promoted by the Kelch-related actin-binding protein Mayven. J Neurochem. 2005 Mar;92(5):1191-203. Jiang S, Seng S, Avraham HK, Fu Y, Avraham S. Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem. 2007 Apr 20;282(16):12319-29. Epub 2007 Feb 25. Johnson HW, Schell MJ. Neuronal IP3 3-kinase is an F-actin-bundling protein: role in dendritic targeting and regulation of spine morphology. Mol Biol Cell. 2009 Dec;20(24):5166-80. Jonasson P, Liljeqvist S, Nygren PA, Ståhl S. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem. 2002 Apr;35(Pt 2):91-105. Jontes JD, Smith SJ. Filopodia, spines, and the generation of synaptic diversity. Neuron. 2000 Jul;27(1):11-4. Kachar B, Behar T, Dubois-Dalcq M. Cell shape and motility of oligodendrocytes cultured without neurons. Cell Tissue Res. 1986;244(1):27-38. Kaelin WG Jr, Pallas DC, DeCaprio JA, Kaye FJ, Livingston DM. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell. 1991 Feb 8;64(3):521-32. Kahn RA. Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett. 2009 Dec 3;583(23):3872-9. Kahsai AW, Zhu S, Fenteany G. G protein-coupled receptor kinase activates radixin, regulating membrane protrusion and motility in epithelial cells. Biochim Biophys Acta. 2010 Feb;1803(2):300-10. Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR 3rd, Mogilner A, Zebroski H, Kashina A. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science. 2006 Jul 14;313(5784):192-6. 130 References Karpushev AV, Ilatovskaya DV, Staruschenko A. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Res Notes. 2010 Jul 27;3:210. Kazarinova-Noyes K, Shrager P. Molecular constituents of the node of Ranvier. Mol Neurobiol. 2002 Oct-Dec;26(2-3):167-82. Keilhauer G, Meier DH, Kuhlmann-Krieg S, Nieke J, Schachner M. Astrocytes support incomplete differentiation of an oligodendrocyte precursor cell. EMBO J. 1985 Oct;4(10):2499-504. Kim CH, Won M, Choi CH, Ahn J, Kim BK, Song KB, Kang CM, Chung KS. Increase of RhoB in gamma-radiation-induced apoptosis is regulated by c-Jun N-terminal kinase in Jurkat T cells. Biochem Biophys Res Commun. 2010 Jan 8;391(2):1182-6. Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP, Vartanian TK. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci. 2006 May 24;26(21):5849-59. Kim HS, Bae CD, Park J. Glutamate receptor-mediated phosphorylation of Ezrin/Radixin/Moesin proteins is implicated in filopodial protrusion of primary cultured hippocampal neuronal cells. J Neurochem. 2010 Mar 29. Kim JH, Cho A, Yin H, Schafer DA, Mouneimne G, Simpson KJ, Nguyen KV, Brugge JS, Montell DJ. Psidin, a conserved protein that regulates protrusion dynamics and cell migration. Genes Dev. 2011 Apr 1;25(7):730-41. Kippert A, Fitzner D, Helenius J, Simons M. Actomyosin contractility controls cell surface area of oligodendrocytes. BMC Cell Biol. 2009 Sep 25;10:71. Kippert A, Trajkovic K, Rajendran L, Ries J, Simons M. Rho regulates membrane transport in the endocytic pathway to control plasma membrane specialization in oligodendroglial cells. J Neurosci. 2007 Mar 28;27(13):3560-70. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci. 2006 Dec;9(12):1506-11. Klein MG, Shi W, Ramagopal U, Tseng Y, Wirtz D, Kovar DR, Staiger CJ, Almo SC. Structure of the actin crosslinking core of fimbrin. Structure. 2004 Jun;12(6):999-1013. 131 References Kobayashi T, Inoue T, Shimizu Y, Terada N, Maeno A, Kajita Y, Yamasaki T, Kamba T, Toda Y, Mikami Y, Yamada T, Kamoto T, Ogawa O, Nakamura E. Activation of Rac1 is closely related to androgen-independent cell proliferation of prostate cancer cells both in vitro and in vivo. Mol Endocrinol. 2010 Apr;24(4):722-34. Koh CG. Rho GTPases and their regulators in neuronal functions and development. Neurosignals. 2006-2007;15(5):228-37. Epub 2007 Apr 4. Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S. ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol. 1997 Nov 3;139(3):749-58. Korotchkina LG, Patel MS. Probing the mechanism of inactivation of human pyruvate dehydrogenase by phosphorylation of three sites. J Biol Chem. 2001 Feb 23;276(8):5731-8. Koticha D, Maurel P, Zanazzi G, Kane-Goldsmith N, Basak S, Babiarz J, Salzer J, Grumet M. Neurofascin interactions play a critical role in clustering sodium channels, ankyrin G and beta IV spectrin at peripheral nodes of Ranvier. Dev Biol. 2006 May 1;293(1):1-12. Krall R, Sun J, Pederson KJ, Barbieri JT. In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun. 2002 Jan;70(1):360-7. Kueh HY, Charras GT, Mitchison TJ, Brieher WM. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J Cell Biol. 2008 Jul 28;182(2):341-53. Kuhn TB, Bamburg JR. Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol. 2008;644:232-49. Kuo E, Park DK, Tzvetanova ID, Leiton CV, Cho BS, Colognato H.Tyrosine phosphatases Shp1 and Shp2 have unique and opposing roles in oligodendrocyte development. J Neurochem. 2010 Apr;113(1):200-12. Kuriu T, Inoue A, Bito H, Sobue K, Okabe S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci. 2006 Jul 19;26(29):7693-706. Kwiatkowski DJ. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol. 1999 Feb;11(1):103-8. 132 References Lai FP, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TE, Dunn GA, Small JV, Rottner K. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 2008 Apr 9;27(7):982-92. Laine RO, Phaneuf KL, Cunningham CC, Kwiatkowski D, Azuma T, Southwick FS. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect Immun. 1998 Aug;66(8):3775-82. Lamb RF, Ozanne BW, Roy C, McGarry L, Stipp C, Mangeat P, Jay DG. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr Biol. 1997 Sep 1;7(9):682-8. Lamprianou S, Harroch S. Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system. J Mol Neurosci. 2006;29(3):241-55. Langer BG, Pepe FA. New, rapid methods for purifying alpha-actinin from chicken gizzard and chicken pectoral muscle. J Biol Chem. 1980 Jun 10;255(11):5429-34. Lankes W, Griesmacher A, Grünwald J, Schwartz-Albiez R, Keller R. A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem J. 1988 May 1;251(3):831-42. Lara MV, Drincovich MF, Müller GL, Maurino VG, Andreo CS. NADP-malic enzyme and Hsp70: co-purification of both proteins and modification of NADP-malic enzyme properties by association with Hsp70. Plant Cell Physiol. 2005 Jun;46(6):997-1006. Lee J, Gravel M, Zhang R, Thibault P, Braun PE.Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol. 2005 Aug 15;170(4):661-73. Lee MT, Mishra A, Lambright DG. Structural mechanisms for regulation of membrane traffic by rab GTPases. Traffic.2009 Oct;10(10):1377-89. Levesque IR, Giacomini PS, Narayanan S, Ribeiro LT, Sled JG, Arnold DL, Pike GB. Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn Reson Med. 2010 Mar;63(3):633-40. Lin M, Unden H, Jacquier N, Schneiter R, Just U, Höfken T. The Cdc42 effectors Ste20, Cla4, and Skm1 down-regulate the expression of genes involved in sterol uptake by a mitogen-activated protein kinase-independent pathway. Mol Biol Cell. 2009 Nov;20(22):4826-37. 133 References Lin YC, Redmond L. CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15791-6. Litman P, Amieva MR, Furthmayr H. Imaging of dynamic changes of the actin cytoskeleton in microextensions of live NIH3T3 cells with a GFP fusion of the F-actin binding domain of moesin. BMC Cell Biol. 2000;1:1. Liu Z, Vong QP, Zheng Y. CLASPing microtubules at the trans-Golgi network. Dev Cell. 2007 Jun;12(6):839-40. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature. 1999 Oct 7;401(6753):613-6. Lua BL, Low BC. Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett. 2005 Jan 31;579(3):577-85. Luciano BS, Hsu S, Channavajhala PL, Lin LL, Cuozzo JW. Phosphorylation of threonine 290 in the activation loop of Tpl2/Cot is necessary but not sufficient for kinase activity. J Biol Chem. 2004 Dec 10;279(50):52117-23. Machesky LM. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 2008 Jun 18;582(14):2102-11. Machesky LM. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 2008 Jun 18;582(14):2102-11. Mallik R, Gross SP. Molecular motors: strategies to get along. Curr Biol. 2004 Nov 23;14(22):R971-82. Mangeat P, Roy C, Martin M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 1999 May;9(5):187-92. Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol. 1997 Mar;17(3):1129-43. Martin M, Roy C, Montcourrier P, Sahuquet A, Mangeat P. Three determinants in ezrin are responsible for cell extension activity. Mol Biol Cell. 1997 Aug;8(8):1543-57. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol. 1998 Feb 9;140(3):647-57. 134 References Matsui T, Yonemura S, Tsukita S, Tsukita S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol. 1999 Nov 4;9(21):1259-62. Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008 Jun;9(6):446-54. McClatchey AI, Fehon RG. Merlin and the ERM proteins--regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol. 2009 May;19(5):198-206. McLean BG, Huang SR, McKinney EC, Meagher RB. Plants contain highly divergent actin isovariants. Cell Motil Cytoskeleton. 1990;17(4):276-90. McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem. 2008 Oct;107(1):1-19. Epub 2008 Jul 15. Melendez-Vasquez CV, Rios JC, Zanazzi G, Lambert S, Bretscher A, Salzer JL. Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1235-40. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005 Jun;8(6):745-51. Michelot A, Berro J, Guérin C, Boujemaa-Paterski R, Staiger CJ, Martiel JL, Blanchoin L. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr Biol. 2007 May 15;17(10):825-33. Michelot A, Derivery E, Paterski-Boujemaa R, Guérin C, Huang S, Parcy F, Staiger CJ, Blanchoin L. A novel mechanism for the formation of actin-filament bundles by a nonprocessive formin. Curr Biol. 2006 Oct 10;16(19):1924-30. Mithen FA, Wood PM, Agrawal HC, Bunge RP. Immunohistochemical study of myelin sheaths formed by oligodendrocytes interacting with dissociated dorsal root ganglion neurons in culture. Brain Res. 1983 Feb 28;262(1):63-9. Miyamoto Y, Yamauchi J, Tanoue A. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci. 2008 Aug 13;28(33):8326-37. Moriyama K, Yahara I. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci. 2002 Apr 15;115(Pt 8):1591-601. 135 References Morton WM, Ayscough KR, McLaughlin PJ. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol. 2000 Jun;2(6):376-8. Murakami M, Ide C, Kanaya H. Regeneration in the rat optic nerve after cold injury. J Neurosurg. 1989 Aug;71(2):254-65. Murray JW, Edmonds BT, Liu G, Condeelis J. Bundling of actin filaments by elongation factor alpha inhibits polymerization at filament ends. J Cell Biol. 1996 Dec;135(5):1309-21. Nakamura F, Amieva MR, Furthmayr H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J Biol Chem. 1995 Dec 29;270(52):31377-85. Nakamura F, Huang L, Pestonjamasp K, Luna EJ, Furthmayr H. Rulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. Mol Biol Cell. 1999 Aug;10(8):2669-85. Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010 Apr;11(4):275-83. Niggli V, Andréoli C, Roy C, Mangeat P. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett. 1995 Dec 4;376(3):172-6. Okada K, Obinata T, Abe H. XAIP1: a Xenopus homologue of yeast actin interacting protein (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J Cell Sci. 1999 May;112 ( Pt 10):1553-65. Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol. 2007;258:1-82. Orlinick JR, Chao MV. Interactions of cellular polypeptides with the cytoplasmic domain of the mouse Fas antigen. J Biol Chem. 1996 Apr 12;271(15):8627-32. Oser M, Condeelis J. The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem. 2009 Dec 15;108(6):1252-62. Otto JJ. Actin-bundling proteins. Curr Opin Cell Biol. 1994 Feb;6(1):105-9. Paavilainen VO, Bertling E, Falck S, Lappalainen P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol. 2004 Jul;14(7):386-94. 136 References Paglini G, Kunda P, Quiroga S, Kosik K, Cáceres A. Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons. J Cell Biol. 1998 Oct 19;143(2):443-55. Paintlia AS, Paintlia MK, Singh AK, Singh I. Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis. Mol Pharmacol. 2008 May;73(5):1381-93. Palmgren S, Vartiainen M, Lappalainen P. Twinfilin, a molecular mailman for actin monomers. J Cell Sci. 2002 Mar 1;115(Pt 5):881-6. Pantaloni D, Le Clainche C, Carlier MF. Mechanism of actin-based motility. Science. 2001 May 25;292(5521):1502-6. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci. 2009 Nov 4;29(44):13971-80. Pearson MA, Reczek D, Bretscher A, Karplus PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 2000 Apr 28;101(3):259-70. Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci. 2007 Oct 15;120(Pt 20):3491-9. Persson A, Lindwall C, Curtis MA, Kuhn HG. Expression of ezrin radixin moesin proteins in the adult subventricular zone and the rostral migratory stream. Neuroscience. 2010 May 5;167(2):312-22. Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15406-11. Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 1993 Jun;3(6):191-7. Piaton G, Gould RM, Lubetzki C. Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem. 2010 May 26. Pietromonaco SF, Simons PC, Altman A, Elias L. Protein kinase C-theta phosphorylation of moesin in the actin-binding sequence. J Biol Chem. 1998 Mar 27;273(13):7594-603. Pollard TD. Cellular motility powered by actin filament assembly and disassembly. Harvey Lect. 2002-2003;98:1-17. 137 References Pollard TD, Beltzner CC. Structure and function of the Arp2/3 complex. Curr Opin Struct Biol. 2002 Dec;12(6):768-74. Pollard TD, Blanchoin L, Mullins RD. Actin dynamics. J Cell Sci. 2001 Jan;114(Pt 1):3-4. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003 Feb 21;112(4):453-65. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451-77. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C. Role of formins in actin assembly: nucleation and barbed-end association. Science. 2002 Jul 26;297(5581):612-5. Pucadyil TJ, Schmid SL. Conserved functions of membrane active GTPases in coated vesicle formation. Science. 2009 Sep 4;325(5945):1217-20. Qualmann B, Kessels MM. Endocytosis and the cytoskeleton. Int Rev Cytol. 2002;220:93-144. Quinlan MP. Vinculin, VASP, and profilin are coordinately regulated during actin remodeling in epithelial cells, which requires de novo protein synthesis and protein kinase signal transduction pathways. J Cell Physiol. 2004 Aug;200(2):277-90. Raman N, Atkinson SJ. Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery. Am J Physiol. 1999 Jun;276(6 Pt 1):C1312-24. Ramesh V. Merlin and the ERM proteins in Schwann cells, neurons and growth cones. Nat Rev Neurosci. 2004 Jun;5(6):462-70. Ren XD, Schwartz MA. Regulation of inositol lipid kinases by Rho and Rac. Curr Opin Genet Dev. 1998 Feb;8(1):63-7. Rice RV, Moses JA, McManus GM, Brady AC, Blasik LM. The organization of contractile filaments in a mammalian smooth muscle. J Cell Biol. 1970 Oct;47(1):183-96. Richter-Landsberg C, Heinrich M. OLN-93: a new permanent oligodendroglia cell line derived from primary rat brain glial cultures. J Neurosci Res. 1996 Jul 15;45(2):161-73. 138 References Richter-Landsberg C. The oligodendroglia cytoskeleton in health and disease. J Neurosci Res. 2000; 59(1):11-8. Rooney C, White G, Nazgiewicz A, Woodcock SA, Anderson KI, Ballestrem C, Malliri A. The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly. EMBO Rep. 2010 Apr;11(4):292-8. Rosenberg SS, Ng BK, Chan JR. The quest for remyelination: a new role for neurotrophins and their receptors. Brain Pathol. 2006 Oct;16(4):288-94. Roy C, Martin M, Mangeat P. A dual involvement of the amino-terminal domain of ezrin in F- and G-actin binding. J Biol Chem. 1997; 272(32):20088-95. Rubenstein PA, Martin DJ. NH2-terminal processing of actin in mouse L-cells in vivo. J Biol Chem. 1983 Mar 25;258(6):3961-6. Rumsby M, Afsari F, Stark M, Hughson E. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Glia. 2003 Apr 15;42(2):118-29. Rybakova IN, Ervasti JM. Dystrophin-glycoprotein complex is monomeric and stabilizes actin filaments in vitro through a lateral association. J Biol Chem. 1997 Nov 7;272(45):28771-8. Schafer DA, Jennings PB, Cooper JA. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol. 1996 Oct;135(1):169-79. Schafer DA, Schroer TA. Actin-related proteins. Annu Rev Cell Dev Biol. 1999;15:341-63. Scherer SS, Arroyo EJ. Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst. 2002 Mar;7(1):1-12. Scherer SS, Xu T, Crino P, Arroyo EJ, Gutmann DH. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J Neurosci Res. 2001 Jul 15;65(2):150-64. Schmoller KM, Lieleg O, Bausch AR. Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks. Biophys J. 2009 Jul 8;97(1):83-9. Schnaar RL, Lopez PH. Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res. 2009 Nov 15;87(15):3267-76. 139 References Schüler H. ATPase activity and conformational changes in the regulation of actin. Biochim Biophys Acta. 2001 Oct 18;1549(2):137-47. Schulz R, Vogel T, Mashima T, Tsuruo T, Krieglstein K. Involvement of Fractin in TGF-beta-induced apoptosis in oligodendroglial progenitor cells. Glia. 2009 Nov 15;57(15):1619-29. Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810-6. Seiwa C, Kojima-Aikawa K, Matsumoto I, Asou H. CNS myelinogenesis in vitro: myelin basic protein deficient shiverer oligodendrocytes. J Neurosci Res. 2002 Aug 1;69(3):305-17. Sepsenwol S, Ris H, Roberts TM. A unique cytoskeleton associated with crawling in the amoeboid sperm of the nematode, Ascaris suum. J Cell Biol. 1989 Jan;108(1):55-66. Shaw RJ, Henry M, Solomon F, Jacks T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol Biol Cell. 1998 Feb;9(2):403-19. Sher F, Balasubramaniyan V, Boddeke E, Copray S. Oligodendrocyte differentiation and implantation: new insights for remyelinating cell therapy. Curr Opin Neurol. 2008 Oct;21(5):607-14. Sheterline P, Clayton J, Sparrow J. Actin. Protein Profile. 1995;2(1):1-103. Shin H, Purdy Drew KR, Bartles JR, Wong GC, Grason GM. Cooperativity and frustration in protein-mediated parallel actin bundles. Phys Rev Lett. 2009 Dec 4;103(23):238102. Shu H, Chen S, Bi Q, Mumby M, Brekken DL. Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line. Mol Cell Proteomics. 2004 Mar;3(3):279-86. Simons PC, Pietromonaco SF, Reczek D, Bretscher A, Elias L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun. 1998 Dec 30;253(3):561-5. Simpson PB, Armstrong RC.Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia. 1999 Mar;26(1):22-35. 140 References Singh SV, Leal T, Ansari GA, Awasthi YC. Purification and characterization of glutathione S-transferases of human kidney. Biochem J. 1987 Aug 15;246(1):179-86. Sjöblom B, Salmazo A, Djinović-Carugo K. Alpha-actinin structure and regulation. Cell Mol Life Sci. 2008 Sep;65(17):2688-701. Sloane JA, Vartanian TK. Myosin Va controls oligodendrocyte morphogenesis and myelination. J Neurosci. 2007 Oct 17;27(42):11366-75. Sloane JA, Vartanian TK. WAVE1 and regulation of actin nucleation in myelination. Neuroscientist. 2007 Oct;13(5):486-91. Small JV. Organisations of actin and fibroblast locomotion. Prog Clin Biol Res. 1982;85 Pt B:341-58. Song J, Goetz BD, Baas PW, Duncan ID. Cytoskeletal reorganization during the formation of oligodendrocyte processes and branches. Mol Cell Neurosci. 2001; 17(4):624-36. Spector I, Shochet NR, Kashman Y, Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983 Feb 4;219(4584):493-5. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25. Stewart DG, Davis KL. Possible contributions of myelin and oligodendrocyte dysfunction to schizophrenia. Int Rev Neurobiol. 2004;59:381-424. Stradal TE, Scita G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol. 2006 Feb;18(1):4-10. Suetsugu S, Miki H, Takenawa T. Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell Motil Cytoskeleton. 2002 Mar;51(3):113-22. Sun HQ, Kwiatkowska K, Yin HL. Actin monomer binding proteins. Curr Opin Cell Biol. 1995 Feb;7(1):102-10. Susuki K, Rasband MN. Molecular mechanisms of node of Ranvier formation. Curr Opin Cell Biol. 2008 Dec;20(6):616-23. Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin 141 References initiates the activation of the Rho small G protein. J Biol Chem. 1997 Sep 12;272(37):23371-5. Takesono A, Heasman SJ, Wojciak-Stothard B, Garg R, Ridley AJ. Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One. 2010 Jan 19;5(1):e8774. Tanaka J, Sobue K. Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells. J Neurosci. 1994 Mar;14(3 Pt 1):1038-52. Tang J, Tang J, Ling EA, Wu Y, Liang F. Juxtanodin in the rat olfactory epithelium: specific expression in sustentacular cells and preferential subcellular positioning at the apical junctional belt. Neuroscience. 2009 Jun 16;161(1):249-58. Tapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol. 1997 Feb;9(1):86-92. Thurnherr T, Benninger Y, Wu X, Chrostek A, Krause SM, Nave KA, Franklin RJ, Brakebusch C, Suter U, Relvas JB. Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci. 2006 Oct 4;26(40):10110-9. Trapp BD, Kidd GJ, Hauer P, Mulrenin E, Haney CA, Andrews SB. Polarization of myelinating Schwann cell surface membranes: role of microtubules and the trans-Golgi network. J Neurosci. 1995 Mar;15(3 Pt 1):1797-807. Tsukita S, Hieda Y, Tsukita S. A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol. 1989 Jun;108(6):2369-82. Tsukita S, Yonemura S, Tsukita S. ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci. 1997 Feb;22(2):53-8. Turunen O, Wahlström T, Vaheri A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol. 1994 Sep;126(6):1445-53. Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008 Sep;87(8-9):649-67. Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol. 1978 Dec 25;126(4):783-802. 142 References Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H. Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics. 2007 Jan;6(1):114-24. Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG. Role of fascin in filopodial protrusion. J Cell Biol. 2006 Sep 11;174(6):863-75. Vitale N. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochem Soc Trans. 2010 Feb;38(Pt 1):167-71. Wahlström G, Vartiainen M, Yamamoto L, Mattila PK, Lappalainen P, Heino TI. Twinfilin is required for actin-dependent developmental processes in Drosophila. J Cell Biol. 2001 Nov 26;155(5):787-96. Wang H, Guo Z, Wu F, Long F, Cao X, Liu B, Zhu Z, Yao X. PKA-mediated protein phosphorylation protects ezrin from calpain I cleavage. Biochem Biophys Res Commun. 2005 Jul 29;333(2):496-501. Wang H, Tewari A, Einheber S, Salzer JL, Melendez-Vasquez CV. Myosin II has distinct functions in PNS and CNS myelin sheath formation. J Cell Biol. 2008 Sep 22;182(6):1171-84. Webb BA, Zhou S, Eves R, Shen L, Jia L, Mak AS. Phosphorylation of cortactin by p21-activated kinase. Arch Biochem Biophys. 2006 Dec 15;456(2):183-93. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139-50. Westphal M, Jungbluth A, Heidecker M, Mühlbauer B, Heizer C, Schwartz JM, Marriott G, Gerisch G. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol. 1997 Mar 1;7(3):176-83. Williams SK, Spence HJ, Rodgers RR, Ozanne BW, Fitzgerald U, Barnett SC.Role of Mayven, a kelch-related protein in oligodendrocyte process formation. J Neurosci Res. 2005 Sep 1;81(5):622-31. Wilson R, Brophy PJ. Role for the oligodendrocyte cytoskeleton in myelination. J Neurosci Res. 1989 Apr;22(4):439-48. Winder SJ. Structural insights into actin-binding, branching and bundling proteins. Curr Opin Cell Biol. 2003; 15(1):14-22. 143 References Witke W. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 2004 Aug;14(8):461-9. Yamauchi J, Chan JR, Shooter EM. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8774-9. Yang HS, Hinds PW. Increased ezrin expression and activation by CDK5 coincident with acquisition of the senescent phenotype. Mol Cell. 2003 May;11(5):1163-76. Yao X, Chaponnier C, Gabbiani G, Forte JG. Polarized distribution of actin isoforms in gastric parietal cells.Mol Biol Cell. 1995 May;6(5):541-57. Yao X, Cheng L, Forte JG. Biochemical characterization of ezrin-actin interaction. J Biol Chem. 1996 Mar 22;271(12):7224-9. Yarmola EG, Somasundaram T, Boring TA, Spector I, Bubb MR. Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. J Biol Chem. 2000 Sep 8;275(36):28120-7. Yonemura S, Tsukita S, Tsukita S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol. 1999 Jun 28;145(7):1497-509. Zhang B, Cao Q, Guo A, Chu H, Chan YG, Buschdorf JP, Low BC, Ling EA, Liang F. Juxtanodin: an oligodendroglial protein that promotes cellular arborization and 2',3'-cyclic nucleotide-3'-phosphodiesterase trafficking. Proc Natl Acad Sci U S A. 2005; 102(32):11527-32. Zheng JQ, Wan JJ, Poo MM. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci. 1996 Feb 1;16(3):1140-9. Zigmond SH, Evangelista M, Boone C, Yang C, Dar AC, Sicheri F, Forkey J, Pring M. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol. 2003 Oct 14;13(20):1820-3. 144 [...]... hydrolyzed by the intrinsic ATPase activity of actin and the ADP -actin favors to dissociation from the pointed end of actin filaments, resulting in their disassembling The actin- depolymerizing factor (ADF) and the members of cofilin family play a critical role in actin filaments disassembling These ubiquitous and highly conserved proteins bind to ADP–F -actin and drive the dissociation of ADP -actin from filaments... directly interact with actin and this interaction was mediated by the C-terminal F -actin binding domain, which comprised the last 14 amino acid of JN Studies on the role of JN in actin dynamics showed that it could prevent F -actin depolymerization in vivo and in vitro, suggesting that JN was possibly involved in the F -actin based structures and behaviors of oligodendrocyte As expected, JN over-expression in. .. side of actin fibers 90 Figure 3.13 Juxtanodin inhibited cell migration through its C-terminal F -actin domain 92 Figure 3.14 Effect of T258 phosphorylaiton of Juxtanodin on cellular morphology and actin cytoskeleton of OLN-93 cells 94 Figure 3.15 Effect of S278 phosphorylaiton of Juxtanodin on morphology of OLN-93 cells 96 Figure 3.16 Effect of S278 phosphorylaiton of Juxtanodin on cellular actin cytoskeleton. .. functioning as a binding site for some actin- binding proteins (Dominguez, 2004) Actin can undergo conformational changes depending on the interaction with nucleotide, cations and actin- binding proteins and its polymerization state (Schüler et al., 2001) In the ATP-bound form, the conformation of actin confers its high affinity with other actin molecules which induces the self-association into two tightly intertwined... action of their severing actin filaments will be detailed discussed in the following section of Actin- binding proteins: actin filament severing proteins’ 12 Introduction 1.2.3.2 Actin filament extension, disassembly and stabilization Upon nucleated, actin filaments extend rapidly through addition of ATP–G -actin at the barded end The extension of filamentous actin is controlled partly by capping proteins... cytoskeleton of OLN-93 cells 98 Figure 3.17 Inhibition of RhoA magnified the arborization of OLN-93 cells induced by Juxtanodin x 100 List of abbreviations LIST OF ABBREVIATIONS aa amino acid Ab antibody ABC avidin-biotin conjugate ABPs actin- binding proteins ADF actin- depolymerizing factor AIP-1 actin- interacting protein 1 ALS amyotrophic lateral sclerosis AP alkaline phosphate Arp actin related protein BCA... capable of antagonizing gelsolin- and ADF/cofilin-mediated depolymerization by competitive binding to actin filaments (Kuhn et al., 2008) 1.2.4 Actin- binding proteins As mentioned in the above sections, actin dynamics in cells is precisely regulated by many actin- binding proteins, whose activities are under the spatiotemporal control of different signaling pathways Many actin- binding proteins are ubiquitously... pathfinding and epithelial folding, was also generated by the actin cytoskeleton (Pollard and Borisy, 2003; Pantaloni et al., 2001) Actin is present in two different forms: one is the monomeric globular actin (G -actin) and the other is the assembled filamentous actin (F -actin) Actin monomer consists of 375 amino acids in the proteins size of approximate 43 kDa (kilodalton) It comprises of two domains,... figures Figure 3.8 Juxtanodin increased F -actin content of OLN-93 cells 82 Figure 3.9 The effect of Juxtanodin in antagonizing F -actin disassembly of OLN93 cells induced by Latrunculin A 85 Figure 3.10 The effect of JN on arborization of OLN93 cells 86 Figure 3.11 The effect of JN on cell spreading of OLN93 cells 87 Figure 3.12 Juxtanodin induced the formation of actin fibers of OLN-93 cells and localized... different actin genes coding for at least 6 actin isoforms were found (McLean et al., 1990) Mammals have at least six actin coding genes, which are divided into three groups: α- β- and γ-actins The isoforms are present in cell-type and tissue specific manner Four isoforms of α -actin are predominantly expressed in muscle cells and the less acidic β- and γ -actin are mainly found in non-muscle cells (Vandekerckhove . ROLE AND REGULATION OF JUXTANODIN IN ACTIN CYTOSKELETON OF OLIGODENDROCYTE MENG JUN NATIONAL UNIVERSITY OF SINGAPORE 2010 ROLE AND REGULATION OF JUXTANODIN. actin- binding proteins ADF actin- depolymerizing factor AIP-1 actin- interacting protein 1 ALS amyotrophic lateral sclerosis AP alkaline phosphate Arp actin related protein BCA bicinchoninic. 3.1.6 Juxtanodin inhibited F -actin disassembly in vitro……………………………79 3.1.7 Juxtanodin increased F -actin content of OLN-93 cells………………………81 3.1.8 Juxtanodin inhibited F -actin disassembly induced

Ngày đăng: 11/09/2015, 10:18

Tài liệu cùng người dùng

Tài liệu liên quan