Reliability and aging mechanisms of all solid state thin film lithium ion microbatteries

232 1.3K 0
Reliability and aging mechanisms of all solid state thin film lithium ion microbatteries

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

RELIABILITY AND AGING MECHANISMS OF ALL-SOLID-STATE THIN FILM LITHIUM ION MICROBATTERIES ZHU JING NATIONAL UNIVERSITY OF SINGAPORE 2012 RELIABILITY AND AGING MECHANISMS OF ALL-SOLID-STATE THIN FILM LITHIUM ION MICROBATTERIES ZHU JING (B. Eng., Sichuan University M. Eng., Sichuan University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 Declaration DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _________________________ ZHU JING 20 July 2012 i List of Publications LIST OF PUBLICATIONS The research described herein was conducted under the supervision of Prof. Lu Li and Associate Prof. Zeng Kaiyang from the Material Science Division, Department of Mechanical Engineering, National University of Singapore (NUS). The majority portions of this dissertation have been published to international journals, or presented at various international conferences. Journal papers: 1. J. Zhu, K. B Yeap, K. Y. Zeng, L. Lu, Nanomechanical characterization of sputtered RuO2 thin film on silicon substrate for solid state electronic devices, Thin Solid Films, 519 (2011) 1914-1922. 2. J. Zhu, K. Y. Zeng, L. Lu, Cycling effect on morphological and interfacial properties of RuO2 anode film in thin film lithium ion microbatteries, Metallurgical and Materials Transactions A, in press, DOI: 10.1007/S11661-011-0847-0., (2011) 1-9. 3. J. Zhu, K. Y. Zeng, L. Lu, Cycling effects on interfacial reliability of TiO2 anode film in thin film lithium ion microbatteries, Journal of Solid State Electrochemistry, 16 (2012) 1877-1881. 4. J. Zhu, J. K. Feng, K. Y. Zeng, L. Lu, In-situ study of topography, phase and volume changes of TiO2 anode in all-solid-state thin film Li-ion battery by biased scanning probe microscopy, Journal of Power Source, 197 (2012) 224-230. 5. J. Zhu, K. Y. Zeng, L. Lu, Cycling effect on morphological and interfacial properties of LiMn2O4 cathode film in thin film lithium ion microbatteries, Electrochemica Acta, 68 (2012) 52-59. ii List of Publications 6. J. Zhu, K. Y. Zeng, L. Lu, In-situ nanoscale mapping of surface potential in all-solid-state thin film Li-ion battery using Kelvin probe force microscopy, Journal of Applied Physics, 111(2012) 063723. 7. J. Zhu, K. Y. Zeng, L. Lu, Nanoscale mapping of Li-ion diffusion on cathode and anode surface in all-solid-state Li-ion battery by Electrochemical Strain Microscopy, to be submitted. 8. X. Song, K. B. Yeap, J. Zhu, J. Belnoue, M. Sebastiani, E. Bemporad, K. Y. Zeng, A. M. Korsunsky, Residual stress measurement in thin films using the semi-destructive ring-core drilling method using Focused Ion Beam, Procedia Engineering, 10 (2011) 2190-2195. 9. X. Song, K. B. Yeap, J. Zhu, J. Belnoue, M. Sebastiani, E. Bemporad, K. Y. Zeng, A. M. Korsunsky, Residual stress measurement in thin films at sub-micron scale using Focused Ion Beam milling and imaging, Thin Solid Films, 520 (2012) 2073-2076. *Collaboration with Department of Engineering Science, University of Oxford, UK Conference Presentations (Oral) 1. J. Zhu, K. Zeng and L. Lu, “Determine the interfacial properties of sputtered RuO2 thin film on Si substrate by nanoindentation techniques”, International Conference on Materials for Advanced Technologies (ICMAT 2009), Jun. 28 – Jul. 2, 2009, Singapore (presented by J. Zhu) 2. L. Lu, H. Xia, J. Zhu, K. Y. Zeng, J. K. Feng, “Microbatteries – Processing and Properties”, 7th Shanghai – Hong Kong Forum on Mechanics and Its Application, Mar. 13, 2010, Hong Kong (distinguished plenary talk by L. Lu). 3. J. Zhu, K. Zeng and L. Lu, “Effects of electrical cycling on interfacial properties of RuO2 anode film in lithium ion microbatteries”, The 5th International Conference on Technology Advances of Thin Films & Surface Coatings (Thin Films 2010), Jul. 11 – 14, 2010, Harbin, China (presented by K. Zeng). iii List of Publications 4. J. Zhu, K.Y. Zeng, and L. Lu, “Mechanical responses to electrochemical cycling of anode film in lithium ion microbatteries”, The 3rd International Forum on Systems and Mechatronics (IFSM 2010), Sep.7 – 9, 2010, Singapore (presented by J. Zhu). 5. J. Zhu, K.Y. Zeng, and L. Lu, “Cycling effects on surface morphology and interfacial reliability of RuO2 anode in thin film lithium ion batteries”, E-MRS 2011 Spring Meeting & E-MRS/MRS Bilateral Conference on Energy, May – 13, 2011, Nice, France (presented by J. Zhu). 6. J. Zhu, K.Y. Zeng, and L. Lu, “Cycling effects on interfacial reliability of LiMn2O4 cathode film in thin film lithium ion batteries”, International Conference on Materials for Advanced Technologies (ICMAT 2011), Jun. 26 – Jul. 1, 2011, Singapore (presented by J. Zhu) 7. J. Zhu, K.Y. Zeng, and L. Lu, “In-situ study on cyclic changes of topography, phase and volume of TiO2 anode in all-solid-state thin film Li-ion battery by biased scanning probe microscopy”, MRS 2012 Spring Meeting, Apr. – 13, California, USA (presented by J. Zhu). 8. J. Zhu, K.Y. Zeng, and L. Lu, “Effects of electrical cycling on morphology, nanomechanical and interfacial reliability of electrode materials in thin film lithium ion microbatteries”, The 6th International Conference on Technology Advances of Thin Films & Surface Coatings (Thin Films 2012), Jul. 14 – 17, 2012, Singapore (invited talk by K. Y. Zeng). Conference Presentations (Poster) 1. J. Zhu, K. Zeng and L. Lu, “Cycling effect on morphological, nanomechanical and interfacial properties of RuO2 anode film in thin film lithium ion battery”, MRS-S Trilateral Conference on Advances in Nanoscience-Energy, Water & Healthcare (MRS-S 2010), Aug. – 11, 2010, Singapore. 2. J. Zhu, K. Zeng and L. Lu, “In-situ study on topography, phase and volume changes of TiO2 anode in all-solid-state thin film Li-ion battery by biased scanning probe microscopy”, International Conference of Young Researchers on Advanced Materials (ICYRAM 2012), Jul. – 6, 2012, Singapore. iv Acknowledgements ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude to my supervisors, Prof. Lu Li and Associate Prof. Zeng Kaiyang, for their guidance, supervision, encouragement and invaluable advice throughout my Ph.D. study. Their scientific attitude, knowledge and research skills have provided a solid foundation for this study. It is a great honor for me to carry out Ph.D. study under their supervisions. In addition, I would like to express my appreciation to Institute of Material Research and Engineering (IMRE) for its experimental support. I especially thank Mr. Wang Weide for his help on magnetron sputtering experiments and Mrs. Shen Lu for her assistance on nanoindentation experiments. Most sincere thanks also to the staff in Department of Mechanical Engineering (NUS), Mr. Thomas Tan, Mr. Ng Hong Wei, Mr. and Abdul Khalim Bin Abdul, for their supports and assistance. Also, many thanks are conveyed to my seniors and colleagues, Dr. Xia Hui, Dr. Wang Shijie, Dr. Wang Hailong, Dr. Yan Feng, Dr. Wong Mengfei, Dr. Chen Lei, Mr. Xiao Pengfei, Mr. Ye Shukai, Mr. Song Bohang, Mr. Lin Chunfu and Miss. Li Tao, for their helps and friendship. I especially thank Dr. Yeap Kongboon and Dr. Feng Jinkui for their advices and guidance at the beginning of my Ph.D. study. Finally, I deeply appreciate my family, especially my husband, Zhu Jianhua. Without their understanding, support, encouragement and earnest love, I would not able to complete my Ph.D. study so smoothly. v Table of Contents TABLE OF CONTENTS DECLARATION i LIST OF PUBLICATIONS ii ACKNOWLEDGEMENTS . v TABLE OF CONTENTS . vi SUMMARY . xii LIST OF TABLES xiv LIST OF FIGURES xv LIST OF SYMBOLS xxi Chapter 1. Introduction 1.1 Overview of Lithium Ion Batteries 1.1.1 Principles of Operation 1.1.2 Current Status and Challenges . 1.2 Research Objective and Significance 1.3 Thesis Outline Chapter 2. Literature Review 2.1 Materials for Electrode 2.1.1 Anode Materials . 2.1.2 Cathode Materials 13 2.2 All-Solid-State Thin Film Lithium Ion Microbatteries . 17 vi Table of Contents 2.3 Aging Studies for Lithium Ion Batteries . 20 2.4 Methods to Determine the Interfacial Adhesion of Thin Film/Substrate Structure . 24 2.4.1 Mechanical Bending Tests . 24 2.4.2 Indentation Tests 25 2.5 Scanning Probe Microscopy 31 Chapter 3. Materials and Experimental Methodology 36 3.1. Material Preparation 37 3.1.1 Target Fabrication 37 3.1.2 Film Deposition . 37 3.2 Electrochemical Characterization 38 3.2.1 Battery Assembly . 38 3.2.2 Galvanostatic Cycling 39 3.3 Microstructural Characterization . 39 3.3.1 X-ray Diffraction 39 3.3.2 Energy Dispersive X-ray Spectroscopy . 40 3.4 Morphology Characterization 40 3.4.1 Surface Profilometer 40 3.4.2 Field Emission Scanning Electron Microscope . 41 3.4.3 Atomic Force Microscope 41 3.5 Mechanical Characterization . 42 vii Table of Contents 3.5.1 Elastic Modulus and Hardness . 42 3.5.2 Interfacial Toughness Characterization 43 3.5.3 Crack Profile Characterization . 45 3.6 In-situ Scanning Probe Microscopy Study 46 3.6.1 Biased Atomic Force Microscopy 46 3.6.2 Kelvin Probe Force Microscopy 46 3.6.3 Electrochemical Strain Microscopy . 48 Chapter 4. Extension and Verification of Experimental and Analysis Method for Interfacial Toughness of Hard Film/Soft Substrate . 51 4.1 Thin Film Characterization 52 4.2 Comparative Analysis of Different Indentation Tests 54 4.2.1 Load-Displacement Curves 54 4.2.2 Indentation Induced Delamination . 56 4.3 Interfacial Adhesion Mechanics 64 4.4 Interfacial Toughness Determination . 69 4.4.1 Elastic Modulus and Hardness . 69 4.4.2 Interfacial Toughness . 70 4.5 Summary 73 Chapter 5. Interfacial Reliability and Aging Mechanism of Thin Film Anode . 75 5.1 Cycling Effect on Reliability of Rutile RuO2 Anode . 76 5.1.1 Structural and Electrochemical Characterization . 76 viii (1995) L149-L151. [76] Chen, G. S., Hsiao, H. H., Louh, R. F. and Humphreysc, C. J., Electrochem. Solid. State Lett. (2004) A235-A238. [77] Chiu, K. F., Hsiao, H. H., Chen, G. S., Liu, H. L., Her, J. L. and Lin, H. C., J. Electrochem. Soc. 151 (2004) A452-A455. [78] Chiu, K. F., Lin, H. C., Lin, K. M. and Tsai, C. H., J. Electrochem. Soc. 152 (2005) A2058-A2062. [79] Chung, K. Y. and Kim, K. B., J. Electrochem. Soc. 149 (2002) A79-A85. [80] Dudney, N. J., Bates, J. B., Zuhr, R. A., Young, S., Robertson, J. D., Jun, H. P. and Hackney, S. A., J. Electrochem. Soc. 146 (1999) 2455-2464. [81] Hwang, K. H., Lee, S. H. and Joo, S. K., J. Power Sourc. 54 (1995) 224-227. [82] Ishizawa, N. and Tateishi, K., J. Ceram. Soc. Jpn. 117 (2009) 6-14. [83] Komaba, S., Kumagai, N., Baba, M., Miura, F., Fujita, N., Groult, H., Devilliers, D. and Kaplan, B., J. Appl. Electrochem. 30 (2000) 1179-1182. [84] Kuriyama, K., Onoue, A., Yuasa, Y. and Kushida, K., Surf. Sci. 601 (2007) 2256-2259. [85] Lazarraga, M. G., Mandal, S., Ibañez, J., Amarilla, J. M. and Rojo, J. M., J. Power Sourc. 115 (2003) 315-322. [86] Lee, K. L., Jung, J. Y., Lee, S. W., Moon, H. S. and Park, J. W., J. Power Sourc. 130 (2004) 241-246. [87] Lei, J. L., Li, L. J., Kostecki, R., Muller, R. and McLarnon, F., J. Electrochem. 193 Soc. 152 (2005) A774-A777. [88] Moon, H. S. and Park, J. W., J. Power Sourc. 119-121 (2003) 717-720. [89] Okumura, T., Fukutsuka, T., Uchimoto, Y., Sakai, N., Yamaji, K. and Yokokawa, H., J. Power Sourc. 189 (2009) 643-645. [90] Park, Y. J., Kim, J. G., Kim, M. K., Kim, H. G., Chung, H. T. and Park, Y., J. Power Sourc. 87 (2000) 69-77. [91] Raveendranath, K., Ravi, J., Tomy, R. M., Jayalekshmi, S., Mangalaraja, R. V. and Lee, S. T., Appl. Phys. A-Mater. 90 (2008) 437-440. [92] Simmen, F., Hintennach, A., Horisberger, M., Lippert, T., Novak, P., Schneider, C. W. and Wokaun, A., J. Electrochem. Soc 157 (2010) A1026-A1029. [93] Tang, S. B., Lai, M. O. and Lu, L., Electrochim. Acta 52 (2006) 1161-1167. [94] Tang, S. B., Lai, M. O. and Lu, L., J. Power Sourc. 164 (2007) 372-378. [95] Tang, S. B., Lai, M. O. and Lu, L., Mater. Chem. Phys. 111 (2008) 149-153. [96] Tang, S. B., Lai, M. O., Lu, L. and Tripathy, S., J. Solid State Chem. 179 (2006) 3831-3838. [97] Tang, S. B., Xia, H., Lai, M. O. and Lu, L., J. Alloy Compd. 449 (2008) 322-325. [98] Xie, J., Tanaka, T., Imanishi, N., Matsumura, T., Hirano, A., Takeda, Y. and Yamamoto, O., J. Power Sourc. 180 (2008) 576-581. [99] Yamamura, S., Koshika, H., Nishizawa, M., Matsue, T. and Uchida, I., J. Solid State. Electr. (1998) 211-215. 194 [100] Baba, M., Kumagai, N., Fujita, N., Ohta, K., Nishidate, K., Komaba, S., Groult, H., Devilliers, D. and Kaplan, B., J. Power Sourc. 97-98 (2001) 798-800. [101] Wang, H. L., Xia, H., Lai, M. O. and Lu, L., Electrochem. Commun. 11 (2009) 1539-1542. [102] Xia, H. and Lu, L., Electrochim. Acta 54 (2009) 5986-5991. [103] Xia, H., Meng, Y. S., Lu, L. and Ceder, G., J. Electrochem. Soc. 154 (2007) A737-A743. [104] Xia, H., Tang, S. B., Lu, L., Meng, Y. S. and Ceder, G., Electrochim. Acta 52 (2007) 2822-2828. [105] Edstrom, K., Gustafsson, T. and Thomas, J. O., Electrochim. Acta 50 (2003) 397-403. [106] Dudney, N. J. and Neudecker, B. J., Curr. Opin. Solid ST. M (1999) 479-482. [107] Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. and Evans, C. D., Solid State Ionics 135 (2000) 33-45. [108] Bates, J. B., Gruzalski, G. R., Dudney, N. J., Luck, C. F. and Yu, X. H., Solid State. Technol. 36 (1993) 59. [109] Yabuuchi, N., Makimura, Y. and Ohzuku, T., J. Electrochem. Soc. 154 (2007) A314-A321. [110] Dupre, N., Martin, J. F., Oliveri, J., Soudan, P., Guyomard, D., Yamada, A. and Kanno, R., J. Electrochem. Soc. 156 (2009) C180-C185. [111] Kerlau, M. and Kostecki, R., J. Electrochem. Soc. 153 (2006) A1644-A1648. 195 [112] Tröltzsch, U., Kanoun, O. and Tränkler, H.-R., Electrochim. Acta 51 (2006) 1664-1672. [113] Kalinin, S. V. and Bonnell, D. A., Nano Lett. (2004) 555-560. [114] Martha, S. K., Markevich, E., Burgel, V., Salitra, G., Zinigrad, E., Markovsky, B., Sclar, H., Pramovich, Z., Heik, O., Aurbach, D., Exnar, I., Buqa, H., Drezen, T., Semrau, G., Schmidt, M., Kovacheva, D. and Saliyski, N., J. Power Sourc. 189 (2009) 288-296. [115] Hirayama, M., Sakamoto, K., Hiraide, T., Mori, D., Yamada, A., Kanno, R., Sonoyama, N., Tamura, K. and Mizuki, J., Electrochim. Acta 53 (2007) 871-881. [116] Song, J. W., Nguyen, C. C., Choi, H., Lee, K. H., Han, K. H., Kim, Y. J., Choy, S. and Song, S. W., J. Electrochem. Soc 158 (2011) A458-A464. [117] Fleutot, B., Martinez, H., Pecquenard, B., Ledeuil, J. B., Levasseur, A. and Gonbeau, D., J. Power Sourc. 180 (2008) 836-844. [118] Swiatowska-Mrowiecka, J., Maurice, V., Zanna, S., Klein, L., Briand, E., Vickridge, I. and Marcus, P., J. Power Sourc. 170 (2007) 160-172. [119] Koltypin, M., Cohen, Y. S., Markovsky, B., Cohen, Y. and Aurbach, D., Electrochem. Commun. (2002) 17-23. [120] Jeong, S. K., M.Inaba, Y.Iriyama, T.Abe and Z.Ogumi, J. Power Sourc. 119-121 (2003) 555-560. [121] Rosolen, J. M. and Decker, F., J. Electrochem. Soc. 143 (1996) 2417-2421. 196 [122] Christensen, J. and Newman, J., J. Electrochem. Soc. 153 (2006) A1019-A1030. [123] Park, J., Lu, W. and Sastry, A. M., J. Electrochem. Soc. 158 (2011) A201-A206. [124] Seo, J. H., Chung, M., Park, M., Han, S. W., Zhang, X. C. and Sastry, A. M., J. Electrochem. Soc. 158 (2011) A434-A442. [125] Vlassak, J. J., Drory, M. D. and Nix, W. D., J. Mater. Res. 12 (1997) 1900-1910. [126] Volinsky, A. A., Bahr, D. F., Kriese, M. D., Moody, N. R. and Gerberich, W., (2003) Nanoindentation methods in interfacial fracture testing. in Compr. Struct. Integr. (I. Milne, R. O. Ritchie, and B. Karihaloo eds.), Pergamon, Oxford. pp 453-493. [127] Volinsky, A. A. and Gerberich, W. W., Microelectron. Eng. 69 (2003) 519-527. [128] Volinsky, A. A., Moody, N. R. and Gerberich, W. W., Acta Mater. 50 (2002) 441-466. [129] Li, W. Z. and Siegmund, T., Acta Mater. 52 (2004) 2989-2999. [130] Chen, J. and Bull, S. J., Thin Solid Films 517 (2009) 3704-3711. [131] Chen, J. and Bull, S. J., Thin Solid Films 517 (2009) 2945-2952. [132] Choi, H. C. and Kim, K. S., J. Mech. Phys. Solids 40 (1992) 75-103. [133] Schulze, M. and Nix, W. D., Int. J. Solids Struct. 37 (2000) 1045-1063. [134] Drory, M. D. and Hutchinson, J. W., Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 452 (1996) 2319-2341. [135] Marshall, D. B. and Evans, A. G., J. Appl. Phys. 56 (1984) 2632-2638. [136] Rossington, C., Evans, A. G., Marshall, D. B. and Khuriyakub, B. T., J. Appl. 197 Phys. 56 (1984) 2639-2644. [137] Begley, M. R., Mumm, D. R., Evans, A. G. and Hutchinson, J. W., Acta Mater. 48 (2000) 3211-3220. [138] Boer, M. P. d. and Gerberich, W. W., Acta Mater. 44 (1996) 3177-3187. [139] Boer, M. P. d. and Gerberich, W. W., Acta Mater. 44 (1996) 3169-3175. [140] Sanchez, J. M., El-Mansy, S., Sun, B., Scherban, T., Fang, N., Pantuso, D., Ford, W., Elizalde, M. R., Martinez-Esnaola, J. M., Martin-Meizoso, A., Gil-Sevillano, J., Fuentes, M. and Maiz, J., Acta Mater. 47 (1999) 4405-4413. [141] Hutchinson, J. W., Thouless, M. D. and Liniger, E. G., Acta Metall. Mater. 40 (1992) 295-308. [142] Kalinin, S. V. and Balke, N., Adv. Mater. 22 (2010) E193-E209. [143] Benstetter, G., Biberger, R. and Liu, D., Thin Solid Films 517 (2009) 5100-5105. [144] Hansma, H. G., Kim, K. J. and Laney, D. E., J. Struct. Biology 119 (1997) 99–108. [145] Jaquith, M., Muller, E. M. and Marohn, J. A., J. Phys. Chem. B 111 (2007) 7711-7714. [146] Jesse, S., Lee, H. N. and Kalinin, S. V., Rev. Sci. Instrum. 77 (2006) 073702. [147] Kalinin, S. V. and Bonnell, D. A., Appl. Phys. Lett. 78 (2001) 1306-1308. [148] Kalinin, S. V. and Bonnell, D. A., Mat. Res. Soc. Symp. Proc. 699 (2002) R1.2.1-R1.2.6. [149] Kalinin, S. V., Morozovska, A. N., Chen, L. Q. and Rodriguez, B. J., Rep. Prog. 198 Phy. 73 (2010) [150] Kalinin, S. V., Rodriguez, B. J., Jesse, S., Maksymovych, P., Seal, K., Nikiforov, M., Baddorf, A. P., Kholkin, A. L. and Proksch, R., Mater. Today 11 (2008) 16-27. [151] Rohwerder, M., Isik-Uppenkamp, S. and Stratmann, M., Electrochim. Acta 54 (2009) 6058-6062. [152] Rosenwaks, Y., Shikler, R., Glatzel, T. and Sadewasser, S., Phys. Rev. B 70 (2004) 085320. [153] Sorokina, K. L. and Tolstikhina, A. L., Crystallogr. Rep. 49 (2004) 476-499. [154] Snitka, V., Ulcinas, A. and Mizariene, V., Mater. Charact. 48 (2002) 147-152. [155] Beaulieu, L. Y., Beattie, S. D., Hatchard, T. D. and Dahn, J. R., J. Electrochem. Soc. 150 (2003) A419-A424. [156] Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M. D. and Dahn, J. R., J. Electrochem. Soc. 150 (2003) A1457-A1464. [157] Beaulieu, L. Y., Rutenberg, A. D. and Dahn, J. R., Microsc. Microanal. (2002) 422-428. [158] Clemencon, A., Appapillai, A. T., Kumar, S. and Shao-Horn, Y., Electrochim. Acta 52 (2007) 4572-4580. [159] Doi, T., Inaba, M., Tsuchiya, H., Jeong, S.-K., Iriyama, Y., Abe, T. and Ogumi, Z., J. Power Sourc. 180 (2008) 539-545. [160] Kushida, K. and Kuriyama, K., Appl. Phys. Lett. 84 (2004) 3456-3458. 199 [161] Swiatowska-Mrowiecka, J., Maurice, V., Klein, L. and Marcus, P., Electrochem. Commun. (2007) 2448-2455. [162] Singh, P. R., Mahajan, S., Rajwade, S. and Contractor, A. Q., J. Electroanal. Chem. 625 (2009) 16-26. [163] Zhang, L., Sakai, T., Sakuma, N., Ono, T. and Nakayama, K., Appl. Phys. Lett. 75 (1999) 3527-3529. [164] Kerlau, M., Marcinek, M., Srinivasan, V. and Kostecki, R. M., Electrochim. Acta 52 (2007) 5422-5429. [165] Nagpure, S. C., Bhushan, B. and Babu, S. S., J. Power Sourc. 196 (2011) 1508-1512. [166] Cohen, Y. S. and Aurbach, D., Electrochem. Commun. (2004) 536-542. [167] Bhushan, B. and Goldade, A. V., Wear 244 (2000) 104-117. [168] Bhushan, B., Palacio, M. and Kinzig, B., J. Colloid. Interf. Sci. 317 (2008) 275-287. [169] Fu, A. Q. and Cheng, Y. F., Corros. Sci. 51 (2009) 914-920. [170] Huang, H., Wang, H., Zhang, J. and Yan, D., Appl. Phys. A-Mater. 95 (2009) 125-130. [171] Yasakau, K. A., Zheludkevich, M. L., Lamaka, S. V. and Ferreira, M. G. S., Electrochim. Acta 52 (2007) 7651-7659. [172] Kalinin, S. V. and Bonnellb, D. A., J. Appl. Phys. 91 (2002) 832-839. [173] Musil, J., Baroch, P., Vlc^ek, J., Nam, K. H. and Han, J. G., Thin Solid Films 475 200 (2005) 208-218. [174] Safi, I., Surf. Coat. Tech. 127 (2000) 203-219. [175] Glatzel, T., Lux-Steiner, M. C., Strassburg, E., Boag, A. and Rosenwaks, Y., (2007) Principles of Kelvin probe force microscopy. in Scanning probe microscopy (S. Kalinin, and A. Gruverman eds.), Springer New York. pp 113-131. [176] Melitz, W., Shen, J., Kummel, A. C. and Lee, S., Surf. Sci. Reports 66 (2011) 1-27. [177] Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Ivanov, I. N., Dudney, N. J. and Kalinin, S. V., ACS Nano (2010) 7349-7357. [178] Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I. N., Dudney, N. J. and Kalinin, S. V., Nano Lett. 10 (2010) 3420-3425. [179] Balke, N., Jesse, S., Morozovska, A. N., Eliseev, E., Chung, D. W., Kim, Y., Adamczyk, L., Garcia, R. E., Dudney, N. J. and Kalinin, S. V., Nat. Nano (2010) 749-754. [180] Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C. and Kalinin, S. V., J. Electrochem. Soc. 158 (2011) A982-A990. [181] Zhu, J., Yeap, K. B., Zeng, K. and Lu, L., Thin Solid Films 519 (2011) 1914-1922. [182] Yeap, K. B., Zeng, K. and Chi, D., Acta Mater. 56 (2008) 977-984. [183] Yeap, K. B., Zeng, K. Y., Jiang, H. Y., Shen, L. and Chi, D. Z., J. Appl. Phys. 101 201 (2007) 123531. [184] Bai, G. R., Wang, A., Foster, C. M. and Vetrone, J., Thin Solid Films 310 (1997) 75-80. [185] Huang, J. H. and Chen, J. S., Thin Solid Films 382 (2001) 139-145. [186] Huang, Y. S. and Liao, P. C., Sol. Energ. Mater. Sol. C. 55 (1998) 179-197. [187] Jevtic, M. M., Jelenkovic, E. V., Tong, K. Y. and Pang, G. K. H., Thin Solid Films 496 (2006) 214-220. [188] Meng, L. J. and dos Santos, M. P., Appl. Surf. Sci. 147 (1999) 94-100. [189] Meng, L. J. and dos Santos, M. P., Thin Solid Films 375 (2000) 29-32. [190] Canart-Martin, M. C., Canivez, Y., Declercq, R., Laude, L. D. and Wautelet, M., Thin Solid Films 92 (1982) 323-326. [191] Grillo, M. E., Comput. Mater. Sci. 33 (2005) 83-91. [192] Lim, W. T., Cho, K. R. and Lee, C. H., Thin Solid Films 348 (1999) 56-62. [193] Reddy, Y. K. V. and Mergel, D., J. Mater. Sci-Mater. El. 17 (2006) 1029-1034. [194] Sakiyama, K., Onishi, S., Ishihara, K., Orita, K., Kajiyama, T., Hosoda, N. and Hara, T., J. Electrochem. Soc. 140 (1993) 834-839. [195] Takeuchi, M., Miwada, K. and Nagasaka, H., Appl. Surf. Sci. 11-12 (1982) 298-307. [196] Ye, J. S., Cui, H. F., Liu, X., Lim, T. M., Zhang, W. D. and Sheu, F. S., Small (2005) 560-565. [197] Kim, H. K., Choi, S. H., Yoon, Y. S., Chang, S. Y., Ok, Y. W. and Seong, T. Y., 202 Thin Solid Films 475 (2005) 54-57. [198] Wang, X., Pun, A. F., Xin, Y. and Zheng, J. P., Thin Solid Films 510 (2006) 82-87. [199] Meng, L. J. and dos Santos, M. P., Thin Solid Films 375 (2000) 29-32. [200] Reddy, Y. K. V. and Mergel, D., J. Mater. Sci.-Mater. Electron. 17 (2006) 1029-1034. [201] Chen, J. and Bull, S. J., J. Phys. D-Appl. Phys. 40 (2007) 5401-5417. [202] Chen, J. J. and Bull, S. J., Thin Solid Films 517 (2009) 2945-2952. [203] Cheng, Y. T. and Cheng, C. M., J. Mater. Res. 13 (1998) 1059-1064. [204] Joslin, D. L. and Oliver, W. C., J. Mater. Res. (1990) 123-126. [205] Grillo, M. E., Computational Materials Science 33 (2005) 83-91. [206] Zhu, J., Zeng, K. and Lu, L., Metall. Mater. Trans. A in press, (2011) DOI: 10.1007/s11661-11011-10847-11660. [207] Zhu, J., Zeng, K. and Lu, L., J. Solid State. Electr. 16 (2012) 1877-1881. [208] Li, C., Wei, W., Fang, S., Wang, H., Zhang, Y., Gui, Y. and Chen, R., J. Power Sourc. 195 (2010) 2939-2944. [209] Zhu, J., Yeap, K. B., Zeng, K. and Lu, L., Thin Solid Films 519 (2010) 1914-1922. [210] Kong, F., R. Kostecki , Nadeau, G., Song, X., Zaghib, K., Kinoshita, K. and McLarnon, F., J. Power Sources 97-98 (2001) 58-66. [211] Mukaibo, H., Momma, T., Mohamedi, M. and Osaka, T., J. Electrochem. Soc. 203 152 (2005) A560-A565. [212] Moon, H. S., Lee, W., Reucroft, P. J. and Park, J. W., J. Power Sources 119-121 (2003) 710-712. [213] Oliver, W. C. and Pharr, G. M., J. Mater. Res. (1992) 1564-1583. [214] Joslin, D. L. and Oliver, W. C., J. Mater. Res. (1990) 123-126. [215] Chen, J., Bull, S. J., Roy, S., Kapoor, A., Mukaibo, H., Nara, H., Momma, T., Osaka, T. and Shacham-Diamand, Y., Tribol. Int. 42 (2009) 779-791. [216] Chen, Z., He, M., Balakrisnan, B. and Chum, C. C., Mat. Sci. Eng. A-Struct. 423 (2006) 107-110. [217] Mukaibo, H., Momma, T., Shacham-Diamand, Y., Osaka, T. and Kodaira, M., Electrochem. Solid. ST. 10 (2007) A70-A73. [218] Cibert, C., Hidalgo, H., Champeaux, C., Tristant, P., Tixier, C., Desmaison, J. and Catherinot, A., Thin Solid Films 516 (2008) 1290-1296. [219] Niu, Z., Jia, X., Zhang, W., Chen, W. and Qian, K., Appl. Surf. Sci. 252 (2006) 2259-2264. [220] Zhang, C., Ding, W., Wang, H., Chai, W. and Ju, D., J. Env. Sci. 21 (2009) 741-744. [221] Kasemanankul, P., Witit-Anan, N., Chaiyakun, S., Limsuwan, P. and Boonamnuayvitaya, V., Mater. Chem. Phys. 117 (2009) 288-293. [222] Zheng, S. K., Wang, T. M., Xiang, G. and Wang, C., Vacuum 62 (2001) 361-366. [223] Bendavid, A., Martin, P. J. and Takikawa, H., Thin Solid Films 360 (2000) 204 241-249. [224] Murphy, D. W., Cava, R. J., Zahurak, S. M. and Santoro, A., Solid State Ionics 9-10 (1983) 413-417. [225] Ebina, T., Iwasaki, T., Onodera, Y., Hayashi, H., Nagase, T., Chatterjee, A. and Chiba, K., J. Power Sourc. 81-82 (1999) 393-396. [226] Zhu, J., Zeng, K. and Lu, L., Electrochim. Acta 68 (2012) 52-59. [227] Chen, Z., He, M., Balakrisnan, B. and Chum, C. C., Mat. Sci. Eng. A 423 (2006) 107-110. [228] Thackeray, M. M., J. Electrochem. Soc. 142 (1995) 2558-2563. [229] Thackeray, M. M., Johnson, C. S., Kahaian, A. J., Kepler, K. D., Vaughey, J. T., Shao-Horn, Y. and Hackney, S. A., J. Power Sourc. 81 (1999) 60-66. [230] Thackeray, M. M., Shao-Horn, Y., Kahaian, A. J., Kepler, K. D., Vaughey, J. T. and Hackney, S. A., Electrochem. Solid State Lett. (1998) 7-9. [231] Shaju, K. M. and Bruce, P. G., Adv. Mater. 18 (2006) 2330-2334. [232] Tsai, Y. W., Hwang, B. J., Ceder, G., Sheu, H. S., Liu, D. G. and Lee, J. F., Chem. Mat. 17 (2005) 3191-3199. [233] Kim, J.-M. and Chung, H.-T., Electrochim. Acta 49 (2004) 937-944. [234] Deng, C., Zhang, S., Fu, B. L., Yang, S. Y. and Ma, L., J. Alloy Compd. 496 (2010) 521-527. [235] Yabuuchi, N. and Ohzuku, T., J. Power Sourc. 119 (2003) 171-174. [236] Yabuuchi, N. and Ohzuku, T., J. Power Sourc. 146 (2005) 636-639. 205 [237] Yue Wu, Z., J. Power Sourc. 183 (2008) 316-324. [238] Ding, J. J., Sun, Q. A. and Fu, Z. W., Electrochem. Solid. State Lett. 13 (2010) A105-A108. [239] Li, D., Kato, Y., Kobayakawa, K., Noguchi, H. and Sato, Y., J. Power Sourc. 160 (2006) 1342-1348. [240] Choi, J. and Manthiram, A., Electrochem. Solid. State Lett. (2005) C102-C105. [241] Kang, S.-H. and Abraham, D. P., J. Power Sourc. 174 (2007) 1229-1233. [242] Matsui, M., Dokko, K. and Kanamura, K., J. Power Sourc. 177 (2008) 184-193. [243] Li, G., Yamada, A., Fukushima, Y., Yamaura, K., Saito, T., Endo, T., Azuma, H., Sekai, K. and Nishi, Y., Solid State Ionics 130 (2000) 221-228. [244] Zhu, J., Feng, J., Lu, L. and Zeng, K., J. Power Sourc. 197 (2012) 224-230. [245] Zhu, J., Lu, L. and Zeng, K., J. Appl. Phys. 111 (2012) 063723. [246] Wiedemair, J., Mizaikoff, B. and Kranz, C., (2007) Combined scanning probe techniques for in-situ electrochemical imaging at a nanoscale. in Applied scanning probe methods V: scanning probe microscopy techniques (B. Bhushan, H. Fuchs, and S. Kawata eds.). pp 225-267. [247] Bergamini, J. F., Ghilane, J., Guilloux-Viry, M. and Hapiot, P., Electrochem. Commun. (2004) 188-192. [248] Semenov, A. E., Borodina, I. N. and Garofalini, S. H., J. Electrochem. Soc. 148 (2001) A1239-A1246. [249] Magonov, S. N., Elings, V. and Whangbo, M. H., Surf. Sci. 375 (1997) 206 L385-L391. [250] Schon, P., Bagdi, K., Molnar, K., Markus, P., Pukanszky, B. and Vancso, G. J., Eur. Polym. J. 47 (2011) 692-698. [251] Thanawan, S., Radabutra, S., Thamasirianunt, P., Amornsakchai, T. and Suchiva, K., Ultramicroscopy 109 (2009) 189-192. [252] Nagpure, S. C., Bhushan, B. and Babu, S. S., J. Power Sources 196 (2011) 1508-1512. [253] Rosenwaks, Y., Shikler, R., Glatzel, T. and Sadewasser, S., Phys. Rev. B 70 (2004) [254] Wong, M. F., Herng, T. S., Zhang, Z. K., Zeng, K. Y. and Ding, J., Appl. Phys. Lett. 97 (2010) 232103. [255] Sasahara, A., Uetsuka, H. and Onishi, H., Surf. Sci. 529 (2003) L245-L250. [256] Wong, M. F., Herng, T. S., Zhang, Z. K., Zeng, K. Y. and Ding, J., Appl. Phys. Lett. 97 (2010) [257] Cermak, J., Kromka, A. and Rezek, B., Phys. Status Solidi A-Appl. Mat. 205 (2008) 2136-2140. [258] Kim, Y., Buhlmann, S., Kim, J., Park, M., No, K., Kim, Y. K. and Hong, S., Appl. Phys. Lett. 91 (2007) [259] Jesse, S., Kumar, A., Kalinin, S. V., Gannepali, A. and Proksch, R., Microsc. Today 18 (2010) 34-40. 207 Appendix Appendix The diagram shows the signal enhancement on resonance frequency of band excitation approach, indicating the relationship between cantilever response (surface displacement), frequency and surface topography along a fast scan line. 208 [...]... interfacial reliability Chapter 8 presents in-situ studies on all- solid- state thin film lithium ion batteries, using a combination of various SPM techniques Finally, Chapter 9 summarizes the contributions of this thesis and makes suggestions for future research to further understand the aging mechanisms of thin film lithium ion batteries 7 Chapter 2 Chapter 2 Literature Review The investigation of interfacial... plan views of 90° wedge indentation on RuO2 film: (a) indentation impression; (b) corner cracks; (c) delamination crack shape; and (d) spall-off event Fig 4.5 FIB cross-sectional view of 90° wedge indentation at high load of 40 mN Fig 4.6 FIB cross-sectional views of 120° wedge indentation on RuO2 film: (a) initiation of interface crack; (b) propagation of interface crack; and (c) spall-off event Fig... FESEM plan views of 120° wedge indentation on RuO2 film: (a) indentation impression; (b) delamination crack shape; and (c) spall-off event Fig 4.8 FIB cross-sectional views of conical indentation on RuO2 film: (a) no interface crack; (b)-(c) initiation and propagation of interface crack Fig 4.9 FESEM plan views of conical indentation on RuO2 film: (a) central film crack and delamination crack shape;... Section 2.1 presents various anode and cathode materials for lithium ion batteries, followed by Section 2.2 with an overview of all- solid- state thin film lithium ion microbatteries Section 2.3 reviews previous studies on aging mechanisms of lithium ion batteries using various technologies Moreover, Section 2.4 summarizes a variety of experimental methods developed to determine the interfacial adhesion... interfacial reliability of thin film electrode, based on the theoretical analysis of interfacial mechanics Using this method, the degradation of interfacial reliability and aging phenomenon of thin film electrodes were investigated in Stage 3 In addition to interfacial reliability, in the last stage, in-situ exploratory studies were conducted on all- solid- state thin film batteries to investigate the local aging. .. techniques, and to examine the related aging mechanisms also;  To investigate the effects of charge/discharge rate and depth of discharge (DOD) on interfacial reliability, mechanical behavior, and surface morphology change of thin film electrode;  To obtain in-situ observations of the changes in topography, volume, phase, surface potential and electrochemical strain in all- solid- state thin film lithium ion. .. studies on aging issues, a comprehensive understanding of mechanical failure as well as the degradation of interfacial reliability is still not available For small-scale all- solid- state thin film lithium ion microbatteries, the interfacial reliability of electrode is very crucial to maintain both structural integrity and electrochemical cycling performance Therefore, the main objective of this thesis... techniques Findings of this study should contribute to a better understanding of the mechanical degradation of thin film electrodes This explorative study may provide comprehensive insight into the aging mechanisms of thin film lithium ion batteries, 6 Chapter 1 providing a new perspective to investigate the battery aging Besides, the other important contribution is the extension of characterization method... new perspectives into aging studies of lithium ion batteries from mechanical aspect The last part of this thesis covers explorative studies on local aging mechanisms of all- solid- state thin film lithium ion microbatteries, using a combination of various Scanning Probe Microscopy (SPM) techniques, i.e Biased Atomic Force Microscopy (biased-AFM), Kelvin Probe Force Microscopy (KPFM), and Electrochemical... Fig 4.2 Indentation load-displacement (P-h) curves on RuO2 films using (a) a standard Berkovich indenter; (b) a conical indenter; (c) a wedge indenter of 90°; and (d) a wedge indenter of 120° wedge indentation configuration and interfacial xv List of Figures Fig 4.3 FIB cross-sectional views of 90° wedge indentation on RuO2 film: (a) initiation of interface crack; and (b)-(d) propagation of interface . RELIABILITY AND AGING MECHANISMS OF ALL- SOLID- STATE THIN FILM LITHIUM ION MICROBATTERIES ZHU JING NATIONAL UNIVERSITY OF SINGAPORE 2012 RELIABILITY AND AGING. 2.2 All- Solid- State Thin Film Lithium Ion Microbatteries 17 Table of Contents vii 2.3 Aging Studies for Lithium Ion Batteries 20 2.4 Methods to Determine the Interfacial Adhesion of Thin Film/ Substrate. Electrochemical Study on All- Solid- State Thin Film Lithium Ion Batteries by Scanning Probe Microscopy 144 8.1 Electrochemical Characterization of All- Solid- State Thin Film Lithium Ion Batteries 145

Ngày đăng: 09/09/2015, 10:14

Từ khóa liên quan

Mục lục

  • DECLARATION

  • LIST OF PUBLICATIONS

  • ACKNOWLEDGEMENTS

  • TABLE OF CONTENTS

  • SUMMARY

  • LIST OF TABLES

  • LIST OF FIGURES

  • LIST OF SYMBOLS

  • Chapter 1. Introduction

    • 1.1 Overview of Lithium Ion Batteries

      • 1.1.1 Principles of Operation

      • 1.1.2 Current Status and Challenges

      • 1.2 Research Objective and Significance

      • 1.3 Thesis Outline

      • Chapter 2. Literature Review

        • 2.1 Materials for Electrode

          • 2.1.1 Anode Materials

          • 2.1.2 Cathode Materials

          • 2.2 All-Solid-State Thin Film Lithium Ion Microbatteries

          • 2.3 Aging Studies for Lithium Ion Batteries

          • 2.4 Methods to Determine the Interfacial Adhesion of Thin Film/Substrate Structure

            • 2.4.1 Mechanical Bending Tests

            • 2.4.2 Indentation Tests

            • 2.5 Scanning Probe Microscopy

            • Chapter 3. Materials and Experimental Methodology

              • 3.1. Material Preparation

                • 3.1.1 Target Fabrication

Tài liệu cùng người dùng

Tài liệu liên quan