Mối quan hệ giữa lạm phát và tăng trưởng kinh tế tại Việt Nam Luận văn thạc sĩ Đại học Kinh tế TP.HCM, 2014

110 520 3
Mối quan hệ giữa lạm phát và tăng trưởng kinh tế tại Việt Nam  Luận văn thạc sĩ  Đại học Kinh tế TP.HCM, 2014

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIÁO D I H C KINH T TP H O CHÍ MINH MAI TH HU NH MAI M I QUAN H GI A L M PHÁT VÀ NG KINH T T I VI T NAM LU TP H CHÍ MINH - B GIÁO D O I H C KINH T TP H CHÍ MINH MAI TH HU NH MAI M I QUAN H GI A L M PHÁT VÀ NG KINH T T I VI T NAM Chuyên ngành: Tài Ngân hàng Mã s : 60340201 LU NG D N KHOA H C: PGS TS NGUY TP H CHÍ MINH - TÓM T T LÝ THUY T V M I QUAN H GI A L M PHÁT NG KINH T 10 2.1 10 2.2 27 2.3 28 35 3.1 35 3.2 36 43 4.1 43 4.2 46 4.3 51 4.4 56 T LU N 71 TÀI LI U THAM KH O 75 PH L C 80 VI T T T AD ARCH ARMA AS T ng c u (Aggregate Demand) (Autoregressive Conditional Heteroskedasticity) Autoregressive Moving Average) T ng cung (Aggregate Supply) T ng c c nghiên c u kinh t qu c gia ASA NBER K B ph n th ng kê Hoa (American Statistical Association National Bureau of Economic Research) ASEAN Hi p h i qu Southeast Asian Nations) CAPM CPI nh giá tài s n v n (Capital Asset Pricing Model) Ch s giá tiêu dùng (Consumer Price Index) EGARCH Exponential Generalised Autoregressive Conditional Heteroskedasticity) T ph pb yv b G7 ng tài c a b th gi i g m: Canada, Pháp, c tiên ti n c, Ý, Nh t, Anh Hoa K (Group of Seven) Generalised GARCH Autoregressive Conditional Heteroskedasticity) Mơ hình t h i quy t ng qt v GARCH - M ki mean) u trung bình (The GARCH-in- GDP GIRFs T ng s n ph m qu c n i (Gross Domestic Product) Generalised Impulse Response Functions) GNP T ng s n ph m qu c gia (Gross National Product) GSO T ng c c th ng kê Vi t Nam (General Statistics Office) IFS IIP Statistics) Ch s s n xu t công nghi p ( Index Industry Products) IMF NAIRU OECD PSTR SAAR T l th t nghi p t nhiên ( T l th t nghi l m phát_Non-Accelerating Inflation Rate of Unemployment) T ch c H p tác Phát tri n Kinh t (Organization for Economic Cooperation and Development) Mơ hình h i quy chuy n ti Regression) T l (Seasonally Adjusted Annualized Rate) u ch nh tính mùa v 39 45 -2014 50 52 4.4 53 4.5 -M -2014) 56 4.6 -M -2014) 59 4.7 63 4.8 65 Hình 2.1 M 16 Hình 2.2 22 Hình 4.1 quý 47 Hình quý 48 Hình quý II/2014 49 Nam (1999-2014) 51 Hình 4.5 GARCH (1,1) 55 Hình 4.6 69 phát T b toàn c u, Vi u th c hi c nh liên t c cao so v i m i m c a h i nh p kinh t c ti ,t c khu v c, v ng kinh t ng áp l c ngày thành m t nh ng m c tiêu quan tr ng xây d ng sách kinh t u cu c tranh lu n di n v s t n t i b n ch t c a m i quan h gi a l h uh ng kinh t Tuy nhiên ng thu n r ng l ng kinh t có s v i m i quan h không thu n nh t, m c tiêu l m phát th ng tích c ng l n nh kinh t ng kinh t Bài nghiên c u s ti p t c t p trung vào m i quan h gi a l m phát, bi n ng c a l m phát, s n ng kinh t nh ng bi ng c a s b ng mơ hình t h i quy t ng quát c p s nhân v (EGARCH) ki nh gi thuy d li u c a Vi t Nam Các k t qu ki m u ki n nghiên c nh s ng kinh t i phát hi n nh ng m i bi ki n ngh ho chi ng c a l ng kinh t t nh sách ki m sốt bi ng c a l m phát phù h p v i c phát tri n kinh t t AD-AS) trình bày Cukierman Meltzer (1986), Deveraux (1989), Friedman (1977), Black (1987), Holland (1995) , xu t b i Nelson (1991) c phát tri n b i Paresh Kumar Narayan Seema Narayan (2012) nhìn sâu s gi ng s u tiên v tính ch t ph c t p c a m i quan h ng, l m phát, bi ng s thông qua nhi u kênh truy n d n khác v i ng bi ng l m phát ng không thu n nh t gi thuy t c a Friedman, ng h p c a Vi n l m phát cao d l m phát, l m phát b cá nhân n n kinh t c ah s có th nh n nh ng d n nhi u b t c a t ch c, u khó xác thu n nh t, v y nh ng hành vi ng tiêu c ng s ng Vi t Nam có th ng n n kinh v a l m phát cao v a có t l th t nghi p cao Theo 88 Null Hypothesis: INF is stationary Exogenous: Constant Bandwidth: (Newey-West automatic) using Bartlett kernel LM-Stat Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.515349 Asymptotic critical values*: 1% level 0.739000 5% level 0.463000 10% level 0.347000 *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1) Residual variance (no correction) 54.17774 HAC corrected variance (Bartlett kernel) 151.3419 KPSS Test Equation Dependent Variable: INF Method: Least Squares Date: 11/26/14 Time: 12:03 Sample (adjusted): 1999Q1 2014Q2 Included observations: 62 after adjustments Variable Coefficient Std Error t-Statistic Prob C 6.973696 0.942422 7.399758 0.0000 R-squared 0.000000 Mean dependent var 6.973696 Adjusted R-squared 0.000000 S.D dependent var 7.420640 S.E of regression 7.420640 Akaike info criterion 6.862405 Sum squared resid 3359.020 Schwarz criterion 6.896714 Hannan-Quinn criter 6.875876 Log likelihood Durbin-Watson stat -211.7346 0.503971 89 Null Hypothesis: INF is stationary Exogenous: Constant, Linear Trend Bandwidth: (Newey-West automatic) using Bartlett kernel LM-Stat Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.153944 Asymptotic critical values*: 1% level 0.216000 5% level 0.146000 10% level 0.119000 *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1) Residual variance (no correction) 45.10357 HAC corrected variance (Bartlett kernel) 101.5675 KPSS Test Equation Dependent Variable: INF Method: Least Squares Date: 11/26/14 Time: 12:04 Sample (adjusted): 1999Q1 2014Q2 Included observations: 62 after adjustments Variable Coefficient Std Error t-Statistic Prob C 1.671333 1.755234 0.952200 0.3448 @TREND("1998Q4") 0.168329 0.048449 3.474351 0.0010 R-squared 0.167489 Mean dependent var 6.973696 Adjusted R-squared 0.153614 S.D dependent var 7.420640 S.E of regression 6.826933 Akaike info criterion 6.711355 Sum squared resid 2796.421 Schwarz criterion 6.779972 Hannan-Quinn criter 6.738295 Durbin-Watson stat 0.606129 Log likelihood -206.0520 F-statistic 12.07111 Prob(F-statistic) 0.000957 90 Null Hypothesis: GROWTH has a unit root Exogenous: Constant Lag Length: (Automatic - based on SIC, maxlag=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.994349 0.2885 Test critical values: 1% level -3.552666 5% level -2.914517 10% level -2.595033 *MacKinnon (1996) one-sided p-values Augmented Dickey-Fuller Test Equation Dependent Variable: D(GROWTH) Method: Least Squares Date: 11/26/14 Time: 12:04 Sample (adjusted): 2000Q3 2014Q2 Included observations: 56 after adjustments Variable Coefficient Std Error t-Statistic Prob GROWTH(-1) -0.502250 0.251837 -1.994349 0.0517 D(GROWTH(-1)) -0.350769 0.261067 -1.343598 0.1853 D(GROWTH(-2)) -0.429616 0.250842 -1.712695 0.0931 D(GROWTH(-3)) -0.288856 0.214705 -1.345364 0.1847 D(GROWTH(-4)) 0.060563 0.178717 0.338879 0.7361 D(GROWTH(-5)) 0.168258 0.105765 1.590868 0.1181 C 3.264637 1.687030 1.935139 0.0588 R-squared 0.577723 Mean dependent var -0.010739 Adjusted R-squared 0.526016 S.D dependent var 2.919683 S.E of regression 2.010100 Akaike info criterion 4.350714 Sum squared resid 197.9846 Schwarz criterion 4.603883 Hannan-Quinn criter 4.448868 Durbin-Watson stat 2.073766 Log likelihood -114.8200 F-statistic 11.17294 Prob(F-statistic) 0.000000 91 Null Hypothesis: GROWTH has a unit root Exogenous: Constant, Linear Trend Lag Length: (Automatic - based on SIC, maxlag=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -2.837753 0.1905 Test critical values: 1% level -4.130526 5% level -3.492149 10% level -3.174802 *MacKinnon (1996) one-sided p-values Augmented Dickey-Fuller Test Equation Dependent Variable: D(GROWTH) Method: Least Squares Date: 11/26/14 Time: 12:05 Sample (adjusted): 2000Q3 2014Q2 Included observations: 56 after adjustments Variable Coefficient Std Error t-Statistic Prob GROWTH(-1) -0.812997 0.286493 -2.837753 0.0066 D(GROWTH(-1)) -0.126114 0.275169 -0.458317 0.6488 D(GROWTH(-2)) -0.268167 0.255135 -1.051080 0.2985 D(GROWTH(-3)) -0.227926 0.209965 -1.085543 0.2831 D(GROWTH(-4)) 0.088249 0.173557 0.508471 0.6135 D(GROWTH(-5)) 0.166703 0.102408 1.627837 0.1101 C 6.700214 2.330945 2.874462 0.0060 @TREND("1998Q4") -0.039956 0.019340 -2.066026 0.0442 R-squared 0.612208 Mean dependent var -0.010739 Adjusted R-squared 0.555655 S.D dependent var 2.919683 S.E of regression 1.946237 Akaike info criterion 4.301237 181.8163 Schwarz criterion 4.590573 Hannan-Quinn criter 4.413412 Durbin-Watson stat 2.070092 Sum squared resid Log likelihood -112.4346 F-statistic 10.82539 Prob(F-statistic) 0.000000 92 Null Hypothesis: GROWTH has a unit root Exogenous: Constant Bandwidth: (Newey-West automatic) using Bartlett kernel Adj t-Stat -9.674369 Phillips-Perron test statistic Test critical values: Prob.* 0.0000 1% level -3.542097 5% level -2.910019 10% level -2.592645 *MacKinnon (1996) one-sided p-values Residual variance (no correction) 7.629624 HAC corrected variance (Bartlett kernel) 8.206572 Phillips-Perron Test Equation Dependent Variable: D(GROWTH) Method: Least Squares Date: 11/26/14 Time: 12:05 Sample (adjusted): 1999Q2 2014Q2 Included observations: 61 after adjustments Variable Coefficient Std Error t-Statistic Prob GROWTH(-1) -1.205880 0.123641 -9.753037 0.0000 C 7.854750 0.873224 8.995112 0.0000 R-squared 0.617186 Mean dependent var 0.093851 Adjusted R-squared 0.610697 S.D dependent var 4.501392 S.E of regression 2.808604 Akaike info criterion 4.935489 Sum squared resid 465.4071 Schwarz criterion 5.004698 Hannan-Quinn criter 4.962613 Durbin-Watson stat 1.743203 Log likelihood -148.5324 F-statistic 95.12173 Prob(F-statistic) 0.000000 93 Null Hypothesis: GROWTH has a unit root Exogenous: Constant, Linear Trend Bandwidth: (Newey-West automatic) using Bartlett kernel Adj t-Stat -10.43915 Phillips-Perron test statistic Test critical values: Prob.* 0.0000 1% level -4.115684 5% level -3.485218 10% level -3.170793 *MacKinnon (1996) one-sided p-values Residual variance (no correction) 7.060326 HAC corrected variance (Bartlett kernel) 6.386867 Phillips-Perron Test Equation Dependent Variable: D(GROWTH) Method: Least Squares Date: 11/26/14 Time: 12:06 Sample (adjusted): 1999Q2 2014Q2 Included observations: 61 after adjustments Variable Coefficient Std Error t-Statistic Prob GROWTH(-1) -1.250992 0.121760 -10.27421 0.0000 C 9.536988 1.150172 8.291790 0.0000 @TREND("1998Q4") -0.043497 0.020113 -2.162576 0.0347 R-squared 0.645750 Mean dependent var 0.093851 Adjusted R-squared 0.633535 S.D dependent var 4.501392 S.E of regression 2.724980 Akaike info criterion 4.890729 430.6799 Schwarz criterion 4.994542 Hannan-Quinn criter 4.931414 Durbin-Watson stat 1.799347 Sum squared resid Log likelihood -146.1672 F-statistic 52.86311 Prob(F-statistic) 0.000000 94 Null Hypothesis: GROWTH is stationary Exogenous: Constant Bandwidth: (Newey-West automatic) using Bartlett kernel LM-Stat Kwiatkowski-Phillips-Schmidt-Shin test statistic Asymptotic critical values*: 0.320085 1% level 0.739000 5% level 0.463000 10% level 0.347000 *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1) Residual variance (no correction) 8.325184 HAC corrected variance (Bartlett kernel) 8.325184 KPSS Test Equation Dependent Variable: GROWTH Method: Least Squares Date: 11/26/14 Time: 12:06 Sample (adjusted): 1999Q1 2014Q2 Included observations: 62 after adjustments Variable Coefficient Std Error t-Statistic Prob C 6.442343 0.369430 17.43861 0.0000 R-squared 0.000000 Mean dependent var 6.442343 Adjusted R-squared 0.000000 S.D dependent var 2.908894 S.E of regression 2.908894 Akaike info criterion 4.989420 Sum squared resid 516.1614 Schwarz criterion 5.023729 Hannan-Quinn criter 5.002891 Log likelihood Durbin-Watson stat -153.6720 2.356412 95 Null Hypothesis: GROWTH is stationary Exogenous: Constant, Linear Trend Bandwidth: (Newey-West automatic) using Bartlett kernel LM-Stat Kwiatkowski-Phillips-Schmidt-Shin test statistic Asymptotic critical values*: 0.203158 1% level 0.216000 5% level 0.146000 10% level 0.119000 *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1) Residual variance (no correction) 8.103034 HAC corrected variance (Bartlett kernel) 5.168940 KPSS Test Equation Dependent Variable: GROWTH Method: Least Squares Date: 11/26/14 Time: 12:06 Sample (adjusted): 1999Q1 2014Q2 Included observations: 62 after adjustments Variable Coefficient Std Error t-Statistic Prob C 7.271983 0.743966 9.774613 0.0000 @TREND("1998Q4") -0.026338 0.020535 -1.282553 0.2046 R-squared 0.026684 Mean dependent var 6.442343 Adjusted R-squared 0.010462 S.D dependent var 2.908894 S.E of regression 2.893637 Akaike info criterion 4.994632 Sum squared resid 502.3881 Schwarz criterion 5.063249 Hannan-Quinn criter 5.021573 Durbin-Watson stat 2.421699 Log likelihood -152.8336 F-statistic 1.644942 Prob(F-statistic) 0.204582 96 97 98 EGARCH Dependent Variable: INF Method: ML - ARCH (Marquardt) - Student's t distribution Date: 08/23/14 Time: 21:49 Sample (adjusted): 1999Q2 2014Q2 Included observations: 61 after adjustments Convergence achieved after 107 iterations MA Backcast: 1999Q1 Presample variance: backcast (parameter = 0.7) LOG(GARCH) = C(7) + C(8)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(9) *RESID(-1)/@SQRT(GARCH(-1)) + C(10)*LOG(GARCH(-1)) + C(11) *INF + C(12)*GROWTH + C(13)*CV_GROWTH Variable Coefficient Std Error z-Statistic Prob GARCH C CV_GROWTH GROWTH AR(1) MA(1) 0.158977 -23.46585 -0.691237 -0.472495 -0.002557 0.015377 0.797544 4.930041 0.335196 0.146091 0.097316 0.066793 0.199333 -4.759768 -2.062190 -3.234241 -0.026273 0.230223 0.8420 0.0000 0.0392 0.0012 0.9790 0.8179 Variance Equation C(7) C(8) C(9) C(10) C(11) C(12) C(13) 5.185432 -0.050020 0.132936 -0.022184 0.027227 0.013475 0.018615 5.471029 0.141189 0.302149 0.076658 0.003879 0.004022 0.010341 0.947798 -0.354279 0.439969 -0.289396 7.019524 3.350035 1.800184 0.3432 0.7231 0.6600 0.7723 0.0000 0.0008 0.0718 T-DIST DOF 2.000264 0.001334 1499.186 0.0000 R-squared Adjusted R-squared S.E of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots Inverted MA Roots 0.951821 0.947441 1.714292 161.6339 -44.53078 1.577100 -.00 -.02 Mean dependent var S.D dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter 7.006917 7.477573 1.919042 2.403505 2.108907 99 ,1) EGARCH Dependent Variable: GROWTH Method: ML - ARCH (Marquardt) - Student's t distribution Date: 08/23/14 Time: 20:40 Sample (adjusted): 1999Q3 2014Q2 Included observations: 60 after adjustments Convergence achieved after 141 iterations MA Backcast: 1999Q2 Presample variance: backcast (parameter = 0.7) LOG(GARCH) = C(8) + C(9)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(10) *RESID(-1)/@SQRT(GARCH(-1)) + C(11)*LOG(GARCH(-1)) + C(12) *INF + C(13)*GROWTH + C(14)*CV_INF Variable Coefficient Std Error z-Statistic Prob GARCH C CV_INF INF AR(1) AR(2) MA(1) -2.760700 23.57375 -0.008157 0.144035 -0.065933 -0.014444 0.079623 1.633499 1.566203 0.001079 0.032331 0.121931 0.006854 0.112422 -1.690053 15.05153 -7.556885 4.455087 -0.540738 -2.107505 0.708255 0.0910 0.0000 0.0000 0.0000 0.5887 0.0351 0.4788 Variance Equation C(8) C(9) C(10) C(11) C(12) C(13) C(14) 2.211828 -0.024057 0.007447 -0.022693 0.008330 -0.054365 -0.000481 0.645828 0.025984 0.019353 0.011447 0.001675 0.004777 7.61E-05 3.424795 -0.925833 0.384815 -1.982518 4.973788 -11.37983 -6.319943 0.0006 0.3545 0.7004 0.0474 0.0000 0.0000 0.0000 T-DIST DOF 2.002270 0.001910 1048.396 0.0000 R-squared Adjusted R-squared S.E of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots Inverted MA Roots 0.926306 0.915888 0.171421 1.557422 32.10556 2.058573 -.03+.12i -.08 Mean dependent var S.D dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter -.03-.12i 6.395754 2.673094 -0.570185 -0.046599 -0.365382 100 c7 Pairwise Granger Causality Tests Date: 11/26/14 Time: 12:32 Sample: 1998Q4 2014Q2 Lags: Null Hypothesis: Obs F-Statistic Prob CV_GROWTH does not Granger Cause GROWTH GROWTH does not Granger Cause CV_GROWTH 60 6.99999 42.5760 0.0020 7.E-12 INF does not Granger Cause GROWTH GROWTH does not Granger Cause INF 60 3.15685 0.29428 0.0504 0.7462 CV_INF does not Granger Cause GROWTH GROWTH does not Granger Cause CV_INF 60 5.08227 0.43689 0.0094 0.6483 INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause INF 60 2.05415 0.69555 0.1379 0.5031 CV_INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause CV_INF 60 3.65466 0.05636 0.0323 0.9453 CV_INF does not Granger Cause INF INF does not Granger Cause CV_INF 60 5.60541 27.6483 0.0061 5.E-09 Obs F-Statistic Prob CV_GROWTH does not Granger Cause GROWTH GROWTH does not Granger Cause CV_GROWTH 59 1.50605 24.7782 0.2238 4.E-10 INF does not Granger Cause GROWTH GROWTH does not Granger Cause INF 59 2.65062 0.55514 0.0584 0.6470 CV_INF does not Granger Cause GROWTH GROWTH does not Granger Cause CV_INF 59 5.21406 0.32454 0.0032 0.8076 INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause INF 59 3.86677 0.43216 0.0143 0.7309 CV_INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause CV_INF 59 7.07759 0.17311 0.0004 0.9141 CV_INF does not Granger Cause INF INF does not Granger Cause CV_INF 59 3.66476 18.4924 0.0180 3.E-08 Pairwise Granger Causality Tests Date: 11/26/14 Time: 12:35 Sample: 1998Q4 2014Q2 Lags: Null Hypothesis: 101 Pairwise Granger Causality Tests Date: 11/26/14 Time: 12:36 Sample: 1998Q4 2014Q2 Lags: Null Hypothesis: Obs F-Statistic Prob CV_GROWTH does not Granger Cause GROWTH GROWTH does not Granger Cause CV_GROWTH 58 1.43328 8.89808 0.2371 2.E-05 INF does not Granger Cause GROWTH GROWTH does not Granger Cause INF 58 2.78286 0.93062 0.0367 0.4540 CV_INF does not Granger Cause GROWTH GROWTH does not Granger Cause CV_INF 58 4.03675 0.42314 0.0066 0.7912 INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause INF 58 4.62707 0.36032 0.0030 0.8356 CV_INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause CV_INF 58 6.67668 0.37741 0.0002 0.8237 CV_INF does not Granger Cause INF INF does not Granger Cause CV_INF 58 2.72437 15.8624 0.0398 2.E-08 Obs F-Statistic Prob CV_GROWTH does not Granger Cause GROWTH GROWTH does not Granger Cause CV_GROWTH 57 0.84731 7.39691 0.5235 4.E-05 INF does not Granger Cause GROWTH GROWTH does not Granger Cause INF 57 4.26540 1.18225 0.0029 0.3325 CV_INF does not Granger Cause GROWTH GROWTH does not Granger Cause CV_INF 57 4.88036 1.20139 0.0012 0.3235 INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause INF 57 4.14255 0.34997 0.0034 0.8796 CV_INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause CV_INF 57 5.69213 0.36450 0.0004 0.8702 CV_INF does not Granger Cause INF INF does not Granger Cause CV_INF 57 1.84996 14.2135 0.1218 2.E-08 Pairwise Granger Causality Tests Date: 11/26/14 Time: 12:36 Sample: 1998Q4 2014Q2 Lags: Null Hypothesis: 102 Pairwise Granger Causality Tests Date: 11/26/14 Time: 12:37 Sample: 1998Q4 2014Q2 Lags: Null Hypothesis: Obs F-Statistic Prob CV_GROWTH does not Granger Cause GROWTH GROWTH does not Granger Cause CV_GROWTH 56 1.79222 5.81641 0.1234 0.0002 INF does not Granger Cause GROWTH GROWTH does not Granger Cause INF 56 3.28216 1.72956 0.0095 0.1372 CV_INF does not Granger Cause GROWTH GROWTH does not Granger Cause CV_INF 56 3.44857 1.03480 0.0072 0.4163 INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause INF 56 3.92071 2.10306 0.0033 0.0725 CV_INF does not Granger Cause CV_GROWTH CV_GROWTH does not Granger Cause CV_INF 56 4.43382 0.74352 0.0014 0.6177 CV_INF does not Granger Cause INF INF does not Granger Cause CV_INF 56 1.60417 12.7575 0.1693 3.E-08 ... i m i quan h không thu n nh t, m c tiêu l m phát th ng tích c ng l n nh kinh t ng kinh t Bài nghiên c u s ti p t c t p trung vào m i quan h gi a l m phát, bi n ng c a l m phát, s n ng kinh t... thuy t v m i quan h , ng kinh t , nh ng bi ng b t n l m phát ng kinh t t i Vi t Nam t vi c t ng h p nh nhà kinh t th gi i v v ki D a vào k t qu phân tích lý thuy t nh gi thuy nh sách kinh t m lý... L c nhà kinh t phân lo i d a theo t l khác l m phát v a ph i (l i ba m c c ki u), l m phát cao (l m phát phi mã), siêu l m phát (l m phát siêu t c) L m phát v a ph i v i m c t l l m phát S Hà

Ngày đăng: 07/08/2015, 14:55

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan