rèn luyện kỹ năng giải các bài toán chia hết trên vành số nguyên

35 723 2
rèn luyện kỹ năng giải các bài toán chia hết trên vành số nguyên

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

PHẦN I. MỞ ĐẦU 1. Lý do chọn đề tài Số học là môn học lâu đời nhất và hấp dẫn nhất của toán học. Vậy số học là gì? Số học là khoa học về số, trong số học người ta nghiên cứu những tính chất đơn giản nhất của số và những quy tắc tính toán. ở chương trình THCS số học chiếm 1 lượng khá lớn trong số học thì phép chia hết trên vành số nguyên đã thực sự thu hút đối với giáo viên và học sinh, có lẽ đó không chỉ bởi vấn đề lý thuyết về phép chia có giá trị thực tiễn mà qua đó rèn cho học sinh tư duy sáng tạo toán học. Càng học các em càng được cuốn hút bởi 1 lượng bài tập vô cùng sáng tạo và phong phú. Cái khó khi dùng phép chia hết trên vành số nguyên và khi học sinh là vấn đề nhận diện và vận dụng lý thuyết để chỉ ra phương pháp giải các bài toán, khi ngành Giáo dục đang thi đua giảng dạy theo phương pháp đổi mới, trong luật Giáo dục Việt Nam và Nghị quyết đại hội Đảng lần thứ 7 và 8 cũng đã nhấn mạnh: “Dạy cho học sinh phương pháp tự nghiên cứu” và với tình hình hiện nay còn nhiều giáo viên chưa thực sự quan tâm đúng mức đến việc rèn luyện năng lực tự học cho học sinh. Xuất phát từ vấn đề nên trên đã thúc đẩy Tôi viết. Rèn luyện kỹ năng giải các bài toán chia hết trên vành số nguyên. 2. Nội dung đề tài gồm Phần mở đầu Phần nội dung Phần I: Tóm tắt lý thuyết Phần II: Các phương pháp giải các bài toán chia hết. 1. Phương pháp sử dụng dấu hiệu chia hết. 2. Phương pháp sử dụng tính chất chia hết. 3. Phương pháp sử dụng xét tập hợp số dư trong phép chia. 1 4. Phương pháp sử dụng các phương pháp phân tích thành nhân tử. 5. Phương pháp biến đổi biểu thức cần chứng minh về dạng tổng. 6. Phương pháp quy nạp toán học. 7. Phương pháp sử dụng đồng dư thức. 8. Phương pháp sử dụng nguyên lý Đ. 9. Phương pháp phản chứng Phần Kết luận - kiến nghị Phụ lục tham khảo II. Mục tiêu nghiên cứu Nghiên cứu mong muôn sẽ giúp học sinh khắc phục được những yếu điểm nêu về toán học từ đó đạt được kết quả cao khi giải bài toán nói riêng và đạt kết quả cao trong quá trình học tập nói chung. Ý nghĩa rất quan trọng mà đề tài đặt ra là: Tìm được một phương pháp tối ưu nhất để trong quỹ thời gian cho phép hoàn thành được một hệ thống chương trình quy định và nâng cao thêm về mặt kiến thức, kỹ năng, kỹ xảo trong việc giải các bài toán. Từ đó phát huy, khơi dậy, sử dụng hiệu quả kiến thức vốn có của học sinh, gây hứng thú học tập cho các em. III. Nhiệm vụ nghiên cứu. Sáng kiến kinh nghiệm có nhiệm vụ giải đáp các câu hỏi khoa học sau đây: - Kỹ năng là gì? Cơ chế hình thành kỹ năng là như thế nào? - Những tình huống điển hình nào thường gặp trong quá trình giải quyết những vấn đề liên quan. - Trong quá trình giải quyết các vấn đề liên quan, học sinh thường gặp những khó khăn và sai lầm nào? - Những biện pháp sư phạm nào được sử dụng để rèn luyện cho học sinh kỹ năng giải quyết các vấn đề liên quan? - Kết quả của thực nghiệm sư phạm là như thế nào? IV. Đối tượng nghiên cứu, phạm vi nghiên cứu: 2 - Các dạng toán về và phương pháp giảng dạy toán để giúp nâng cao hứng thú và kết quả học tập của học sinh. - Học sinh lớp trường THCS XXX V. Phương pháp nghiên cứu: Trong quá trình nghiên cứu, sáng kiến kinh nghiệm sử dụng những phương pháp sau: Nghiên cứu lý luận, điều tra quan sát thực tiễn, thực nghiệm sư phạm. Trên cơ sở phân tích kỹ nội dung chương trình của Bộ giáo dục và Đào tạo, phân tích kỹ đối tượng học sinh (đặc thù, trình độ tiếp thu…). Bước đầu mạnh dạn thay đổi ở từng tiết học, sau mỗi nội dung đều có kinh nghiệm về kết quả thu được (nhận thức của học sinh, hứng thú nghe giảng, kết quả kiểm tra,…) và đi đến kết luận. Lựa chọn các ví dụ các bài tập cụ thể phân tích tỉ mỉ những sai lầm của học sinh vận dụng hoạt động năng lực tư duy và kỹ năng vận dụng kiến thức của học sinh để từ đó đưa ra lời giải đúng của bài toán. Trong mỗi phương pháp đều có những ví dụ điển hình và các bài tập tương tự. Vẫn biết rằng những khái niệm về số học được rất nhiều tác giả đề cập đến ở nhiều khía cạnh khác nhau. Do đó không thể có sự sáng tạo hoàn toàn trong đề tài mà đề tài này mới chỉ dừng lại ở 1 mức độ nhất định. Với nội dung và cách trình bày trong đề tài này không tránh khỏi những hạn chế của bản thân, rất mong được các Thầy cô giáo và đồng nghiệp góp ý để nội dung đề tài ngày càng được hoàn thiện hơn. 3 PHẦN II. NỘI DUNG I: TÓM TẮT LÝ THUYẾT I. ĐỊNH NGHĨA PHÉP CHIA Cho 2 số nguyên a và b trong đó b ≠ 0 ta luôn tìm được hai số nguyên q và r duy nhất sao cho: a = bq + r Với 0 ≤ r ≤ | b| Trong đó: a là số bị chia, b là số chia, q là thương, r là số dư. Khi a chia cho b có thể xẩy ra | b| số dư r ∈ {0; 1; 2; …; | b|} Đặc biệt: r = 0 thì a = bq, khi đó ta nói a chia hết cho b hay b chia hết a. Ký hiệu: ab hay b\ a Vậy: a  b ⇔ Có số nguyên q sao cho a = bq II. CÁC TÍNH CHẤT 1. Với ∀ a ≠ 0 ⇒ a  a 2. Nếu a  b và b  c ⇒ a  c 3. Với ∀ a ≠ 0 ⇒ 0  a 4. Nếu a, b > 0 và a  b ; b  a ⇒ a = b 5. Nếu a  b và c bất kỳ ⇒ ac  b 6. Nếu a  b ⇒ (±a)  (±b) 7. Với ∀ a ⇒ a  (±1) 8. Nếu a  b và c  b ⇒ a ± c  b 9. Nếu a  b và cb ⇒ a ± c  b 4 10. Nếu a + b  c và a  c ⇒ b  c 11. Nếu a  b và n > 0 ⇒ a n  b n 12. Nếu ac  b và (a, b) =1 ⇒ c  b 13. Nếu a  b, c  b và m, n bất kỳ am + cn  b 14. Nếu a  b và c  d ⇒ ac  bd 15. Tích n số nguyên liên tiếp chia hết cho n! III. MỘT SỐ DẤU HIỆU CHIA HẾT Gọi N = 011nn a aaa − 1. Dấu hiệu chia hết cho 2; 5; 4; 25; 8; 125 + N  2 ⇔ a 0  2 ⇔ a 0 ∈{0; 2; 4; 6; 8} + N  5 ⇔ a 0  5 ⇔ a 0 ∈{0; 5} + N  4 (hoặc 25) ⇔ 01 aa  4 (hoặc 25) + N  8 (hoặc 125) ⇔ 01 aaa 2  8 (hoặc 125) 2. Dấu hiệu chia hết cho 3 và 9 + N  3 (hoặc 9) ⇔ a 0 +a 1 +…+a n  3 (hoặc 9) 3. Một số dấu hiệu khác + N  11 ⇔ [(a 0 +a 1 +…) - (a 1 +a 3 +…)]  11 + N  101 ⇔ [( 01 aa + 45 aa +…) - ( 23 aa + 67 aa +…)]101 + N  7 (hoặc 13) ⇔ [( 01 aaa 2 + 67 aaa 8 +…) - [( 34 aaa 5 + 910 aaa 11 +…) 11 (hoặc 13) + N  37 ⇔ ( 01 aaa 2 + 34 aaa 5 +…)  37 5 + N  19 ⇔ ( a 0 +2a n-1 +2 2 a n-2 +…+ 2 n a 0 )  19 IV. ĐỒNG DƯ THỨC a. Định nghĩa: Cho m là số nguyên dương. Nếu hai số nguyên a và b cho cùng số dư khi chia cho m thì ta nói a đồng dư với b theo modun m. Ký hiệu: a ≡ b (modun) Vậy: a ≡ b (modun) ⇔ a - b  m b. Các tính chất 1. Với ∀ a ⇒ a ≡ a (modun) 2. Nếu a ≡ b (modun) ⇒ b ≡ a (modun) 3. Nếu a ≡ b (modun), b ≡ c (modun) ⇒ a ≡ c (modun) 4. Nếu a ≡ b (modun) và c ≡ d (modun) ⇒ a+c ≡ b+d (modun) 5. Nếu a ≡ b (modun) và c ≡ d (modun) ⇒ ac ≡ bd (modun) 6. Nếu a ≡ b (modun), d ∈ Uc (a, b) và (d, m) =1 ⇒ d b d a ≡ (modun) 7. Nếu a ≡ b (modun), d > 0 và d ∈ Uc (a, b, m) ⇒ d b d a ≡ (modun d m ) V. MỘT SỐ ĐỊNH LÝ 1. Định lý Euler Nếu m là 1 số nguyên dương ϕ (m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m, (a, m) = 1 Thì a ϕ (m) ≡ 1 (modun) Công thức tính ϕ (m) Phân tích m ra thừa số nguyên tố 6 m = p 1 α 1 p 2 α 2 … p k α k với p i ∈ p; α i ∈ N * Thì ϕ (m) = m(1 - `1 1 p )(1 - 2 1 p ) … (1 - k p 1 ) 2. Định lý Fermat Nếu t là số nguyên tố và a không chia hết cho p thì a p-1 ≡ 1 (modp) 3. Định lý Wilson Nếu p là số nguyên tố thì ( P - 1)! + 1 ≡ 0 (modp) II: CÁC PHƯƠNG PHÁP GIẢI BÀI TOÁN CHIA HẾT 1. Phương pháp 1: SỬ DỤNG DẤU HIỆU CHIA HẾT Ví dụ 1: Tìm các chữ số a, b sao cho a56b  45 Giải Ta thấy 45 = 5.9 mà (5 ; 9) = 1 để a56b  45 ⇔ a56b  5 và 9 Xét a56b  5 ⇔ b ∈ {0 ; 5} Nếu b = 0 ta có số a56b  9 ⇔ a + 5 + 6 + 0  9 ⇒ a + 11  9 ⇒ a = 7 Nếu b = 5 ta có số a56b  9 ⇔ a + 5 + 6 + 0  9 ⇒ a + 16  9 ⇒ a = 2 7 Vậy: a = 7 và b = 0 ta có số 7560 a = 2 và b = 5 ta có số 2560 Ví dụ 2: Biết tổng các chữ số của 1 số là không đổi khi nhân số đó với 5. Chứng minh răng số đó chia hết cho 9. Giải Gọi số đã cho là a Ta có: a và 5a khi chia cho 9 cùng có 1 số dư ⇒ 5a - a  9 ⇒ 4a  9 mà (4 ; 9) = 1 ⇒ a  9 (Đpcm) Ví dụ 3: CMR số    1 sè 81 111 111 …  81 Giải Ta thấy: 111111111  9 Có    1 sè 81 111 111 … = 111111111(10 72 + 10 63 + … + 10 9 + 1) Mà tổng 10 72 + 10 63 + … + 10 9 + 1 có tổng các chữ số bằng 9  9 ⇒ 10 72 + 10 63 + … + 10 9 + 1  9 Vậy:    1 sè 81 111 111 …  81 (Đpcm) BÀI TẬP TƯƠNG TỰ Bài 1: Tìm các chữ số x, y sao cho a. 34x5y  4 và 9 b. 2x78  17 Bài 2: Cho số N = dcba CMR a. N  4 ⇔ (a + 2b)  4 8 b. N  16 ⇔ (a + 2b + 4c + 8d)  16 với b chẵn c. N  29 ⇔ (d + 2c + 9b + 27a)  29 Bài 3: Tìm tất cả các số có 2 chữ số sao cho mỗi số gấp 2 lần tích các chữ số của số đó. Bài 4: Viết liên tiếp tất cả các số có 2 chữ số từ 19 đến 80 ta được số A = 192021…7980. Hỏi số A có chia hết cho 1980 không ? Vì sao? Bài 5: Tổng của 46 số tự nhiên liên tiếp có chia hết cho 46 không? Vì sao? Bài 6: Chứng tỏ rằng số   1 sè 100 11 11 …   2 sè 100 22 22 … là tích của 2 số tự nhiên liên tiếp. HƯỚNG DẪN - ĐÁP SỐ Bài 1: a. x = và y = 2 x = và y = 6 b. 2x78 = 17 (122 + 6x) + 2(2-x)17 ⇔ x = 2 Bài 2: a. N4 ⇔ ab 4 ⇔ 10b + a4 ⇔ 8b + (2b + a) 4 ⇒ a + 2b4 b. N16 ⇔ 1000d + 100c + 10b + a16 ⇔ (992d + 96c + 8b) + (8d + 4c + 2b + a) 16 ⇒ a + 2b + 4c + 8d16 với b chẵn c. Có 100(d + 3c + 9b + 27a) - dbca 29 mà (1000, 29) =1 dbca 29 ⇒ (d + 3c + 9b + 27a) 29 Bài 3: Gọi ab là số có 2 chữ số Theo bài ra ta có: 9 ab = 10a + b = 2ab (1) ab 2 ⇒ b ∈{0; 2; 4; 6; 8} Thay vào (1) a = 3; b = 6 Bài 4: Có 1980 = 2 2 .3 2 .5.11 Vì 2 chữ số tận cùng của a là 80  4 và 5 ⇒ A 4 và 5 Tổng các số hàng lẻ 1+(2+3+…+7).10+8 = 279 Tổng các số hàng chẵn 9+(0+1+…+9).6+0 = 279 Có 279 + 279 = 558  9 ⇒ A  9 279 - 279 = 0  11 ⇒ A  11 Bài 5: Tổng 2 số tự nhiên liên tiếp là 1 số lẻ nên không chia hết cho 2. Có 46 số tự nhiên liên tiếp ⇒ có 23 cặp số mỗi cặp có tổng là 1 số lẻ ⇒ tổng 23 cặp không chia hết cho 2. Vậy tổng của 46 số tự nhiên liên tiếp không chia hết cho 46. Bài 6: Có   1 sè 100 11 11 …   2 sè 100 22 22 … =   1 sè 100 11 11 …   0 sè 99 02 100 … Mà   0 sè 99 02 100 … = 3.   3 sè 99 34 33 … ⇒   1 sè 100 11 11 …   2 sè 100 22 22 … =   3 sè100 33 33 …   3 sè 99 34 33 … (Đpcm) 2. Phương pháp 2: SỬ DỤNG TÍNH CHẤT CHIA HẾT * Chú ý: Trong n số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho n. CMR: Gọi n là số nguyên liên tiếp m + 1; m + 2; … m + n với m ∈ Z, n ∈ N * 10 [...]... n số đó có 1 số và chỉ 1 số đó chia hết cho n… Ví dụ 1: CMR: a Tích của 2 số nguyên liên tiếp luôn chia hết cho 2 b Tích của 3 số nguyên liên tiếp chia hết cho 6 Giải a Trong 2 số nguyên liên tiếp bao giờ cũng có 1 số chẵn ⇒ Số chẵn đó chia hết cho 2 Vậy tích của 2 số nguyên liên tiếp luôn chia hết cho 2 Tích 2 số nguyên liên tiếp luôn chia hết cho 2 nên tích của 3 số nguyên liên tiếp luôn chia hết. .. (ĐPCM) 11    1994 sè 1 Bài 3: Xét dãy số gồm 17 số nguyên bất kỳ là a1, a2, …, a17 Chia các số cho 5 ta được 17 số dư ắt phải có 5 số dư thuộc tập hợp{0; 1; 2; 3; 4} Nếu trong 17 số trên có 5 số khi chia cho 5 có cùng số dư thì tổng của chúng sẽ chia hết cho 5 Nếu trong 17 số trên không có số nào có cùng số dư khi chia cho 5 ⇒ tồn tại 5 số có số dư khác nhau ⇒ tổng các số dư là: 0 + 1 + 2 + 3 +... dạy môn Toán tại trường, từ việc áp dụng các hình thức rèn luyện cách trình bày lời giải bài toán cho học sinh đã có kết quả rõ rệt, bản thân tôi rút ra được nhiều bài học kinh nghiệm về phương pháp rèn luyện cách trình bày lời giải bài toán cho học sinh đó là : 1 – Trình bày bài giải mẫu 2 – Trình bày bài giải nhưng các bước sắp xếp chưa hợp lý 3 - Đưa ra bài toán có gợi ý giải 4 - Đưa ra bài giải sẵn... + 1 số nguyên bất kỳ có 2 số có hiệu chia hết cho n Giải Lấy n + 1 số nguyên đã cho chia cho n thì được n + 1 số dư nhận 1 trong các số sau: 0; 1; 2; …; n - 1 ⇒ có ít nhất 2 số dư có cùng số dư khi chia cho n Giả sử ai = nq1 + r aj = nq2 + r 0≤r 3 CMR : p2 - 1  24 Bài 5: CMR: Trong 1900 số tự nhiên liên tiếp có 1 số có tổng các chữ số chia hết cho 27 HƯỚNG DẪN - ĐÁP SỐ Bài. .. bất kỳ bao giờ cũng tồn tại 1 tổng 5 số chia hết cho 5 Bài 4: Có hay không 1 số có dạng 19931993 … 1993000 … 00  1994 HƯỚNG DẪN - ĐÁP SỐ Bài 1: Xét dãy số 17, 172, …, 1725 (tương tự VD2) Bài 2: Ta có 1994 số nguyên chứa toàn bộ số 1 là: 1 11 111 … 111… 11    1994 sè 1 Khi chia cho 1993 thì có 1993 số dư ⇒ theo nguyên lý Đirichlet có ít nhất 2 số có cùng số dư Giả sử đó là ai = 1993q + r 0 ≤ r . tâm đúng mức đến việc rèn luyện năng lực tự học cho học sinh. Xuất phát từ vấn đề nên trên đã thúc đẩy Tôi viết. Rèn luyện kỹ năng giải các bài toán chia hết trên vành số nguyên. 2. Nội dung đề. có 1 số chẵn ⇒ Số chẵn đó chia hết cho 2. Vậy tích của 2 số nguyên liên tiếp luôn chia hết cho 2. Tích 2 số nguyên liên tiếp luôn chia hết cho 2 nên tích của 3 số nguyên liên tiếp luôn chia hết. có 1 số và chỉ 1 số đó chia hết cho n… Ví dụ 1: CMR: a. Tích của 2 số nguyên liên tiếp luôn chia hết cho 2 b. Tích của 3 số nguyên liên tiếp chia hết cho 6. Giải a. Trong 2 số nguyên liên tiếp

Ngày đăng: 18/11/2014, 18:43

Từ khóa liên quan

Mục lục

  • Ý nghĩa rất quan trọng mà đề tài đặt ra là: Tìm được một phương pháp tối ưu nhất để trong quỹ thời gian cho phép hoàn thành được một hệ thống chương trình quy định và nâng cao thêm về mặt kiến thức, kỹ năng, kỹ xảo trong việc giải các bài toán. Từ đó phát huy, khơi dậy, sử dụng hiệu quả kiến thức vốn có của học sinh, gây hứng thú học tập cho các em.

Tài liệu cùng người dùng

Tài liệu liên quan