TÌM HIỂU ĐỘ CHÍNH XÁC ĐỊNH VỊ THUỶ ÂM ĐƯỜNG ĐÁY NGẮN VÀ THỰC NGHIỆM

67 822 2
TÌM HIỂU ĐỘ CHÍNH XÁC ĐỊNH VỊ THUỶ ÂM ĐƯỜNG ĐÁY NGẮN VÀ THỰC NGHIỆM

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Theo từ điển Bách Khoa Toàn Thư Việt Nam thì định vị thuỷ âm được định nghĩa như sau “ Định vị thuỷ âm là xác định vị trí và các tham số chuyển động của các đối tượng dưới nước nhờ các tín hiệu âm thanh lan truyền trong nước, được phát xạ hoặc phản xạ bởi chính các đối tượng đó. Gồm có ĐVTÂ chủ động, ĐVTÂ thụ động. ĐVTÂ được dùng để phát hiện tàu nổi, tàu ngầm, thuỷ lôi, các luồng cá, nghiên cứu đáy biển, v.v….” Sóng Radio không thể truyền qua nước tới mọi độ sâu yêu cầu và không thể sử dụng để định vị dưới nước. Sử dụng sóng âm là một cách để xác định vị trí dưới nước. Định vị dưới nước là một hệ thống trong đó bao gồm mặt cơ sở xác định toạ độ, các thiết bị thuỷ âm đặt dưới đáy biển, đặt ở đáy tầu hoặc trên các thiết bị di động phục vụ cho công tác khảo sát lắp đặt thiết bị làm việc dưới đáy biển. Định vị thuỷ âm là lĩnh vực rộng trong việc xác định vị trí động của các công trình thăm dò và khai thác trên biển như dàn khoan, các robot thám hiểm đáy biển.

Chương I KHÁI NIỆM VỀ ĐỊNH VỊ THUỶ ÂM VÀ PHÂN LOẠI 1.1. Khái niệm về định vị thuỷ âm Theo từ điển Bách Khoa Toàn Thư Việt Nam thì định vị thuỷ âm được định nghĩa như sau “ Định vị thuỷ âm là xác định vị trí và các tham số chuyển động của các đối tượng dưới nước nhờ các tín hiệu âm thanh lan truyền trong nước, được phát xạ hoặc phản xạ bởi chính các đối tượng đó. Gồm có ĐVTÂ chủ động, ĐVTÂ thụ động. ĐVTÂ được dùng để phát hiện tàu nổi, tàu ngầm, thuỷ lôi, các luồng cá, nghiên cứu đáy biển, v.v….” Sóng Radio không thể truyền qua nước tới mọi độ sâu yêu cầu và không thể sử dụng để định vị dưới nước. Sử dụng sóng âm là một cách để xác định vị trí dưới nước. Định vị dưới nước là một hệ thống trong đó bao gồm mặt cơ sở xác định toạ độ, các thiết bị thuỷ âm đặt dưới đáy biển, đặt ở đáy tầu hoặc trên các thiết bị di động phục vụ cho công tác khảo sát lắp đặt thiết bị làm việc dưới đáy biển. Định vị thuỷ âm là lĩnh vực rộng trong việc xác định vị trí động của các công trình thăm dò và khai thác trên biển như dàn khoan, các robot thám hiểm đáy biển. 1.2. Phân loại định vị thuỷ âm và ưu nhược điểm từng phương pháp. 1.2.1. Phân loại định vị thuỷ âm. Định vị thuỷ âm được chia làm 3 phương pháp: - Định vị thuỷ âm đường đáy siêu ngắn – Ultra Short Base Line -USBL - Định vị thuỷ âm đường đáy ngắn – Short Base Line - SBL - Định vị thuỷ âm đường đáy dài – Long Base Line - LBL Đặc trưng kỹ thuật của chúng được thể hiện ở bảng 1.3 Bảng 1.1. Chiều dài cạnh đáy, loại trị đo của các phương pháp định vị thuỷ âm: Phương pháp định vị Chiều dài cạnh đáy Loại trị đo Định vị thuỷ âm đường đáy siêu ngắn (USBL) < 10cm Đo hướng và khoảng cách Định vị thuỷ đường đáy ngắn ( SBL) 20m – 50m Đo hướng và khoảng cách Định vị thuỷ âm đường đáy dài (LBL) 100m – 6000m Đo khoảng cách Tuỳ thuộc vào điều kiện khu đo, yêu cầu độ chính xác và chi phí, người ta có thể lựa chọn phương pháp định vị phù hợp. 1.2.2. Ưu nhược điểm của các phương pháp định vị thuỷ âm. 1.2.2.1. Định vị thuỷ âm đường đáy siêu ngắn: a. Ưu điểm : - Hệ thống dễ triển khai trong thực tế , dễ sử dụng. - Hệ thống toạ độ đầu phát biến làm cơ sở , không cần hệ thống các mốc tín hiệu hoặc bộ ứng đáp gắn dưới đáy biển ( Toạ độ tầu được xác định bằng GPS). - Chỉ cần một bộ ứng đáp trên bề mặt, trên thiết bị lặn hoặc công trình . - Độ chính xác cao trên các đối tượng động. b. Nhược điểm : - Hệ thống yêu cầu hiệu chỉnh chi tiết các tham số môi trường. - Độ chính xác phụ thuộc vào các thiết bị phụ trợ như bộ hiệu chỉnh con quay hoặc các trạm cải chính độ cao. - Trị đo thừa ít nên độ tin cậy còn hạn chế. - Bộ phát biến lớn , giá thành bộ phát biến cao. 1.2.2.2. Định vị thuỷ âm đường đáy ngắn: a. Ưu điểm: - Hệ thống dễ triển khai trong thực tế , dễ sử dụng. - Khả năng nâng cấp tốt với các mốc tín hiệu. - Độ chính xác cao đối với các đối tượng động. - Không gian dự phòng được xây dựng ngay bên trong hệ thống. - Lấy hệ toạ độ tầu làm cơ sở, không cần các mốc tín hiệu hay bộ truyền phát gắn cố định dưới đáy biển( toạ độ tầu được xác định bằng GPS). - Bộ phát biến nhỏ, giá thành mỗi bộ phát biến rẻ. b. Nhược điểm: - Hạn chế về độ chính xác ở vùng nước sâu ( > 30m). - Cần xưởng sửa chữa tầu hoặc cảng để hiệu chỉnh hệ thống. - Hệ thống yêu cầu hiệu chỉnh chi tiết các tham số môi trường . - Độ chính xác phụ thuộc vào các thiết bị phụ trợ như bộ hiệu chỉnh con quay hoặc các trạm cải chính độ cao. - Cần ít nhất 3 bộ phát biến cho một thiết bị. 1.2.2.3. Định vị thuỷ âm đường đáy dài a. Ưu điểm: - Độ chính xác không phụ thuộc vào độ sâu . - Có nhiều trị đo thừa. - Cung cấp độ chính xác cao trong khu vực lớn. - Không cần thêm các hệ thống phụ trợ như bộ tham chiếu độ cao , la bàn. - Bộ phát biến nhỏ, chỉ cần một bộ phát biến cho một thiết bị. b. Nhược điểm: - Hệ thống phức tạp đòi hỏi người sử dụng chuyên nghiệp. - Yêu cầu các hệ thống thiết bị đắt tiền. - Chi phí nhiều thời gian cho việc triển khai và khôi phục hệ thống. - Mỗi hệ thống LBL đều yêu cầu kiểm định trước mỗi lần triển khai sử dụng. 1.2.3. Độ chính xác của định vị thuỷ âm và các nguồn sai số. 1.2. 3.1. Nguồn sai số và độ chính xác của định vị thuỷ âm: a. Nguồn sai số của định vị thuỷ âm. 1. Lắc dọc và lắc ngang của tàu. 2. Độ lệch offset của dàn đối với điểm quy chiếu , ví dụ như trọng tâm (COG). 3. Độ dịch chuyển do sự kết hợp của độ lệch dàn và chuyển động lắc dọc và lắc ngang của tầu. 4. Độ lệch của bộ ứng đáp /bộ đáp/mốc tín hiệu âm dưới biển so với mục tiêu chỉ định. b. Độ chính xác của định vị thuỷ âm. - Độ chính xác của hệ thống định vị thuỷ âm được quyết định bởi độ chính xác của hệ thống mốc tín hiệu thuỷ âm. - Độ chính xác phụ thuộc vào việc xác định và hạn chế các hiệu ứng khúc xạ âm. Điều này đặc biệt chú ý trong vùng có các thiết bị cố định đang hoạt động như hệ thống dàn khoan ngầm, độ chính xác của hệ thống LBL trong khu vực này cao hơn hệ thống USBL và SBL. - Phụ thuộc vào việc xác định và hệ số khúc xạ. - Phụ thuộc vào các tần số được sử dụng, độ chính xác tăng khi tần số tăng nhưng giảm hiệu năng. - Sự tiên tiến của hệ thống phần mềm sử dụng để tính toán dữ liệu định vị. - Mối quan hệ hình học giữa các thiết bị thuỷ âm. 1.2.3.2. Các nguồn nhiễu. Định vị thuỷ âm chịu ảnh hưởng của các nguồn nhiễu như: a. Nhiễu âm thanh do môi trường b. Nhiễu âm thanh do chính thiết bị c. Nhiễu của sự phản xạ âm thanh 1.3. Ứng dụng trong thực tiễn - Ứng dụng chủ yếu trong trắc địa công trình biển ( Định vị đế giàn khoan, định vị đường ống dẫn dầu, lắp đặt cáp …) - Ứng dụng trong công tác hải dương học ( Nghiên cứu về biển, tìm các rặng san hô, xác định các luồng cá … ) - Khảo sát biển - Xây dựng lưới khống chế đáy biển phục vụ công tác đo đạc biển và công tác xây dựng các công trình dưới biển… Chương II MỘT SỐ KIẾN THỨC VỀ ĐỊNH VỊ THUỶ ÂM 2.1. Sự lan truyền sóng âm thanh trong môi trường nước. 2.2.1. Sóng âm trong môi trường nước: Bản chất của sóng âm thanh là sự lan truyền sóng cơ học trong môi trường nước , đó là sự tác động liên tục quá trình tiếp nhận và truyền tải năng lượng của dao động âm. Hiện tượng sóng âm phổ biến nhất là sóng dọc, khi sóng âm truyền qua môi trường các phân tử nước rung động trong môi trường tạo ra mật độ và áp suất thay đổi dọc theo hướng chuyển động của sóng. Sự thay đổi áp suất được hiểu như sóng âm hoặc thừa áp , thừa áp P e được định nghĩa như sau: P e = P –P 0 (2.1) Trong đó P là áp suất tức thời , P 0 là áp lực thuỷ tĩnh hay nói cách khác là áp lực không có sự thay đổi . Do áp suất lớn, các hạt trong môi trường nước sẽ bắt đầu di chuyển , kết quả là khoảng cách giữa các phân tử thay đổi giống như một hàm của thời gian và vị trí. Để âm thanh truyền qua môi trường , môi trường được co lại. Lực nén ký hiệu s , s được biểu diễn bằng 1/P a , nó là thể tích căng trên một đơn vị và được biểu diễn như sau : e P vv s 0 /∆ −= (2.2) Khi υ ∆ thay đổi trong thể tích ban đầu và P e được chấp nhận , nếu s là hằng số thì có thể hiểu như định luật Hooke. Sự phản hồi của lực nén được hiểu như hệ số tải trọng k . Đối với biên độ sóng âm thanh nhỏ, xem xét ở đây lực nén và hệ số tải trọng có thể coi là hằng số. Từ khi có nhiễu cục bộ, môi trường không thể ngay lập tức truyền tín hiệu, sự lan truyền sóng âm thanh xảy ra cùng một lúc với sự xáo trộn tương ứng với vận tốc âm v. Tốc độ âm thanh phụ thuộc vào hệ số tải trọng k và mật độ 0 ρ trung bình được tính như sau : 00 . 1 ρρ υ s k == (2.3) Với k = 2,2x10 -9 P a và P 0 = 1000(kg/m 3 ) , tốc độ âm trong môi trường nước xấp xỉ 1480m/s. So sánh với tốc độ âm trong sắt là khoảng 5050 m/s và trong không khí là 330 m/s. Ta cũng có thể dùng công thức tích phân trung bình để xác định vận tốc âm trong nước: ∫ − = − = 2 1 1212 2,1 )( )( 1 )( t t TB dttV tttt D V (2.4) Trong đó D 1,2 là khoảng cách, V(t) là vận tốc âm (phụ thuộc vào độ sâu H, nhiệt độ T và độ muối S). 2.2.2. Phương pháp xác định tốc độ âm: Chúng ta có rất nhiều cách để xác định tốc độ âm thanh trong môi trường nước. Hiện nay với sự phát triển không ngừng của khoa học kỹ thuật, việc xác định tốc đô âm trở nên đơn giản. Tốc độ âm thanh phụ thuộc vào các yếu tố sau: Nhiệt độ: Nhiệt độ tại bề mặt biển thay đổi theo vị trí địa lý trên trái đất, theo mùa trong năm, theo thời gian trong ngày. Sự phân bố nhiệt độ là một trường phức tạp và không thể dự đoán một cách chính xác cho mục đích khảo sát thuỷ văn. Sự biến đổi của nước theo độ sâu khá phức tạp vì thế dự đoán một cách chính xác mặt cắt tốc độ âm phục vụ cho nhiệm vụ khảo sát đo đạc biển là không đơn giản. Độ sâu khá nhạy cảm đối với những biến đổi của mặt cắt tốc độ âm, nước ở độ sâu khác nhau sẽ có nhiệt độ khác nhau. Sự biến đổi của 1 0 C độ (Celsius) làm tốc độ âm thay đổi khoảng 4,5m. Các biến đổi nhiệt độ ảnh hưởng lớn nhất tới sự thay đổi tốc độ âm sau đó mới tới áp suất. Hình 2.1. Mặt cắt nhiệt độ theo độ sâu Độ sâu lớp nước trong khoảng từ 200m – 1000m có nhiệt độ thay đổi nhiều nhất và tốc độ âm lúc này ảnh hưởng lớn nhất bởi nhiệt độ. Độ mặn của nước: Độ mặn của nước là một thước đo độ hoà tan của muối và các khoáng chất khác trong nước biển. Bình thường nó được định nghĩa như tổng số lượng chất rắn hoà tan trong nước biển trên một phần nghìn(ppt hoặc o / oo ) Trong thực tế độ mặn không được xác định một cách trực tiếp nhưng được tính toán từ lượng clo của nước , chỉ số khúc xạ âm hay thuộc tính khác nào đó mà có liên quan tới độ muối. Mẫu mức độ clo có trong nước biển được sử dụng làm mẫu độ mặn. Hình 2.2. Biểu đồ độ mặn nước biển trên thế giới , đơn vị tính là đơn vị muối thực tế Độ mặn trung bình của nước biển khoảng 35 o / oo . Tỷ lệ thay đổi của tốc độ âm thanh xấp xỉ 1,3m/s cho sự thay đổi 1 o / oo của độ mặn. Áp suất : Áp suất cũng tác động đáng kể tới vận tốc âm thanh. Áp suất là hàm của độ sâu và khoảng thay đổi của tốc độ âm khoảng 1,6m/s với 10 atmospheres xấp xỉ khoảng 100m độ sâu. Mật độ nước phụ thuộc vào các thông số trước đó tức là nhiệt độ, áp suất, độ mặn. Năm mươi phần trăm nước biển có mật độ nằm trong khoảng 1027.7 và 1027.9 kg/m 3 . Sự ảnh hưởng lớn nhất về mật độ là áp lực nén theo độ sâu. Nước có mật độ 1028.0kg/m 3 tại bề mặt thì sẽ có mật độ là 1050.0kg/m 3 ở độ sâu 5000m. Tốc độ âm thanh v trong nước biển có thể thể hiện như một hàm nhiệt độ T, áp suất P( độ sâu H), độ mặn S. Những tham số này ảnh hưởng tới thuộc tính tải trọng của môi trường. Các thông số khác như bọt khí và các vi sinh vật cũng ảnh [...]... THUỶ ÂM ĐƯỜNG ĐÁY NGẮN 3.1 Định vị thuỷ âm đường đáy ngắn 3.1.1 Định vị thuỷ âm đường đáy ngắn Hình 3.1 Sơ đồ bố trí SBL Hệ thống định vị thuỷ âm đường đáy ngắn (SBL) sử dụng hệ thống các đường đáy ngắn có chiều dài từ 20 – 50m Các đường đáy ngắn được bố trí dưới đáy tầu và xác lập trong hệ toạ độ tầu Giới hạn ( đầu, cuối) của các đường đáy ngắn là các thiết bị nghe hoặc các đầu phát biến Hệ thống định. .. thuỷ âm sẽ xác định được vị trí của bộ ứng đáp trong hệ toạ độ tầu Theo như phân tích ở trên, phương pháp định vị thuỷ âm đường đáy ngắn bị hạn chế trong phạm vi nhỏ như xác định vị trí động của một hệ thống cố định Phương pháp định vị thuỷ âm đường đáy ngắn được áp dụng cho : - Vị trí của tầu trong phạm vi nhỏ ( từ mốc tín hiệu tới bộ ứng đáp ở trên đáy biển) tương đương với độ sâu của nước - Xác định. .. đáp cố định( nếu bộ ứng đáp được gắn cố định dưới đáy biển tại điểm đã có toạ độ trong hệ toạ độ quy ước của khu đo thì sẽ xác định được vị trí của tầu trong quá trình di chuyển với sự hỗ trợ của các thiết bị cảm biến và các giá trị đo theo nguyên lý thuỷ âm) - Cả tầu và bộ ứng đáp cùng di chuyển nhưng hệ toạ độ của tầu cần phải được xác định bằng định vị DGPS 3.1.2 Định vị thuỷ âm đường đáy ngắn sử... hiệu âm gắn dưới đáy tầu phải nằm cùng một mặt phẳng Vị trí tương hỗ(Khoảng cách, hướng) giữa các đầu thu tín hiệu ở đáy tầu phải biết trước Có ba trường hợp sử dụng hệ thống định vị thuỷ âm đường đáy ngắn: - Tầu cố định và bộ phát tín hiệu di động ( Nếu bộ ứng đáp được gắn trên thiết bị di động dưới nước và tầu cố định, vị trí của thiết bị dưới nước có thể xác định liên tục) - Tầu di chuyển và bộ...hưởng tới tốc độ âm Tốc độ âm thường sử dụng trong môi trường lý tưởng, công thức chung như sau: v = f(T,p,S) = f (T, H, S) (2.5) Người ta đa nghiên cứu và đưa ra một số công thức thực nghiệm để xác định tốc độ âm trong nước: Công thức xác định tốc độ âm với đơn vị m/s với các thông số nhiệt độ (T), độ sâu (H) , độ mặn S(ppt) Bảng 2.1 Công thức tốc độ âm theo T,H,P Các công thức v =... tại vị trí cố định đã biết toạ độ dưới đáy biển chúng ta có thể tính ra vị trí của tầu với các thiết bị phụ trợ ( ví dụ bộ chỉnh hướng, cảm biến lắc) Toạ độ tầu được tính dựa trên các trị đo khoảng cách và góc tới từ mốc thuỷ âm đến đầu ống nghe nằm trong hệ toạ độ xác lập bởi các đường đáy ngắn Ngược lại với vị trí tầu đã được xác định bằng DGPS thì từ các khoảng cách và hướng đo được bằng thiết bị thuỷ. .. bị xác định tốc độ âm dựa trên nguyên lý xác định thời gian đi và về giữa một máy phát và một bộ thu cố định Dụng cụ này chính xác trong mọi điều kiện bao gồm cả nhưng nơi có biến thiên về độ mặn lớn Hình 2.4 Máy đo vận tốc âm 2.2.3 Hiện tượng suy giảm cường độ âm trong nước : Sự suy giảm là sự mất năng lượng của một làn sóng âm truyền trong môi trường nước và bị hấp thụ, lan toả theo hình cầu và bị... trục OX và trục OZ tạo thành một tam diện thuận Hình 3.4 Hệ toạ độ vuông góc không gian địa tâm Vị trí điểm P được xác định trong hệ toạ độ vuông góc không gian địa tâm bởi 3 giá trị toạ độ X, Y, Z (hình 3.4) 3.2.4 Hệ toạ độ trắc địa Trên Elipxoid thực dụng (hình 3.5) , vị trí điểm được biểu thị qua các thành phần toạ độ sau: - Độ vĩ trắc địa B - Độ kinh trắc địa L - Độ cao trắc địa H( còn gọi độ cao... Điển hình công thức thực nghiệm được trình bày ở Bảng 2.1 là tốc độ âm thanh tăng cùng với sự gia tăng nhiệt độ , độ sâu , độ mặn Từ các biểu thức tốc độ âm thanh tăng nhanh khi nhiệt độ tăng Có hai thiết bị dùng xác định tốc độ âm trong môi trường nước : Một là sử dụng thiết bị “ cảm biến nhiệt ” (Bathyermograph) có hình dạng quả ngư lôi trong đó chứa thiết bị cảm biến nhiệt độ và một đầu dò để phát... hệ toạ độ quốc gia mới có tên VN – 2000 Đây là hệ toạ độ xác lập trên Elipxoid WGS – 84 , phép chiếu UTM ( Universal Transverse Mercator ) và hệ độ cao Hòn Dấu Như vậy đối với mỗi hệ toạ độ quốc gia chúng ta thấy có 3 yếu tố cơ bản đó là : Elipxoid trái đất , phép chiếu và độ cao Trong cả hai hệ toạ độ quốc gia HN – 72 và VN– 2000 độ cao được lấy theo hệ độ cao Hòn Dấu Hệ quy chiếu và hệ toạ độ quốc . VỀ ĐỊNH VỊ THUỶ ÂM VÀ PHÂN LOẠI 1.1. Khái niệm về định vị thuỷ âm Theo từ điển Bách Khoa Toàn Thư Việt Nam thì định vị thuỷ âm được định nghĩa như sau “ Định vị thuỷ âm là xác định vị trí và. phương pháp định vị thuỷ âm: Phương pháp định vị Chiều dài cạnh đáy Loại trị đo Định vị thuỷ âm đường đáy siêu ngắn (USBL) < 10cm Đo hướng và khoảng cách Định vị thuỷ đường đáy ngắn ( SBL) 20m. 1.2. Phân loại định vị thuỷ âm và ưu nhược điểm từng phương pháp. 1.2.1. Phân loại định vị thuỷ âm. Định vị thuỷ âm được chia làm 3 phương pháp: - Định vị thuỷ âm đường đáy siêu ngắn – Ultra Short

Ngày đăng: 09/05/2015, 09:53

Từ khóa liên quan

Mục lục

  • Chương III

  • ĐỘ CHÍNH XÁC ĐỊNH VỊ THUỶ ÂM ĐƯỜNG ĐÁY NGẮN

  • 3.1. Định vị thuỷ âm đường đáy ngắn

Tài liệu cùng người dùng

Tài liệu liên quan