DE ON TAP VAO LOP 10

76 722 0
DE ON TAP VAO LOP 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Dịch Vụ Toán Học Tuyển tập Đề thi vào lớp 10 năm học 2010 - 2011 của các trường THPT trên cả nước (có Đáp án ) Môn Toán WWW.VNMATH.COM About VnMath.Com vnMath.com Dịch vụ Toán họ c info@vnmath.com Sách Đại số Giải tích Hình học Các loại khác Chuyên đề Toán Luyện thi Đại học Bồi dưỡng HSG Đề thi Đáp án Đại học Cao học Thi lớp 10 Olympic Giáo án các môn SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2010 – 2011 ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) 2 232xx 0   b) 41 62 xy xy      9 0c) 42 4133xx d) 2 2221xx0 Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) của hàm số 2 2 x y   và đường thẳng (D): 1 1 2 yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) bằng phép tính. Bài 3: (1,5 điểm) Thu gọn các biểu thức sau: 12 6 3 21 12 3A  22 53 52335 2335 22 B         Bài 4: (1,5 điểm) Cho phương trình (x là ẩn số) 22 (3 1) 2 1 0xmxmm  a) Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi giá trị của m. b) Gọi x 1 , x 2 là các nghiệm của phương trình. Tìm m để biểu thức sau đạt giá trị lớn nhất: A = 2 3 22 12 1 x xxx. Bài 5: (3,5 điểm) Cho đường tròn tâm O đường kính AB=2R. Gọi M là một điểm bất kỳ thuộc đường tròn (O) khác A và B. Các tiếp tuyến của (O) tại A và M cắt nhau tại E. Vẽ MP vuông góc với AB (P thuộc AB), vẽ MQ vuông góc với AE (Q thuộc AE). a) Chứng minh rằng AEMO là tứ giác nội tiếp đường tròn và APMQ là hình chữ nhật. b) Gọi I là trung điểm của PQ. Chứng minh O, I, E thẳng hàng. c) Gọi K là giao điểm của EB và MP. Chứng minh hai tam giác EAO và MPB đồng dạng. Suy ra K là trung điểm của MP. d) Đặt AP = x. Tính MP theo R và x. Tìm vị trí của M trên (O) để hình chữ nhật APMQ có diện tích lớn nhất. BÀI GIẢI Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) 2 232xx 0   (1) 916 25   (1) 35 1 35 2 42 4 x hay x       b) 41 62 9(2 xy xy      (1) ) 41 14 7 ( (2) 2 (1)) xy (1) x pt pt       3 1 2 y x         c) 42 4133xx 0   (3), đđặt u = x 2 , phương trình thành : 4u 2 – 13u + 3 = 0 (4) (4) có 2 169 48 121 11    13 11 1 13 11 (4) 3 84 8 uhayu      Do đó (3) 1 3 2 x hay x  d) 2 2221xx0   (5) '224   Do đó (5) 22 22 22 x hay x     Bài 2: a) Đồ thị: học sinh tự vẽ Lưu ý: (P) đi qua O(0;0),  1 1; , 2; 2 2      . (D) đi qua  1 1; , 2; 2 2     Do đó (P) và (D) có 2 điểm chung là :  1 1; , 2; 2 2      . b) PT hoành độ giao điểm của (P) và (D) là 2 2 1 12 22 x xxx  0 12x hay x   V ậy toạ độ giao điểm cảu (P) và (D) là  1 1; , 2; 2 2      . Bài 3: 12 6 3 21 12 3A  22 (33) 3(23)33(23)3    3 22 53 52335 2335 22 B         2B =     22 5423 625 5 423 625 3      22 22 22 5 (1 3) (5 1) 5 (31) (5 1) 3  = =    22 5(1 3) (5 1) 5 (3 1) (5 1) 3   =  B = 10. 5.3 5 20 Bài 4: a)   2 22 2 318 4 4 25(1)40mmmmmm            m Suy ra phương trình luôn luôn có 2 nghiệm phân biệt với mọi m. b) Ta có x 1 + x 2 = 3m + 1 và x 1 x 2 = 2m 2 + m – 1 A= 22 12 1 3 2 x xxx  2 12 1 5 2 x xx x 22 (3 1) 5(2 1)mmm  22 11 66 ( ) 42 mm m       2 25 1 () 42 m Do đó giá trị lớn nhất của A là : 25 4 . Đạt được khi m = 1 2 Bài 5: I K x A E Q O M P I B a) Ta có góc = 90 O =  EMO  EAO => EAOM nội tiếp. Tứ giác APMQ có 3 góc vuông :   o EAO APM PMQ 90 => Tứ giác APMQ là hình chữ nhật b) Ta có : I là giao điểm của 2 đường chéo AM và PQ của hình chữ nhật APMQ nên I là trung điểm của AM. Mà E là giao điểm của 2 tiếp tuyến tại M và tại A nên theo định lý ta có : O, I, E thẳng hàng. c) Cách 1 : hai tam giác AEO và MPB đồng dạng vì chúng là 2 tam giác vuông có 1 góc bằng nhau là , vì OE // BM   AOE ABM => AO AE BP MP  (1) Mặt khác, vì KP//AE, nên ta có tỉ số KP BP AE AB  (2) Từ (1) và (2) ta có : AO.MP = AE.BP = KP.AB, mà AB = 2.OA => MP = 2.KP Vậy K là trung điểm của MP. Cách 2 : Ta có EK AP EB AB  (3) do AE // KP, mặt khác, ta có EI AP EO AB  (4) do 2 tam giác EOA và MAB đồng dạng So sánh (3) & (4), ta có : EK EI EB EO  . Theo định lý đảo Thales => KI // OB, mà I là trung điểm AM => K là trung điểm MP. d) Ta dễ dàng chứng minh được : abcd 4 abcd 4      (*) Dấu “=” xảy ra khi và chỉ khi a = b = c = d MP = 22 2 2 MO OP R (x R) 2Rx x  2 Ta có: S = S APMQ = 23 MP.AP x 2Rx x (2R x)x S đạt max  đạt m ax  x.x.x(2R – x) đạt max 3 (2R x)x  xxx (2Rx) 333  đạt max Áp dụng (*) với a = b = c = x 3 Ta có : 4 4 4 xxx 1 x x x R (2Rx) (2Rx) 333 4 3 3 3 16         Do đó S đạt max  x (2R x) 3   3 xR 2  . TS. Nguyễn Phú Vinh (TT BDVH và LTĐH Vĩnh Viễn) SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THÀNH PHỐ HỒ CHÍ MINH TRUNG HỌC PHỔ THÔNG CHUN NĂM HỌC 2010 - 2011 KHÓA NGÀY 21/06/2010 Môn thi: TOÁN (chun) Thời gian làm bài : 150 phút ( không kể thời gian giao đề) Câu 1 : (4 điểm) 1) Giải hệ phương trình : 1 y 1 x 1 2 5y 3 x 1  + =   +   + =  +  2) Giải phương trình: 2 2 2 (2x x) 2x x 12 0 − + − − = Câu 2 : (3 điểm) Cho phương trình x 2 – 2(2m + 1)x + 4m 2 + 4m – 3 = 0 (x là ẩn số) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 (x 1 < x 2 ) thỏa 1 2 x 2 x = Câu 3 : (2 điểm) Thu gọn biểu thức: 7 5 7 5 A 3 2 2 7 2 11 + + − = − − + Câu 4 : (4 điểm) Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Gọi P là điểm chính giữa của cung nhỏ AC. Hai đường thẳng AP và BC cắt nhau tại M. Chứng minh rằng: a)   ABP AMB = b) MA. MP = BA. BM Câu 5 : (3 điểm) a) Cho phương trình: 2x 2 + mx + 2n + 8 = 0 (x là ẩn số và m, n là các số ngun).Giả sử phương trình có các nghiệm đều là số ngun. Chứng minh rằng: m 2 + n 2 là hợp số. b) Cho hai số dương a, b thỏa a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2010 + b 2010 Câu 6 : (2 điểm) Cho tam giác OAB vng cân tại O với OA = OB = 2a. Gọi (O) là đường tròn tâm O bán kính a. Tìm điểm M thuộc (O) sao cho MA + 2MB đạt giá trị nhỏ nhất. Câu 7 : (2 điểm) Cho a, b là các số dương thỏa 2 2 2 a 2b 3c + ≤ . Chứng minh 1 2 3 a b c + ≥ . HẾT Họ và tên thí sinh: ………………………………………………………Số báo danh: …………………………. Chữ ký giám thò 1 :……………………………………… Chữ ký giám thò 2 :……………………………… Đ Ề CHÍNH TH Ứ C 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THÀNH PHỐ HỒ CHÍ MINH TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2010 – 2011 KHÓA NGÀY 21/06/2010 Đáp án : TOÁN Câu Hướng dẫn chấm Điểm 1 (4 đ) Câu 1 : (4 điểm) 1) Giải hệ phương trình : 1 y 1 x 1 2 5y 3 x 1  + =   +   + =  +  1 2 3y 1 y 1 2y 2 x 1 x 1 2 2 2 5y 3 5y 3 5y 3 x 1 x 1 x 1 −   = + = − = −       + + ⇔ ⇔    + =    + = + = +   + +   1 x 2 1 y 3  =   ⇔   =   2) Giải phương trình: 2 2 2 (2x x) 2x x 12 0 − + − − = Đặt t = 2x 2 – x, pt trở thành t 2 + t – 12 = 0 ⇔ t = 3 hay t = – 4 t = 3 ⇔ 2x 2 – x = 3 ⇔ x = – 1 hay x = 3/2 t = – 4 ⇔ 2x 2 – x = – 4 ( vơ nghiệm) Vậy phương trình có 2 nghiệm là x = – 1, x = 3/2 0,5x4 0,5đ 0,5đ 0,5đ 0,5đ 2 (3 đ) Câu 2 : (3 điểm) Cho phương trình x 2 – 2(2m + 1)x + 4m 2 + 4m – 3 = 0 (x là ẩn số) (*) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 (x 1 < x 2 ) thỏa 1 2 x 2 x = ∆ ’ = (2m + 1) 2 – (4m 2 + 4m – 3) = 4 > 0, với mọi m Vậy (*) ln có 2 nghiệm phân biệt với mọi m. 1 2 x 2m 1,x 2m 3 = − = + 1 2 x 2 x 2m 1 2 2m 3 = ⇔ − = + 7 m 2m 1 2(2m 3) 2 5 2m 1 2(2m 3) m 6   = −  − = +   ⇔   − = − +   = −    0, 5 đ 0,5 đ 0,5đ 1,5đ 3 (2 đ) Câu 3 : (2 điểm) Thu gọn biểu thức: 7 5 7 5 A 3 2 2 7 2 11 + + − = − − + Xét M = 7 5 7 5 7 2 11 + + − + Ta có M > 0 và M 2 = 14 2 44 2 7 2 11 + = + suy ra M = 2 A = 2 ( 2 1) 1 − − = 1 đ 1đ 2 4 (4 ñ) Caâu 4 : (4 ñieåm) Cho tam giác ABC cân tại A nội tiếp ñường tròn (O). Gọi P là ñiểm chính giữa cung nhỏ AC. Hai ñường thẳng AP và BC cắt nhau tại M. Chứng minh rằng: a)   ABP AMB = b) MA. MP = BA. BM M P A O B C a)        1 1 1 ( ) ( ) 2 2 2 = − = − = = AMB sñAB sñPC sñAC sñPC sñAP ABP b)      = ⇒ = = PA PC CAP ABP AMB suy ra CM = AC = AB ∆ MAC ~ ∆ MBP (g – g) . . . ⇒ = ⇒ = = MA MC MA MP MBMC MBAB MB MP 2ñ 1ñ 1ñ 5 (3 ñ) Caâu 5 : (3 ñieåm) a) Cho ph ươ ng trình: 2x 2 + mx + 2n + 8 = 0 (x là ẩ n s ố và m, n là các s ố nguyên) Gi ả s ử ph ươ ng trình có các nghi ệ m ñề u là s ố nguyên. Ch ứ ng minh r ằ ng: m 2 + n 2 là h ợ p s ố . G ọ i x 1 , x 2 là 2 nghi ệ m c ủ a ph ươ ng trình ⇒ x 1 , x 2 nguyên, 1 2 m x x 2 + = − , x 1 x 2 = n + 4 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 m n (2x 2x ) (x x 4) 4x 4x x x 16 + = + + − = + + + 2 2 1 2 (x 4)(x 4) = + + x 1 2 + 4, x 2 2 + 4 là các số nguyên lớn hơn 1 nên m 2 + n 2 là hợp số. b) Cho hai số dương a, b thỏa a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2010 + b 2010 Ta có 0 = a 100 + b 100 – (a 101 + b 101 ) = a 101 + b 101 – (a 102 + b 102 ) . ⇒ a 100 (1 – a) + b 100 (1 – b) = a 101 (1 – a) + b 101 (1 – b) ⇒ a 100 (1 – a) 2 + b 100 (1 – b) 2 = 0 ⇒ a = b = 1 ⇒ P = a 2010 + b 2010 = 2 0,5 ñ 0,5ñ 0,5 ñ 1ñ 0,5ñ 6 (2ñ) Caâu 6 : (2 ñieåm) Cho tam giác OAB vuông cân tại O với OA = OB = 2a. Gọi (O) là ñường tròn tâm O bán kính a. Tìm ñiểm M thuộc (O) sao cho MA + 2MB ñạt giá trị nhỏ nhất. 3 F E B A C O D M Đường thẳng OA cắt (O) tại C và D với C là trung ñiểm của OA. Gọi E là trung ñiểm của OC. * Trường hợp M không trùng với C và D: Hai tam giác OEM và OMA ñồng dạng (   OM 1 OE MOE AOM, OA 2 OM = = = ). ⇒ ME OM 1 AM OA 2 = = ⇒ MA = 2EM * Tr ườ ng h ợ p M trùng v ớ i C: MA = CA = 2EC = 2EM * Tr ườ ng h ợ p M trùng v ớ i D: MA = DA = 2ED = 2EM V ậ y luôn có MA = 2EM MA + 2MB = 2(EM + MB) ≥ 2EB = h ằ ng s ố . D ấ u “=” x ả y ra khi M là giao ñ i ể m c ủ a ñ o ạ n BE v ớ i ñườ ng tròn (O). V ậ y MA + 2MB nh ỏ nh ấ t khi M là giao ñ i ể m c ủ a ñ o ạ n BE v ớ i ñườ ng tròn (O). 1ñ 0,5 ñ 0,5ñ 7(2ñ) Caâu 7 : (2 ñieåm) Cho a, b là cá c s ố d ươ ng thỏ a 2 2 2 a 2b 3c + ≤ . Ch ứ ng minh 1 2 3 a b c + ≥ . Ta có 1 2 9 (1) (a 2b)(b 2a) 9ab a b a 2b + ≥ ⇔ + + ≥ + 2 2 2 2a 4ab 2b 0 2(a b) 0 ⇔ − + ≥ ⇔ − ≥ ( Đ úng) 2 2 2 2 2 a 2b 3(a 2b ) (a 2b) 3(a 2b ) (2) + ≤ + ⇔ + ≤ + 2 2 2 2a 4ab 2b 0 2(a b) 0 ⇔ − + ≥ ⇔ − ≥ (Đúng) Từ (1) và (2) suy ra 2 2 1 2 9 9 3 a b a 2b c 3(a 2b ) + ≥ ≥ ≥ + + ( do a 2 + 2b 2 ≤ 3c 2 ) 0 ,5 ñ 0,5 ñ 1ñ [...]... chn cung BM ) (1) Trong ng trũn tõm O': BAN BNM (gúc chn cung BN ) (2) T (1)&(2) => MAB BAN MBN BMN BNM MBN 1800 Nờn t giỏc APBQ ni tip => BAP BQP QNM (gúc ni tip v gúc chn cung) m QNM v BQP v trớ so le trong => PQ // MN Vừ Lý Vn Long (TT BDVH v LTH Vnh Vin) S Kè THI TUY N SINH L P 10 PTTH CHUYấN Lấ QUí ễN KHểA NGY 24 THNG 6 NM 2 010 GIO D C V O T O THNH PH N NG MễN THI : TON ( Chuyờn Toỏn -... () ct trc honh ti D D cú ta (1; 0) ng thng (d) ct trc honh ti B B cú ta (-3; 0) Vỡ xA + xD = 2xC v A, C, D thng hng (vỡ cựng thuc ng thng ()) C l trung im AD 1 2 tam giỏc BAC v BAD cú chung ng cao k t nh B v AC = AD 2 S AC 1 Nờn ta cú ABC S ABD AD 2 Bi 4: M I N B Q P O O' A a) Trong ng trũn tõm O: Ta cú BMN = MAB (cựng chn cung BM ) b) Trong ng trũn tõm O': Ta cú IN2 = IA.IB c) Trong ng trũn... quanh ny ln nht Mt ỏy ca hỡnh nún c ct trong phn cũn li ca tm thic hỡnh ch nht ABCD a) Tớnh th tớch ca hỡnh nún c to thnh b) Chng t rng cú th ct c nguyờn vn hỡnh trũn ỏy m ch s dng phn cũn li ca tm thic ABCD sau khi ó ct xong mt xung quanh hỡnh nún núi trờn Ht SBD thớ sinh: Ch ký ca GT 1: K THI TUYN SINH LP 10 THPT TP HU Mụn: TON - Khúa ngy: 25/6/2 010 P N V THANG IM im Ni dung S GIO DC V... K.Ch ng minh hai ủ ng th ng BK v HF song song d.Tỡm giỏ tr nh nh t c a di n tớch tam giỏc AEF khi E thay ủ i trờn ủo n BC ( E khỏc B ,C) , F thay ủ i trờn ủo n CD th a ủi u ki n gúc EAF = 450 Bi 5: ( 0,5 ủi m) Cho a,b,c l ba s dng th a món abc < 1 Ch ng minh r ng : 1 1 1 + 1 + b + bc + 1 + c + ca < 1 1 + a + ab -H T - Thi vo 10 ca HSP HN nm 2 010 Ngy 19 thỏng 6 nm 2 010 Cm n bn kaka math trờn Mathscope... 24.6.2 010 Mụn: TON HNG DN CHM Bi Bi 1 Ni dung im (1,5) a 0 Phng trỡnh cú hai nghim phõn bit 0 m 1 0 m 1 (*) m3 3 m 0 Ta cú: 0,25 0,25 0,25 2(m 1) x1 x2 m 1 x x m2 1 2 m 1 2 m 1 m2 7 m 1 m 1 8 m 1 7 m 2 m 6 Tho món (*) 4 x1 x2 7 x1 x2 4 0,25 0,5 Vy: m = 6 tho món yờu cu bi toỏn BI 2 (2) 0,25 Ta cú: P x 2 y 2 x y 2 3 y 2 010 0,5 y 2 y 2 y 2 3 y 2 010. .. - x ) =0 =0 Vy x = l nghim ca phng trỡnh Gi ý li gii ca cụ giỏo Lu Kim Mai - Giỏo viờn trng THCS Ging Vừ - H Ni S GD V O T O H N I CHNH TH C K THI TUY N SINH VO L P 10 THP CHUYấN Nm h c 2 010 2011 MễN: TON Ngy thi: 24 thỏng 6 nm 2 010 Th i gian Lm bi 150 phỳt BI I (2,0 ủi m) 1) Cho n l s nguyờn, ch ng minh A = n 3 + 11n chia h t cho 6 2) Tỡm t t c cỏc s t nhiờn n ủ B = n 4 3n 2 + 1 l s nguyờn t BI... 1(m 1) 3 F m+1=3m=2 Bi IV: (3,5 im) 1) T giỏc FCDE cú 2 gúc i FED 90o FCD nờn chỳng ni tip I 2) Hai tam giỏc vuụng ng dng ACD v DEB vỡ E C hai gúc CAD CBE cựng chn cung CE, nờn ta DC DE D DC.DB DA .DE cú t s : DA DB 3) Gi I l tõm vũng trũn ngoi tip vi t giỏc A B O FCDE, ta cú CFD CEA (cựng chn cung CD) Mt khỏc CEA CBA (cựng chn cung AC) v vỡ tam OCB cõn ti O, nờn CFD OCB Ta cú : ICD IDC HDB... lt l honh cỏc giao im ca ng thng (d) v parabol 2 2 (P) Tỡm giỏ tr ca m : x1 x 2 x 2 x1 x1x 2 3 Bi IV (3,5 im) Cho ng trũn (O) cú ng kớnh AB = 2R v im C thuc ng trũn ú (C khỏc A, B) Ly im D thuc dõy BC (D khỏc B, C) Tia AD ct cung nh BC ti im E, tia AC ct tia BE ti im F 1) Chng minh FCDE l t giỏc ni tip 2) Chng minh DA .DE = DB.DC 3) Chng minh CFD OCB Gi I l tõm ng trũn ngoi tip t giỏc FCDE, chng... ngi cựng i xe p mt on ng AC Gii phng trỡnh ta c hai nghim: x1 80 0 (loi) v x2 12 Vy vn tc ca xe p l: 12 km/h 0,25 2,5 4 4.a (1,0) Hỡnh v ỳng Theo tớnh cht tip tuyn, ta cú: BED BFD 900 M BAD BAC 900 (gi thit) Do ú: BED BFD BAD 900 Vy: Nm im A,B,E,D,F cựng thuc ng trũn ng kớnh BD 0,25 0,25 0,25 0,25 4.b (1,0) Gi (O) l ng trũn ng kớnh BD Trong ng trũn (O), ta cú: DE DF (do DE, DF l bỏn kớnh... x + 1 = y + z v xy + z 2 7z + 10 = 0 a)Chng minh x2 + y 2 = z 2 + 12z 19; b)Tỡm tt c cỏc s thc tho món iu kin trờn nu x2 + y 2 = 17 Bi 4 Cho hỡnh vuụng ABCD cú cnh a Trong hỡnh vuụng ly im K ABK u Cỏc ng thng BK v AD ct nhau ti P a)Tớnh KC theo a; a 3 b)Trờn on AD ly I DI = , cỏc ng thng CI v BP ct nhau 3 ti H Chng minh CHDP ni tip; a c)Gi M, L l trung im ca cỏc on CP v KD Chng minh LM = 2 1 . a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2 010 + b 2 010 Ta có 0 = a 100 + b 100 – (a 101 + b 101 ) = a 101 + b 101 – (a 102 + b 102 ) . ⇒ a 100 (1 – a) + b 100 (1. rằng: m 2 + n 2 là hợp số. b) Cho hai số dương a, b thỏa a 100 + b 100 = a 101 + b 101 = a 102 + b 102 . Tính P = a 2 010 + b 2 010 Câu 6 : (2 điểm) Cho tam giác OAB vng cân tại O với. b 102 ) . ⇒ a 100 (1 – a) + b 100 (1 – b) = a 101 (1 – a) + b 101 (1 – b) ⇒ a 100 (1 – a) 2 + b 100 (1 – b) 2 = 0 ⇒ a = b = 1 ⇒ P = a 2 010 + b 2 010 = 2 0,5 ñ 0,5ñ 0,5 ñ

Ngày đăng: 20/05/2015, 13:00

Mục lục

  • VNMATH.COM- Cover

  • DE THI DAP AN VAO LOP 10 NAM 2010-2011

    • VNMATH.COM

    • toan10hcm2010

    • chuyenhcmde-toan-ts-10-10_11-chuyenhcm

    • chuyenhcmdap-an-de-toan-ts10_10_11-chuyenhcm

    • toan10hanoi2010

    • HuePTDe_chinh_thuc

      • Bài

        • Nội dung

        • 1

        • 2

        • 3

        • 4

        • 5

        • HuechuyenDe chinh thuc-quochoc

        • hanoiPT2010

        • [vnmath.com]de-thi-vao-chuyen-toan-ha-noi-2010

        • toan10danang2010

        • de-ts10-chuyen-lqd-da-nang-2010-2011

        • dhsphn2010

        • dapantoan1_sphn2010

        • dapantoan2_sphn2010

Tài liệu cùng người dùng

Tài liệu liên quan