SKKN Một số phương pháp giải phương trình nghiệm nguyên Toán THCS

27 2.4K 18
SKKN Một số phương pháp giải phương trình nghiệm nguyên Toán THCS

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI: "MỘT SỐ GIẢI PHÁP GIẢI NGHIỆM NGUYÊN TOÁN THCS" 1 A - ĐẶT VẤN ĐỀ. I- LỜI NÓI ĐẦU. Trong quá trình học toán ở trường THCS học sinh cần biết cách tổ chức công việc của mình một cách sáng tạo. Người thầy cần rèn luyện cho học sinh kỹ năng, độc lập suy nghĩ một cách sâu sắc, sáng tạo. Vì vậy đòi hỏi người thầy một sự lao động sáng tạo biết tìm tòi ra những phương pháp để dạy cho học sinh trau dồi tư duy logic giải các bài toán. Là một giáo viên dạy toán ở trường THCS trực tiếp bồi dưỡng đội tuyển học sinh giỏi nhiều năm tôi nhận thấy việc giải các bài toán ở chương trình THCS không chỉ đơn giản là đảm bảo kiến thức trong SGK, đó mới chỉ là những điều kiện cần nhưng chưa đủ. Muốn giỏi toán cần phải luyện tập nhiều thông qua việc giải các bài toán đa dạng, giải các bài toán một cách khoa học, kiên nhẫn, tỉ mỉ, để tự tìm ra đáp số của chúng. Muốn vậy người thầy phải biết vận dụng linh hoạt kiến thức trong nhiều tình huống khác nhauđể tạo hứng thú cho học sinh. Một bài toán có thể có nhiều cách giải, mỗi bài toán thường nằm trong mỗi dạng toán khác nhau nó đòi hỏi phải biết vận dụng kiến thức trong nhiều lĩnh vực nhiều mặt một cách sáng tạo vì vậy học sinh phải biết sử dụng phương pháp nào cho phù hợp. Các dạng toán về số học ở chương trình THCS thật đa dạng phong phú như: Toán về chia hết, phép chia có dư, số nguyên tố, số chính phương, phương trình nghiệm nguyên……. Đây là một dạng toán có trong SGK lớp 9 nhưng chưa đưa ra phương pháp giải chung. Hơn nữa phương trình nghiệm nguyên có rất nhiều trong các đề thi:Tốt nghiệp THCS ;Trong các đề thi học sinh giỏi huyên, học sinh giỏi tỉnh ….Song khi giải các bài 2 toán này không ít khó khăn phức tạp. Từ thực tiễn giảngdạy tôi thấy học sinh hay bế tắc, lúng túng về cách xác định dạng toán và chưa có nhiều phương pháp giải hay. Từ những thuận lợi, khó khăn và yêu cầu thực tiễn giảng dạy.Tôi chọn đề tài: “Một số phương pháp giải phương trình nghiệm nguyên” Trong quá trình viết đề tài do điều kiện và kinh nghiệm không tránh khỏi khiếm khuyết. Rất mong được sự đóng góp, chỉ đạo của thầy cô giáo và các bạn đồng nghiệp. II.THỰC TRẠNG VẤN ĐỀ CẦN NGHIÊN CỨU. 1.Thuận lợi: - Trường đã nối mạng Internet thuận tiện cho giáo viên tìm thông tin, tư liệu trên mạng. - Được sự quan tâm của cấp lãnh đạo ngành, đặc biệt là sự quan tâm của PGD mở các lớp chuyên đề phục vụ cho công tác bồi dưỡng học sinh giỏi 2. Khó khăn: - Học sinh còn chưa chịu khó , chăm chỉ trong học tập. - Kiến thức học sinh còn chưa đồng đều, đặc biệt là tình hình đạo đức xuống cấp của học sinh. III. KẾT QUẢ THỰC TRẠNG. Để đánh giá được khả năng của các em đối với dạng toán trên và có phương án tối ưu truyền đạt tới học sinh, tôi đã ra một đề toán cho 10 em học sinh trong đội tuyển của trường như sau: Bài 1:(6đ) a)Tìm x, y ∈ Z biết x – y + 2xy = 6 3 b) Giải phương trình nghiệm nguyên: 5x – 7y = 3 Bài 2:(4đ) Tìm nghiệm nguyên dương của phương trình : 1 + x + x 2 + x 3 = 2 y Kết quả thu được như sau: Dưới điểm 5 Điểm 5 - 7 Điểm 8 - 10 Điểm 5 -10 SL % SL % SL % SL % 6 60 3 30 1 10 10 10 0 Qua việc kiểm tra đánh giá tôi thấy học sinh không có biện pháp giải phương trình nghiệm nguyên đạt hiệu quả. Lời giải thường dài dòng, không chính xác, đôi khi còn ngộ nhận . Cũng với bài toán trên nếu học sinh được trang bị các phương pháp” Giải phương trình nghiệm nguyên “thì chắc chắn sẽ có hiệu quả cao hơn. B- CÁC GIẢI PHÁP THỰC HIỆN Phương trình nghiệm nguyên rất đa dạng và phong phú nó có thể là phương trình một ẩn, nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Không có cách giải chung cho mọi phương trình, để giải các phương trình đó thường dựa vào cách giải một số phương trình cơ bản và một số phương pháp giải như sau: 4 CHƯƠNG I: MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Không có phương pháp chung để giải phương trình nghiệm nguyên nhưng để giải nó người ta thường áp dụng một số phương pháp sau hoặc kết hợp các phương pháp tuỳ theo từng bài cụ thể. Sau đây là một số phương pháp thường dùng I- Phương pháp 1 : Sử dụng tính chẵn lẻ Ví dụ 1: Tìm x, y nguyên tố thoả mãn y 2 – 2x 2 = 1 Hướng dẫn: Ta có y 2 – 2x 2 = 1⇒ y 2 = 2x 2 +1 ⇒ y là số lẻ Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1) 2 = 2x 2 + 1 ⇔ x 2 = 2 k 2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3 Ví dụ 2: Tìm nghiệm nguyên dương của phương trình (2x + 5y + 1)( x 2 + y + x 2 + x) = 105 Hướng dẫn: Ta có: (2x + 5y + 1)( x 2 + y + x 2 + x) = 105 Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn x 2 + y + x 2 + x = x 2 + y + x(x+ 1) lẻ 5 có x(x+ 1) chẵn, y chẵn ⇒ x 2 lẻ ⇒ x 2 = 1 ⇒ x = 0 Thay x = 0 vào phương trình ta được (5y + 1) ( y + 1) = 105 ⇔ 5y 2 + 6y – 104 = 0 ⇒ y = 4 hoặc y = 5 26− ( loại) Thử lại ta có x = 0; y = 4 là nghiệm của phương trình II. Phương pháp 2 : Phương pháp phân tích Thực chất là biến đổi phương trình về dạng: g 1 (x 1 , x 2 ,…., x n ) h (x 1 , x 2 ,…., x n ) = a Ví dụ 3: Tìm nghiệm nguyên của phương trình x 4 + 4x 3 + 6x 2 + 4x = y 2 Hướng dẫn: Ta có: x 4 + 4x 3 + 6x 2 + 4x = y 2 ⇔ x 4 +4x 3 +6x 2 +4x +1- y 2 =1 ⇔ (x+1) 4 – y 2 = 1 ⇔ [(x+1) 2 –y] [(x+1) 2 +y]= 1 (x+1) 2 – y = 1 1 + y = 1- y ⇔ (x+1) 2 + y = 1 ⇔ (x+1) 2 – y = -1 -1 + y = -1 - y (x+1) 2 + y = -1 ⇒ y = 0 ⇒ (x+1) 2 = 1 ⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2 6 Vậy ( x, y ) = ( 0, 0 ); ( - 2, 0 ) III. Phương pháp 3 : Phương pháp cực hạn Sử dụng đối với 1 số bài toán vai trò của các ẩn bình đẳng như nhau: Ví dụ 4: Tìm nghiệm nguyên dương của phương trình: 5 ( x + y + z + t ) + 10 = 2 xyzt Hướng dẫn: Ta giả sử x ≥ y ≥ z ≥ t ≥ 1 Ta có: 5 ( x + y + z + t ) + 10 = 2 xyzt ⇔ 2 = yzt 5 + xzt 5 + xyt 5 + xyz 5 + xyzt 10 ≤ 3 30 t ⇒ t 3 ≤ 15 ⇒ t = 1 hoặc t = 2 * Với t = 1 ta có 5 (x+ y + z + 1) + 10 = 2 xyz ⇔ 2 = yz 5 + xz 5 + xy 5 + xyz 15 ≤ z 2 30 ⇒ z 2 ≤ 15 ⇒ z = { } 3;2;1 Nếu z = 1 có 5 (x+ y ) + 20 = 2xy⇔ (2x – 5) (2y - 5) = 65 ⇒ x = hoặc Ta được nghiệm ( 35; 3; 1; 1); (9; 5; 1; 1) và các hoán vị của chúng Với z = 2; z = 3 phương trình không có nghiệm nguyên * Với t = 2 thì 5 (x+ y + z ) + 20 = 4 xyz⇔ 4= xy 5 + yz 5 + xz 5 + xyz 20 ≤ 2 35 z 7 ⇒ z 2 ≤ 4 35 ≤ 9 ⇒ z = 2 (vì z≥ t≥ 2)⇒ (8x – 5) (8y – 5) = 265 Do x≥ y≥ z ≥ 2 nên 8x – 5 ≥ 8y – 5 ≥ 11 ⇒ (8x – 5) (8y – 5) = 265 vô nghiệm vậy nghiệm của phương trình là bộ (x, y, z) = ( 35; 3; 1; 1); (9; 5; 1; 1) và các hoán vị IV- Phương pháp loại trừ(phương pháp 4) Khẳng định nghiệm rồi loại trừ các giá trị còn lại của ẩn Ví dụ 5: Tìm nghiệm nguyên dương của phương trình 1! + 2! + … + x! = y 2 Hướng dẫn: Với x≥ 5 thì x! có tận cùng là 0 và 1! + 2! + 3! + 4! Có tận cùng là 3 ⇒ 1! + 2! + … + x! có tận cùng là 3, không là số chính phương (loại) Vậy x < 5 mà x nguyên dương nên: x = { } 4;3;2;1 Thử vào phương trình ta được (x = 1, y= 2); (x = 3, y= 3) là thoả mãn Ví dụ 6: Tìm tất cả các nghiệm nguyên của phương trình y 2 + y = x 4 + x 3 + x 2 + x 8 Hướng dẫn: Ta có : y 2 + y = x 4 + x 3 + x 2 + x⇔4 y 2 +4y+1=4 x 4 + 4 x 3 + 4x 2 + 4x+1 ⇒ (2x 2 + x ) 2 - (2y + 1) 2 = (3x + 1) (x +1) hay (2x 2 + x + 1) 2 - (2y+ 1) 2 = x(x-2) Ta thấy: Nếu x> 0 hoặc x< - 1 thì (3x + 1) (x +1) > 0 Nếu x > 2 hoặc x < -1 thì x (x-2) > 0 ⇒ Nếu x>2 hoặc x< 1 thì (2x 2 + x) <(2y+1) 2 < (2x 2 + x + 1) 2 (loại) ⇒ -1≤ x ≤ 2 ⇒ x = 0, 1, -1, 2 Xét x = 2⇒ y 2 + y =30 ⇒ y = 5 hoặc y= -6 Xét x= 1 ⇒ y 2 + y = 4 (loại) Xét x = 0 ⇒ y 2 + y = 0 ⇒ y (y + 1) = 0 ⇒ y = 0 hoặc y = -1 Xét x = -1 ⇒ y 2 + y = 0 ⇒ y = 0 hoặc y= -1 Vậy nghệm nguyên của phương trình là: (x,y) = (2, 5); (2, -6); (0, 0); (0, -1); (-1;0); (-1, -1) V.Phương pháp 5: Dùng chia hết và có dư Ví dụ 7: Tìm nghiệm nguyên của phương trình 9 x 2 – 2y 2 = 5 Hướng dẫn: Xét x  5 mà x 2 – 2y 2 = 5 ⇒ 2y 2  5 ⇒ y 2  5 (2,5) = 1 5 là số nguyên tố ⇒ y 2  25 ⇒x 2 – 2y 2  25 lại có x  5 ⇒ x 2  25 5  25 loại Xét x  5 ⇒ y  5 và x 2 chia cho 5 có các số dư 1 hoặc 4 y 2 chia cho 5 có các số dư 1 hoặc 4 ⇒ 2y 2 chia cho 5 dư 2 hoặc 3 ⇒ x 2 – 2 y 2 chia cho 5 dư ± 1 hoặc ± 2(loại) Vậy phương trình x 2 – 2y 2 = 5 vô nghiệm Ví dụ 8: Tìm x, y là số tự nhiên thoả mãn x 2 + 3 y = 3026 Hướng dẫn: Xét y = 0 ⇒ x 2 + 3 0 = 3026 ⇒ x 2 = 3025 mà x º N ⇒ x = 55 Xét y > 0 ⇒ 3 y  3, x 2 chia cho 3 dư 0 hoặc 1 10 [...]... 2 Quá trình này cứ tiếp tục ta thấy (x 1, y1, z1 ) là nghiệm của phương trình thì y1 z1 , 2k 2k ( x1 2k , ) là nghiệm của phương trình với k nguyên dương ⇒ x1 = y1 = z1 = 0 Vậy pt có nghiệm là (0, 0, 0) IX Phương pháp 9: Sử dụng tính chất nghiệm của phương trình bậc 2 Biến đổi phương trình về dạng phương trình bậc 2 của ẩn coi các ẩn khác là tham số, sử dụng các tính chất về nghiệm của phương trình. .. phương trình ta tìm được các cặp số (x,y ) = (7, 8); (6, 8); (4, 2); (3, 2); là nghiệm của phương trình 15 X- Phương pháp 10 : Dùng bất đẳng thức Ví dụ 16: Tìm nghiệm nguyên của phương trình x2 –xy + y2 = 3 Hướng dẫn: Ta có x –xy + y = 3 ⇔ (x2 Ta thấy (x- 2 y 2 )2 ≥ 0 ⇒ 3 - y 2 3y2 4 2 ) =3- 3y2 4 ≥ 0 ⇒ -2 ≤ y ≤ 2 ⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x Ta được các nghiệm nguyên của phương trình. .. Vậy phương trình có nghiệm nguyên (x, y) = (2; -5); (-2, 3) Ví dụ 15: Tìm nghiệm nguyên của phương trình x2 – (y+5)x + 5y + 2 = 0 Hướng dẫn: Ta có x2 – (y+5)x + 5y + 2 = 0 coi y là tham số ta có phương trình bậc 2 ẩn x Giả sử phương trình bậc 2 có 2 nghiệm x1, x2 Ta có ⇒ ⇒ 5 x1 + 5x2 – x1x2 = 23 ⇔ (x1 -5) (x2 -5) = 2 Mà 2 = 1.2 = (-1)(-2) ⇒ x1 + x2 = 13 hoặc x1 + x2 = 7 ⇒ y = 8 hoặc y = 2 thay vào phương. .. x0, y0 là nghiệm của phương trình x2 – 5y2 = 0 12 2 2 ta có x 0 - 5y 0 = 0 ⇒ x0  5 đặt x0 = 5 x1 2 2 Ta có (5x1) 2 – 5y 0 = 0 ⇔ 5x 12 - y 0 = 0 ⇒ y0  5 đặt y0 = 5y1 ⇒ x 12 - 5y 12 = 0 Vây nếu (x0,,y0) là nghiệm của phương trình đã cho thì ( x0 5 y0 5k , y0 5 ) cũng là nghiệm của phương trình đã cho Cứ tiếp tục lập luận như vậy ( x0 5k , ) với k nguyên dương bất kỳ cũng là nghiệm của phương trình Điều... nghiệm của phương trình bậc 2 để xác định giá trị của tham số Ví dụ 14: Giải phương trình nghiệm nguyên 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 Hướng dẫn: Ta có pt 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 14 ⇔ y2 + (4x + 2)y + 3 x2 + 4x + 5 = ) (*) coi x là tham số giải phương trình bậc 2 pt (*) ẩn y ta có y = -(2x + 1) ± ∆' x Do y nguyên, x nguyên ⇒ Mà ∆' x ∆' x nguyên = (2x + 1)2 – (3x2 + 4x + 5) = x2 – 4⇒ x2 – 4 =... nghiệm nguyên đặc biệt (x 0, y0) của phương trình vô định ax + by = c Nếu phương trình có hệ số a, b, c lớn thì cách giải khó khăn Cách 2: Dùng tính chất chia hết Ta có 2x + 3y = 11⇒ x= Do x, y nguyên ⇒ đặt y −1 2 y −1 2 11 − 3 y = 2 5- y- y −1 2 nguyên = k ⇒ y = 2k +1 ⇒ x = 4- 3k (k ∈ Z Vậy nghiệm tổng quát Bài 2: Tìm cặp số nguyên dương (x,y) thoả mãn phương trình 6x2 + 5y2 = 74 Hướng dẫn: Cách 1:... y) = (1, 1); (0, 0) ; (1, -1); (-1; -1); (-1, 1) Bài 4: Tìm nghiệm tự nhiên của phương trình x2 –3xy + 2y2+ 6 = 0 Hướng dẫn: Ta thấy(x, y) = (0, 0) không phải là nghiệm của phương trình Ta coi phương trình x2 – 3xy + 2y2 + 6 = 0 ẩn x ta tính Phương trình có nghiệm tự nhiên thì ∆y ⇒ y2 – 24 = k2 ⇒ (y – k)(y + k) = 24 ∆y = y2 – 24 là số chính phương (k∈N) mà 24 = 24.1 = 12.2 = 6.4 = 3.8 ; y+k và y – k... (x,y) = (8, 7); (13, 7); (7, 5); (8,5) 20 Bài 5: Tìm nghiệm nguyên của phương trình 2x2 + 2y2 – 2xy + y + x – 10 = 0 Hướng dẫn: Cách 1: Ta có phương trình đã cho ⇔ 2x2 – (2y-1) x + 2y2 + y – 10 = 0 Coi x là ẩn y là tham số ta có phương trình bậc 2 ẩn x Xét ∆y = (2y – 1)2 – 4.2 (2y2 + y -10) = -12y2 – 12y+ 81 Để nghiệm x nguyên thì ∆y là số chính phương Đặt k2= -12y2 – 12 y + 81 ⇒ k2 + 3(2y + 1) = 84... giáo viên thì việc học hỏi thêm qua việc dự giờ đồng nghiệp, qua việc lắng nghe ý kiến rút kinh nghiệm của đồng nghiệp và Ban giám hiệu trong từng giờ dạy cũng là bài học vô giá đối với bản thân giáo viên Phương pháp giải phương trình nghiệm nguyên là phương pháp được ứng dụng rộng rãi trong nhiều bài toán dạng toán Song vì thời gian eo hẹp nên đề tài này không thể tránh được những sai sót,mong đồng nghiệp... 2, z = 5 thoả mãn VII Phương pháp 7: Đưa về dạng tổng Ví dụ 10: Tìm nghiệm nguyên của phương trình x 2 + y2 – x – y = 8 Hướng dẫn: Ta có x2 + y2 –x – y = 8⇔ 4 x2 + 4 y2 – 4 x –4y = 32 11 ⇔ (4x2 – 4x +1) + (4y2 – 4y + 1) = 34⇔ (2x – 1)2 + (2y – 1)2 = 34 Bằng phương pháp thử chọn ta thấy 34 chỉ có duy nhất 1 dạng phân tích thành tổng của 2 số chính phương 32 và 52 Do đó ta có hoặc Giải ra ta được (x,y) . 4 CHƯƠNG I: MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Không có phương pháp chung để giải phương trình nghiệm nguyên nhưng để giải nó người ta thường áp dụng một số phương pháp sau hoặc. là phương trình bậc nhất hoặc bậc cao. Không có cách giải chung cho mọi phương trình, để giải các phương trình đó thường dựa vào cách giải một số phương trình cơ bản và một số phương pháp giải. phương pháp nào cho phù hợp. Các dạng toán về số học ở chương trình THCS thật đa dạng phong phú như: Toán về chia hết, phép chia có dư, số nguyên tố, số chính phương, phương trình nghiệm nguyên ….

Ngày đăng: 03/04/2015, 23:01

Từ khóa liên quan

Mục lục

  • CHƯƠNG I: MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN

  • Ví dụ 6: Tìm tất cả các nghiệm nguyên của phương trình

  • V.Phương pháp 5: Dùng chia hết và có dư

  • VII. Phương pháp 7: Đưa về dạng tổng

    • Ví dụ 11: Tìm nghiệm nguyên của phương trình

    • IX. Phương pháp 9: Sử dụng tính chất nghiệm của phương trình bậc 2

    • Bài 3: Tìm nghiệm nguyên của phương trình:x2 + y2 = 2x2y2

      • Bài 5: Tìm nghiệm nguyên của phương trình

Tài liệu cùng người dùng

Tài liệu liên quan