Probing protein dynamics and protein protein interaction by NMR spectroscopy

151 159 0
Probing protein dynamics and protein protein interaction by NMR spectroscopy

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

PROBING PROTEIN DYNAMICS AND PROTEINPROTEIN INTERACTION BY NMR SPECTROSCOPY SUI XIAOGANG A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2010 Dedicated to the fond Memories of my late grandmother ACKNOWLEDGEMENTS I would first like to express my deep gratitude to my adviser, Dr. Yang Daiwen. His sustained support, kindness and dedication as research adviser and enthusiastic teacher, have guided and helped me through my Ph.D. studies. I would like to thank the committee members: Dr. Song Jianxing and Dr. Jaenicke Stephan, for their help and useful suggestions. I am sincerely grateful to all the co-workers whom I had worked with over the years in Yang’s group, for always being helpful and for making the lab a pleasant and inspiring workplace. I will be forever grateful to my families. Without their unending and untiring support, I cannot even start this thesis. Finally, the research scholarship provided by NUS is gratefully acknowledged. I TABLE OF CONTENTS ACKNOWLEDGEMENTS I  TABLE OF CONTENTS . II  LIST OF ABBREVIATIONS V  LIST OF TABLES . VII  LIST OF FIGURES . VIII  SUMMARY . XI  CHAPTER 1  GENERAL INTRODUCTION 1  1.1  History of NMR . 3  1.2  Basics of NMR . 5  1.2.1  Basic Theory 5  1.2.2  Relaxation Theory 7  1.2.2.1  Equation of Motion . 7  1.2.2.2  Semiclassical Relaxation Theory 8  1.2.3  1.2.3.1  1.2.4  Relaxation Mechanisms . 16  Intramolecular Dipole-Dipole Interaction . 16  Expressions for Spectral Densities . 18  1.2.4.1  Auto-correlated Dipolar(ij) Interaction . 18  1.2.4.2  Cross-correlated Dipole(ij)-Dipole(kl) Interaction . 18  1.2.5  Order Parameter . 20  1.2.5.1  Lipari and Szabo Approach 20  1.2.5.2  Order Parameter 22  II 1.3  Outlines of the thesis 23  CHAPTER 2  PROBING PROTEIN SIDE-CHAIN DYNAMICS . 24  2.1  Introduction 24  2.1.1  Backbone Dynamics and Side-Chain Dynamics . 25  2.1.2  Review of Protein Side-Chain Dynamics Studies . 27  2.1.3  Huntingtin Interaction Protein 32  2.2   2.2.1  Materials and Methods . 35  NMR Spectroscopy 35  2.2.1.1  Experiments 35  2.2.1.2  Data Procession . 36  2.2.1.3  Assignment of HIP2 Side-chain Methyl Groups 36  2.2.2  Extraction of Dynamics Parameters from Relaxation Data . 38  2.2.2.1  13 2.2.2.2  Spectral Density Function . 39  2.2.2.3  Rationality of S2 Calculation . 40  2.3  C Relaxation Data: R1 and Γ 38  Results and Discussion 43  2.3.1  Measurement of 13C Spin-Lattice Relaxation Rate 43  2.3.2  Measurement of Methyl Dipole-Dipole Cross-Correlated Relaxation Rate 47  2.3.3  Extraction of Dynamic Parameters 56  2.3.4  Application to HIP2 protein . 60  2.4  Conclusion . 70  CHAPTER 3  PROTEIN INTERFACE MAPPING 72  3.1  3.1.1  Introduction 72  Review of NMR Mapping Approaches . 74  III 3.1.2  Hemoglobin 76  3.1.3  Distance Driven Docking . 79  3.2  Materials and Methods . 80  3.2.1  3.2.1.1  NMR Spectroscopy 80  Data Procession . 80  3.2.2  Initial Relaxation Rate Measurement . 81  3.2.3  Derivation of the Relaxation Equation 83  3.2.4  Effective Distance Measurement . 85  3.2.5  Docking Study . 89  3.3  Results and Discussion 91  3.3.1  Initial Relaxation Rate Results . 91  3.3.2  Effective Distance Results . 95  3.3.3  Docking Results . 99  3.4  3.3.3.1  Hb A Dimer . 99  3.3.3.2  Hb A Tetramer 99  Conclusion . 106  CHAPTER 4  CONCLUSIONS AND FUTURE DIRECTIONS 107  4.1  Conclusions 107  4.2  Future Directions . 109  APPENDIX . 110  Appendix . 111  Appendix . 113  REFERENCE . 114  IV LIST OF ABBREVIATIONS This is a list of abbreviations in alphabetical order, to serve as a quick reference. AIRs Ambiguous Interaction Restraints ASA Accessible Surface Area BMR Bloch–Wangsness–Redfield Theory Da (kDa) Dalton (Kilodalton) DD Dipole-Dipole DR initial relaxation Rate Differences E1(s) Ubiquitin Activating Enzyme(s) E2(s) Ubiquitin Conjugating Enzyme(s) E3(s) Ubiquitin Ligase Enzyme(s) FID Free Induction Decay FT Fourier Transform HADDOCK High Ambiguity Driven biomolecular DOCKing HIP2 Huntingtin interaction protein V Hb A Human Adult Hemoglobin LS Lipari and Szabo NMR Nuclear Magnetic Resonance NOE nuclear Overhauser effect RF Radio Frequency UB/UBL Ubiquitin/Ubquitin-Like Protein VI LIST OF TABLES Table 2-1 Dynamics parameters of methyl groups in ubiquitin derived from spinlattice relaxation time T1 and dipole-dipole cross-correlated relaxation Γ . 55  Table 2-2 Dynamics parameters of methyl groups in HIP2 derived from spin-lattice relaxation time T1 and dipole-dipole cross-correlated relaxation Γ 65  Table 3-1 Effective distances (reff) of -chain of Hb A estimated from amide relaxation rates R1 and calculated from the R2 structure of Hb 98  Table 3-2 Hb A data to generate ambiguous interaction restraints (AIRs) 101  VII LIST OF FIGURES Figure 1-1 Redfield kite. 13  Figure 2-1 Sequence and secondary structure of HIP2 (PDB Code: 1YLA) 34  Figure 2-2 Contour plot of errors (in percentage) in the measured 13C{1H} NOE values as a function of τe and S2axis for methyl groups in a uniformly 13Clabeled protein . 42  Figure 2-3 Pulse sequence for the measurement of 13C T1 of methyl groups in uniformly 13C-labeled proteins 45  Figure 2-4 Contour plots of errors (in percentage) in the measured 13C R1 values as a function of τe and S2axis for methyl groups in a uniformly 13C-labeled protein with an overall correlation time of ns (a) or 15 ns (b) . 46  Figure 2-5 Pulse scheme for the measurement of dipole-dipole cross-correlated relaxation in methyl groups of uniformly 13C, 15N-labeled proteins . 48  Figure 2-6 Comparison of the values of X=1+x calculated from Equation 2-14 (•) and those estimated from Equation 2-15 and 2-16 (solid line, -) 51  Figure 2-7 Time dependence of the relative peak intensities of a number of representative methyl groups in ubiquitin . 54  Figure 2-8 Comparison of order parameters Saxis2 determined from 13C T1s and methyl dipole-dipole cross-correlated relaxation rates versus the values determined from 2H relaxation times T1 and T2 58  VIII Ernst, R. R. and W. A. Anderson (1966). "Application of Fourier transform spectroscopy to magnetic resonance." Review of Scientific Instruments 37(1): 93-102. Ernst, R. R., G. Bodenhausen and A. Wokaun (1987). "Principles of Nuclear Magnetic Resonance in One and Two Dimensions.” London, Oxford Science Publication. Farrow, N. A., R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. Shoelson, T. Pawson, J. D. Forman-Kay and L. E. Kay (1994). "Backbone Dynamics of a Free and a Phosphopeptide-Complexed Src Homology Domain Studied by 15N NMR Relaxation." Biochemistry 33(19): 5984-6003. Fields, S. and O. Song (1989). "A novel genetic system to detect protein-protein interactions." Nature 340(6230): 245-246. Finerty, P. J., Jr., A. K. Mittermaier, R. Muhandiram, L. E. Kay and J. D. FormanKay (2005). "NMR Dynamics-Derived Insights into the Binding Properties of a Peptide Interacting with an SH2 Domain." Biochemistry 44(2): 694-703. Flierman, D., C. S. Coleman, C. M. Pickart, T. A. Rapoport and V. Chau (2006). "E225K mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system." Proceedings of the National Academy of Sciences 103(31): 11589. 122 Gerstein, M., A. M. Lesk and C. Chothia (1994). "Structural Mechanisms for Domain Movements in Proteins." Biochemistry 33(22): 6739-6749. Guide, M. R. (1998). "The MathWorks." Inc., Natick, MA. Guo, J. and W. H. Gmeiner (2001). "Molecular Dynamics Simulation of the Human U2B" Protein Complex with U2 snRNA Hairpin IV in Aqueous Solution." Biophysical Journal 81(2): 630-642. Gutowsky, H. S., G. B. Kistiakowsky, G. E. Pake and E. M. Purcell (1949). "Structural investigations by means of nuclear magnetism. I. Rigid crystal lattices." Journal of Chemical Physics 17: 972-981. Gutowsky, H. S. and D. W. McCall (1951). "Nuclear magnetic resonance fine structure in liquids." Physical Review 82: 748-749. Gutowsky, H. S. and G. E. Pake (1948). "Nuclear magnetism in studies of molecular structure and rotations in solids: ammonium salts." Journal of Chemical Physics 16: 1164-1165. Hahn, E. L. (1949). "An accurate nuclear magnetic resonance method for measuring spin-lattice relaxation times." Physical Review 76: 145-146. Hahn, E. L. (1950a). "Nuclear induction due to free Larmor precession." Physical Review 77: 297-298. 123 Hahn, E. L. (1950b). "Spin echoes." Physical Review 80: 580-594. Hubbard, S. J. and J. M. Thornton (1993). "NACCESS computer program." Department of Biochemistry and Molecular Biology, University College London 2(9). Ilangovan, U., W. Ding, Y. Zhong, C. L. Wilson, J. C. Groppe, J. T. Trbovich, J. Zuniga, B. Demeler, Q. Tang, G. Gao, K. M. Mulder and A. P. Hinck (2005). "Structure and Dynamics of the Homodimeric Dynein Light Chain km23." Journal of Molecular Biology 352(2): 338-354. Ishima, R., J. M. Louis and D. A. Torchia (2001). "Optimized labeling of 13CHD2 methyl isotopomers in perdeuterated proteins: Potential advantages for 13C relaxation studies of methyl dynamics of larger proteins." Journal of Biomolecular NMR 21(2): 167-171. Janin, J., K. Henrick, J. Moult, L. T. Eyck, M. J. E. Sternberg, S. Vajda, I. Vakser and S. J. Wodak (2003). "CAPRI: A Critical Assessment of PRedicted Interactions." Proteins Structure Function and Genetics 52(1): 2-9. Jeener, J., B. H. Meier, P. Bachmann and R. R. Ernst (1979). "Investigation of exchange processes by two-dimensional NMR spectroscopy." Journal of Chemical Physics 71(11): 4546-4553. 124 Jin, D., F. Figueirido, G. T. Montelione and R. M. Levy (1997). "Impact of the Precision in NMR Relaxation Measurements on the Interpretation of Protein Dynamics." Journal of the American Chemical Society 119(29): 6923-6924. Kalchman, M. A., R. K. Graham, G. Xia, H. B. Koide, J. G. Hodgson, K. C. Graham, Y. P. Goldberg, R. D. Gietz, C. M. Pickart and M. R. Hayden (1996). "Huntingtin Is Ubiquitinated and Interacts with a Specific Ubiquitinconjugating Enzyme." Journal of Biological Chemistry 271(32): 19385. Karplus, M. and J. A. McCammon (1983). "Dynamics of Proteins: Elements and Function." Annual Review of Biochemistry 52(1): 263-300. Kay, L. E. (1998). "Protein dynamics from NMR." Biochemistry and Cell Biology 76(2/3): 145-152. Kay, L. E. (2005). "NMR studies of protein structure and dynamics." Journal of Magnetic Resonance 173(2): 193-207. Kay, L. E., D. A. Torchia and A. Bax (1989). "Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease." Biochemistry 28(23): 8972-8979. Kikuchi, J., Y. Furukawa, N. Kubo, A. Tokura, N. Hayashi, M. Nakamura, M. Matsuda and I. Sakurabayashi (2000). Induction of Ubiquitin-Conjugating Enzyme by Aggregated Low Density Lipoprotein in Human Macrophages and Its Implications for Atherosclerosis, Am Heart Assoc. 20: 128-134. 125 Kiyoshi, T., A. Otsuka, S. Choi, S. Matsumoto, K. Zaitsu, T. Hase, M. Hamada, M. Hosono, M. Takahashi and T. Yamazaki (2008). "NMR Upgrading Project Towards 1.05 GHz." Applied Superconductivity, IEEE Transactions on 18(2): 860-863. Koradi, R., M. Billeter and K. Wuethrich (1996). "MOLMOL: a program for display and analysis of macromolecular structures." Journal of Molecular Graphics 14(1): 51-5, plates, 29. Korzhnev, D. M., N. R. Skrynnikov, O. Millet, D. A. Torchia and L. E. Kay (2002). "An NMR experiment for the accurate measurement of heteronuclear spinlock relaxation rates." Journal of the American Chemical Society 124(36): 10743-10753. Kumar, A., R. R. Ernst and K. Wuethrich (1980). "A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules." Biochemical and Biophysical Research Communications 95(1): 1-6. Lee, A. L., P. F. Flynn and A. J. Wand (1999). "Comparison of 2H and 13C NMR Relaxation Techniques for the Study of Protein Methyl Group Dynamics in Solution." Journal of the American Chemical Society 121(12): 2891-2902. 126 Lee, S. J., J. Y. Choi, Y. M. Sung, H. Park, H. Rhim and S. Kang (2001). "E3 ligase activity of RING finger proteins that interact with Hip-2, a human ubiquitinconjugating enzyme." FEBS Letters 503(1): 61-64. Lehninger, A. L., D. L. Nelson and M. M. Cox (1993). Principles of Biochemistry. New York, Worth Publishers, Inc. LeMaster, D. M. and D. M. Kushlan (1996). "Dynamical Mapping of E. coli Thioredoxin via 13C NMR Relaxation Analysis." Journal of the American Chemical Society 118: 9255-9264. Lipari, G. and A. Szabo (1982a). "Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity." Journal of the American Chemical Society 104(17): 45464559. Lipari, G. and A. Szabo (1982b). "Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results." Journal of the American Chemical Society 104(17): 4559-4570. Liu, W., Y. Zheng, D. P. Cistola and D. Yang (2003). "Measurement of methyl 13C1 H cross-correlation in uniformly 13C-, 15N-, labeled proteins." Journal of Biomolecular NMR 27(4): 351-364. 127 Loh, S. N., K. E. Prehoda, J. Wang and J. L. Markley (1993). "Hydrogen exchange in unligated and ligated staphylococcal nuclease." Biochemistry 32(41): 1102211028. Lukin, J. A., G. Kontaxis, V. Simplaceanu, Y. Yuan, A. Bax and C. Ho (2003). "Quaternary structure of hemoglobin in solution." Proceedings of the National Academy of Sciences of the United States of America 100(2): 517-520. Mandel, A. M., M. Akke and A. G. Palmer, III (1995). "Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme." Journal of Molecular Biology 246(1): 144-163. Matsuda, T., S. Koshiba, N. Tochio, E. Seki, N. Iwasaki, T. Yabuki, M. Inoue, S. Yokoyama and T. Kigawa (2007). "Improving cell-free protein synthesis for stable-isotope labeling." Journal of Biomolecular NMR 37(3): 225-229. Maudsley, A. A. and R. R. Ernst (1977). "Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy." Chemical Physics Letters 50(3): 368-372. Maudsley, A. A., L. Mueller and R. R. Ernst (1977). "Cross-correlation of spindecoupled NMR spectra by heteronuclear two-dimensional spectroscopy." Journal of Magnetic Resonance (1969-1992) 28(3): 463-469. 128 Meier, B. H. and R. R. Ernst (1979). "Elucidation of chemical exchange networks by two-dimensional NMR spectroscopy: the heptamethylbenzenonium ion." Journal of the American Chemical Society 101(21): 6441-6442. Miernyk, J. A. and J. J. Thelen (2008). "Biochemical approaches for discovering protein-protein interactions." The Plant Journal 53(4): 597-609. Mihailescu, M. R. and I. M. Russu (2001). "A signature of the T -> R transition in human hemoglobin." Proceedings of the National Academy of Sciences of the United States of America 98(7): 3773-3777. Millet, O., D. R. Muhandiram, N. R. Skrynnikov and L. E. Kay (2002). "Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution." Journal of the American Chemical Society 124(22): 6439-6448. Mittermaier, A. and L. E. Kay (1999). "Measurement of Methyl 2H Quadrupolar Couplings in Oriented Proteins. How Uniform Is the Quadrupolar Coupling Constant?" Journal of the American Chemical Society 121(45): 10608-10613. Mueller, G. A., A. M. Smith, M. D. Chapman, G. S. Rule and D. C. Benjamin (2001). "Hydrogen exchange nuclear magnetic resonance spectroscopy mapping of antibody epitopes on the house dust mite allergen Der p 2." Journal of Biological Chemistry 276(12): 9359-9365. 129 Mueser, T. C., P. H. Rogers and A. Arnone (2000). "Interface Sliding As Illustrated by the Multiple Quaternary Structures of Liganded Hemoglobin." Biochemistry 39(50): 15353-15364. Muhandiram, D. R., T. Yamazaki, B. D. Sykes and L. E. Kay (1995). "Measurement of 2H T1 and T1r Relaxation Times in Uniformly 13C-Labeled and Fractionally H-Labeled Proteins in Solution." Journal of the American Chemical Society 117(46): 11536-11544. Nesmelova, I., A. Krushelnitsky, D. Idiyatullin, F. Blanco, M. Ramirez-Alvarado, V. A. Daragan, L. Serrano and K. H. Mayo (2001). "Conformational exchange on the microsecond time scale in -helix and -hairpin peptides measured by 13C NMR transverse relaxation." Biochemistry 40(9): 2844-2853. Nicholson, L. K., L. E. Kay, D. M. Baldisseri, J. Arango, P. E. Young, A. Bax and D. A. Torchia (1992). "Dynamics of methyl groups in proteins as studied by proton-detected carbon-13 NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease." Biochemistry 31(23): 5253-5263. Onuchic, J. N., Z. Luthey-Schulten and P. G. Wolynes (1997). "Theory of protein folding: the energy landscape perspective." Annual Review of Physical Chemistry 48: 545-600. Overhauser, A. W. (1953). "Polarization of nuclei in metals." Physical Review 92: 411-415. 130 Palmer, A. G., III (2001). "NMR probes of molecular dynamics: overview and comparison with other techniques." Annual Review of Biophysics and Biomolecular Structure 30: 129-155. Palmer, A. G., III, R. A. Hochstrasser, D. P. Millar, M. Rance and P. E. Wright (1993). "Characterization of amino acid side chain dynamics in a zinc-finger peptide using carbon-13 NMR spectroscopy and time-resolved fluorescence spectroscopy." Journal of the American Chemical Society 115(14): 6333-6345. Palmer, A. G., III, P. E. Wright and M. Rance (1991). "Measurement of relaxation time constants for methyl groups by proton-detected heteronuclear NMR spectroscopy." Chemical Physics Letters 185(1-2): 41-46. Peng, J. W. and G. Wagner (1994). "Investigation of protein motions via relaxation measurements." Methods Enzymol 239: 563-96. Pichler, A., P. Knipscheer, E. Oberhofer, W. J. van Dijk, R. Köner, J. V. Olsen, S. Jentsch, F. Melchior and T. K. Sixma (2005). "SUMO modification of the ubiquitin-conjugating enzyme E2-25K." Nature Structural & Molecular Biology 12: 264-269. Proctor, W. G. and F. C. Yu (1950). "The dependence of a nuclear magnetic resonance frequency upon chemical compound." Physical Review 77: 717. 131 Purcell, E. M., N. Bloembergen and R. V. Pound (1946). "Resonance absorption by nuclear magnetic moments in a single crystal of CaF2." Physical Review 70: 988. Purcell, E. M., R. V. Pound and N. Bloembergen (1946). "Nuclear magnetic resonance absorption in hydrogen gas." Physical Review 70: 980-987. Purcell, E. M., H. C. Torrey and R. V. Pound (1946). "Resonance absorption by nuclear magnetic moments in a solid." Physical Review 69: 37-38. Redfield, A. G. (1957). "On the theory of relaxation processes." IBM Journal of Research and Developement 1: 19-31. Scherf, T., R. Hiller and J. Anglister (1995). "NMR observation of interactions in the combining site region of an antibody using a spin-labeled peptide antigen and NOESY difference spectroscopy." FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9(1): 120-126. Schneider, D. M., M. J. Dellwo and A. J. Wand (1992). "Fast internal main-chain dynamics of human ubiquitin." Biochemistry 31(14): 3645-3652. Silva, M. M., P. H. Rogers and A. Arnone (1992). "A third quaternary structure of human hemoglobin A at 1.7-.ANG. resolution." Journal of Biological Chemistry 267(24): 17248-17256. 132 Simplaceanu, V., J. A. Lukin, T. Y. Fang, M. Zou, N. T. Ho and C. Ho (2000). "Chain-Selective Isotopic Labeling for NMR Studies of Large Multimeric Proteins: Application to Hemoglobin." Biophysical Journal 79(2): 1146-1154. Skrynnikov, N. R., O. Millet and L. E. Kay (2002). "Deuterium spin probes of sidechain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions." Journal of the American Chemical Society 124(22): 6449-6460. Slichter, C. P. and D. C. Ailion (1964). "Observation of ultra-slow translational diffusion in metallic lithium by magnetic resonance." Physical Review 135: 1099. Smith, L. J., A. E. Mark, C. M. Dobson and W. F. van Gunsteren (1995). "Comparison of MD Simulations and NMR Experiments for Hen Lysozyme. Analysis of Local Fluctuations, Cooperative Motions, and Global Changes." Biochemistry 34(34): 10918-10931. Solomon, I. (1955). "Relaxation processes in a system of two spins." Physical Review 99: 559-565. Song, S., S. Y. Kim, Y. M. Hong, D. G. Jo, J. Y. Lee, S. M. Shim, C. W. Chung, S. J. Seo, Y. J. Yoo and J. Y. Koh (2003). "Essential Role of E2-25K/Hip-2 in Mediating Amyloid-?Neurotoxicity." Molecular Cell 12(3): 553-563. 133 Stone, M. J., W. J. Fairbrother, A. G. Palmer, III, J. Reizer, M. H. Saier, Jr. and P. E. Wright (1992). "Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from nitrogen-15 NMR relaxation measurements." Biochemistry 31(18): 4394-4406. Takahashi, H., T. Nakanishi, K. Kami, Y. Arata and I. Shimada (2000). "A novel NMR method for determining the interfaces of large protein-protein complexes." Nature Structural Biology 7(3): 220-223. Torrey, H. C. (1953). "Nuclear spin relaxation by translational diffusion." Physical Review 92: 962-969. Torrey, H. C. (1956). "Bloch Equations with Diffusion Terms." Physical Review 104: 563-565. Tugarinov, V., P. M. Hwang, J. E. Ollerenshaw and L. E. Kay (2003). "Crosscorrelated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes." Journal of the American Chemical Society 125(34): 10420-10428. van Dijk, A. D. J., R. Boelens and A. Bonvin (2005). "Data-driven docking for the study of biomolecular complexes." FEBS Journal 272(2): 293-312. Venters, R. A., B. T. Farmer, II, C. A. Fierke and L. D. Spicer (1996). "Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H 134 assignments of human carbonic anhydrase II." Journal of Molecular Biology 264(5): 1101-1116. Voegeli, B., H. Kovacs and K. Pervushin (2004). "Measurements of side-chain 13C13 C residual dipolar couplings in uniformly deuterated proteins." Journal of the American Chemical Society 126(8): 2414-2420. Vold, R. L. and R. R. Vold (1978). "Nuclear magnetic relaxation in coupled spin systems." Progress in Nuclear Magnetic Resonance Spectroscopy 12(2): 79133. Weigelt, J. (1998). "Single Scan, Sensitivity- and Gradient-Enhanced TROSY for Multidimensional NMR Experiments." Journal of the American Chemical Society 120(41): 10778-10779. Williamson, M. P., T. F. Havel and K. Wuthrich (1985). "Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry." J Mol Biol 182(2): 295-315. Wokaun, A. and R. R. Ernst (1977a). "Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopy." Chemical Physics Letters 52(3): 407-412. Wokaun, A. and R. R. Ernst (1977b). "Selective excitation and detection in multilevel spin systems: application of single transition operators." Journal of Chemical Physics 67(4): 1752-1758. 135 Woodgate, R. and A. S. Levine (1996). "Damage inducible mutagenesis: Recent insights into the activities of the Umu family of mutagenesis proteins." Cancer surveys 28: 117-140. Xu, Y., Y. Zheng, J. S. Fan and D. Yang (2006). "A new strategy for structure determination of large proteins in solution without deuteration." Nature Methods 3: 931-937. Yan, Y. and G. Marriott (2004). "Analysis of protein interactions using fluorescence technologies." Drug discovery today 9(2): 27-31. Yang, D., R. Konrat and L. E. Kay (1997). "A Multidimensional NMR Experiment for Measurement of the Protein Dihedral Angle y Based on Cross-Correlated Relaxation between 1H-13C Dipolar and 13C' (Carbonyl) Chemical Shift Anisotropy Mechanisms." Journal of the American Chemical Society 119(49): 11938-11940. Yang, D., Y. Zheng, D. Liu and D. F. Wyss (2004). "Sequence-specific assignments of methyl groups in high-molecular weight proteins." J. Am. Chem. Soc 126(12): 3710-3711. Ye, Y. and M. Rape (2009). "Building ubiquitin chains: E2 enzymes at work." Nature Reviews Molecular Cell Biology 10(11): 755-764. 136 Yuan, Y., V. Simplaceanu, J. A. Lukin and C. Ho (2002). "NMR Investigation of the Dynamics of Tryptophan Side-chains in Hemoglobins." Journal of Molecular Biology 321(5): 863-878. Zeeman, P. (1897). "On the influence of magnetism on the nature of the light emitted by a substance." Philosophical Magazine 43: 226-239. Zheng, Y. and D. Yang (2004). "Measurement of Dipolar Cross-Correlation in Methylene Groups in Uniformly 13C-, 15N-Labeled Proteins." Journal of Biomolecular NMR 28(2): 103-116. Zuiderweg, E. R. P. (2002). "Mapping protein-protein interactions in solution by NMR spectroscopy." Biochemistry 41(1): 1-7. Zwahlen, C., P. Legault, S. J. F. Vincent, J. Greenblatt, R. Konrat and L. E. Kay (1997). "Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage l N-Peptide/boxB RNA Complex." Journal of the American Chemical Society 119(29): 6711-6721. 137 [...]... system (Fields and Song 1989), affinity purification with MS/MS identification (Aebersold and Mann 2003), methods based on fluorescence technologies (Yan and Marriott 2004) and a variety of NMR spectroscopy approaches (Zuiderweg 2002) This thesis focuses on developing novel methods based on NMR relaxation techniques to study protein structure-function relationship and to reveal proteinprotein interactions... methods for mapping proteinprotein interaction interfaces XI In the second part of this thesis (Chapter 3), a new strategy to map proteinprotein interfaces on the basis of the dependence of NMR relaxation on proton density is presented This strategy needs two moderately deuterated samples in which the reporting protein in a protein- protein complex is 2H-,15N-labeled while the acceptor protein is either... important theories for liquid spin dynamics (Bloch 1956; Redfield 1957) 3 In 1964, Ernst and Anderson firstly obtained NMR spectrum by applying Fourier Transform (FT) of the free induction decay (FID) and demonstrated the improvement in signal to noise ratio over the continuous wave method (Ernst and Anderson 1966), which brought a new era of pulsed Fourier Transform NMR spectroscopy In 1971, Jeener proposed... proposed the idea of two dimensional (2D) NMR spectroscopy during a lecture, which was then realized by Aue et al (Aue et al 1976) The applications of 2D NMR spectroscopy led to an emergence of new methods and techniques In the following years, 2D NMR spectroscopy was rapidly applied on the detection of correlations between proton and carbon-13 spins (Maudsley and Ernst 1977; Maudsley et al 1977), the... (Wokaun and Ernst 1977a; Wokaun and Ernst 1977), investigations of chemical exchange (Jeener et al 1979; Meier and Ernst 1979), the detection of nuclear Overhauser effects (NOE) (Kumar et al 1980), and the determination of the first three dimensional protein structure by Wüthrich and coworker (Williamson et al 1985) With the availability of NMR probe techniques to record multiple frequencies, 2D NMR spectroscopy. .. cross-correlated relaxation and 13 C spin-lattice relaxation and those derived previously from 2H relaxation data, demonstrates the reliability and validity of this method Subsequently, the method was applied to the study of methyl dynamics of Huntingtin interacting protein 2 (HIP2) Currently, a variety of NMR based methods have been developed to identify protein- protein interaction sites, but they... review a general history and basic theories of NMR spectroscopy 2 1.1 History of NMR In 1890, prior to the discovery of NMR, Zeeman observed unusual behavior of certain nuclei in a magnetic field This phenomenon was later found to be due to nuclear spin (Zeeman 1897) After several decades, NMR was first discovered independently by Purcell et al and Bloch et al in 1946 Purcell observed NMR signal from Paraffin... Gutowsky and Pake discovered the huge potentials of NMR in the field of molecular structures (Gutowsky and Pake 1948; Gutowsky et al 1949) In 1950, Proctor and Yu discovered the phenomenon of the chemical shift (Proctor and Yu 1950) One year after, Gutowsky and McCall observed the J coupling effect (Gutowsky and McCall 1951) Meanwhile, Hahn discovered spin echoes and developed several other methods for probing. .. Mechanisms NMR relaxation is dominated by single or multiple mechanisms such as dipole-dipole interaction, chemical shift anisotropic interaction, quadrupolar interaction, scalar relaxation and more Intramolecular dipole-dipole interaction will be discussed here 1.2.3.1 Intramolecular Dipole-Dipole Interaction In a molecule, two spins which are close enough (≤ 10Å) experience significant dipolar interactions... of the techniques for protein structure determination at the atomic resolution It is the only currently available technique to reveal protein dynamics on per atom basis over a wide range of timescales in solution where physiological conditions can be imitated Although NMR experiments have been developed to characterize protein dynamics for different purposes, protein side-chain dynamics is still difficult . PROBING PROTEIN DYNAMICS AND PROTEIN- PROTEIN INTERACTION BY NMR SPECTROSCOPY SUI XIAOGANG A THESIS SUBMITTED. Dynamics and Side-Chain Dynamics 25 2.1.2 Review of Protein Side-Chain Dynamics Studies 27 2.1.3 Huntingtin Interaction Protein 2 32 2.2  Materials and Methods 35 2.2.1 NMR Spectroscopy 35 2.2.1.1. Lipari and Szabo Approach 20 1.2.5.2 Order Parameter 22 III 1.3 Outlines of the thesis 23 CHAPTER 2 PROBING PROTEIN SIDE-CHAIN DYNAMICS 24 2.1 Introduction 24 2.1.1 Backbone Dynamics and

Ngày đăng: 11/09/2015, 10:17

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan