Một số phương phapr giải phương trình vô tỉ demo

10 189 0
Một số phương phapr giải phương trình vô tỉ demo

Đang tải... (xem toàn văn)

Thông tin tài liệu

Một số phơng pháp giải phơng trình vô tỷ Nguyễn Văn Rin Toán 3A Page 1 LI NểI U: Phng trỡnh l mt mng kin thc quan trng trong chng trỡnh Toỏn ph thụng. Gii phng trỡnh l bi toỏn cú nhiu dng v gii rt linh hot, vi nhiu hc sinh k c hc sinh khỏ gii nhiu khi cũn lỳng tỳng trc vic gii mt phng trỡnh, c bit l phng trỡnh vụ t. Trong nhng nm gn õy, phng trỡnh vụ t thng xuyờn xut hin cõu II trong cỏc thi tuyn sinh vo i hc v Cao ng. Vỡ vy, vic trang b cho hc sinh nhng kin thc liờn quan n phng trỡnh vụ t kốm vi phng phỏp gii chỳng l rt quan trng. Nh chỳng ta ó bit phng trỡnh vụ t cú nhiu dng v nhiu phng phỏp gii khỏc nhau. Trong bi tp ln ny, tụi xin trỡnh by mt s phng phỏp gii phng trỡnh vụ t, mi phng phỏp u cú bi tp minh ha c gii rừ rng, d hiu; sau mi phng phỏp u cú bi tp ỏp dng giỳp hc sinh cú th thc hnh gii toỏn v nm vng cỏi ct lừi ca mi phng phỏp. Hy vng nú s gúp phn giỳp cho hc sinh cú thờm nhng k nng cn thit gii phng trỡnh cha cn thc núi riờng v cỏc dng phng trỡnh núi chung. www.VNMATH.com Nguyễn Văn Rin Toán 3A Một số phơng pháp giải phơng trình vô tỷ Page 2 A. BI TON M U: Gii phng trỡnh: 2 2 1 1 (*) 3 x x x x (HQG HN, khi A-2000) Gii: iu kin: 0 1 x Cỏch 1: 2 2 2 2 (*) 1 1 3 x x x x 2 2 4 4 1 ( ) 1 2 (1 ) 3 9 x x x x x x 2 2 4( ) 6 0 x x x x 2 2 2 (2 3) 0 x x x x 2 2 0 3 2 x x x x 2 2 0 9 0( ) 4 x x x x PTVN 0 1 x x (tha iu kin) Vy nghim ca phng trỡnh l 0; 1 x x . Cỏch 2: Nhn xột: 2 x x c biu din qua x v 1 x nh vo ng thc: 2 2 1 =1+2 x x x x . t 1 t x x ( 0) t . 2 2 1 2 t x x . Phng trỡnh (*) tr thnh: 2 2 1 1 1 3 2 0 2 3 t t t t t t Vi 1 t ta cú phng trỡnh: 2 2 0 1 1 2 0 0 1 x x x x x x x x (tha iu kin). Vi 2 t ta cú phng trỡnh: www.VNMATH.com Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû NguyÔn V¨n Rin – To¸n 3A Page 3 2 2 2 9 9 1 2 2 3 0( ) 4 4 x x x x x x x x PTVN              . Vậy nghiệm của phương trình là 0; 1 x x   .  Cách 3: Nhận xét: x và 1 x  có mối quan hệ đặc biệt, cụ thể     2 2 1 1 x x    . (*) 2 . 1 3 1 3 3 x x x x         1 2 3 3 3 (1) x x x     . 9 4 x  không thỏa mãn phương trình (1). Do đó, 3 3 (1) 1 (2) 2 3 x x x      . Đặt 3 3 ( 0), (2) 1 2 3 t t x t x t        . Ta có:     2 2 1 1 x x    2 2 3 3 1 2 3 t t t            2 2 2 2 (4 12 9) 9 18 9 4 12 9 t t t t t t t          4 3 2 4 12 14 6 0 t t t t      3 2 (2 6 7 3) 0 t t t t      2 ( 1)(2 4 3) 0 t t t t      0 1 t t       . Với 0 t  ta có 0 0 x x    (thỏa điều kiện). Với 1 t  ta có 1 1 x x    (thỏa điều kiện). Vậy nghiệm của phương trình là 0; 1 x x   .  Cách 4: Nhận xét: x và 1 x  có mối quan hệ đặc biệt, cụ thể     2 2 1 1 x x    . Đặt ( 0); 1 ( 0) a x a b x b      . Ta có hệ phương trình: 2 2 2 1 3 1 ab a b a b           2 3 2 3( ) ( ) 2 1 ab a b a b ab           2 2 3( ) 3 ( ) 3( ) 2 0 ab a b a b a b             www.VNMATH.com NguyÔn V¨n Rin – To¸n 3A Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû Page 4 2 3( ) 3 1 2 ab a b a b a b                 1 0 2 3 2 a b ab a b ab                         a, b là 2 nghiệm của phương trình 2 1 0 0 0 1 a b X X a b                     . (Trường hợp 2 3 2 a b ab         loại vì 2 3 2 4. 0 2   ). Với 1 0 a b      ta có 1 1 1 0 x x x           (thỏa điều kiện). Với 0 1 a b      ta có 0 0 1 1 x x x           (thỏa điều kiện). Vậy nghiệm của phương trình là 0; 1 x x   .  Cách 5: Nhận xét: Từ     2 2 1 1 x x    , ta nghĩ đến đẳng thức: 2 2 sin os 1 a c a   . Đặt sin , 0 a 2 x a     . Phương trình (*) trở thành: 2 2 2 1 sin . 1 sin sin 1 sin 3 a a a a      3 2sin .cos 3sin 3cos ( ì cos 0) a a a a v a      2 (sin cos ) 3(sin cos ) 2 0 a a a a       sin cos 1 sin cos 2 a a a a         sin cos 1 a a    2 sin( ) 1 4 a     2 1 4 4 sin( ) ( ) 3 4 2 2 4 4 a k a k a k                          2 0 ( ) ( ì 0 ) 2 2 2 2 a k a k v a a k a                         Với 0 a  ta có 0 0 x x    (thỏa điều kiện). www.VNMATH.com Một số phơng pháp giải phơng trình vô tỷ Nguyễn Văn Rin Toán 3A Page 5 Vi 1 a ta cú 1 1 x x (tha iu kin). Vy nghim ca phng trỡnh l 0; 1 x x . Qua bi toỏn m u, ta thy cú nhiu cỏch khỏc nhau gii mt phng trỡnh vụ t. Tuy nhiờn, cỏc cỏch ú u da trờn c s l phỏ b cn thc v a v phng trỡnh n gin hn m ta ó bit cỏch gii. Sau õy, tụi xin trỡnh by mt s phng phỏp c th gii phng trỡnh vụ t. B. MT S PHNG PHP GII PHNG TRèNH Vễ T I. PHNG PHP BIN I TNG NG Hai phng trỡnh c gi l tng ng nu chỳng cú cựng tp nghim. Mt s phộp bin i tng ng: Cng, tr hai v ca phng trỡnh vi cựng biu thc m khụng lm thay i tp nghim ca phng trỡnh. Nhõn, chia hai v ca phng trỡnh vi cựng biu thc khỏc 0 m khụng lm thay i iu kin ca phng trỡnh. Ly tha bc l hai v, khai cn bc l hai v ca phng trỡnh. Ly tha bc chn hai v, khai cn bc chn hai v khi hai v ca phng trỡnh cựng dng. 1. Ly tha hai v ca phng trỡnh: 2 1 2 1 ( ) ( ) ( ) ( ) k k f x g x f x g x . 2 2 ( ) 0 ( ) ( ) ( ) ( ) k k g x f x g x f x g x . 2 1 2 1 ( ) ( ) ( ) ( ) k k f x g x f x g x . 2 2 ( ) 0 ( ) ( ) ( ) ( ) k k g x f x g x f x g x . Thụng thng nu ta gp phng trỡnh dng : A B C D , ta thng bỡnh phng 2 v, iu ú nhiu khi cng s gp khú khn. Vi phng trỡnh dng: 3 3 3 A B C v ta thng lp phng hai v a phng trỡnh v dng: 3 33 3 . A B A B A B C v ta s dng phộp th : 3 3 3 A B C ta c phng trỡnh h qu: 3 3 . . A B A B C C Bi 1: Gii phng trỡnh: 1 10 2 5 (*) x x x x Gii: iu kin: 1 x . www.VNMATH.com NguyÔn V¨n Rin – To¸n 3A Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû Page 6 2 2 (*) 2 11 2 11 10 2 7 2 7 10 x x x x x x           2 2 2 11 10 7 10 x x x x        2 2 2 11 14 4 11 10 7 10 x x x x x x          2 11 10 1 x x x       2 2 1 0 11 10 2 1 x x x x x             1 1 9 9 x x x            (thỏa điều kiện). Vậy nghiệm của phương trình là: 1 x   . Bài 2: Giải phương trình: 3 3 3 1 2 3 0 (*) x x x      Giải: 3 3 3 (*) 1 2 3 x x x        3 3 3 2 3 3 ( 1)( 2)( 1 2) 3 x x x x x x            3 3 3 2 ( 1)( 2)( 1 2) 0 x x x x x            3 3 2 ( 1)( 2) 3 0 x x x x         3 ( 1)( 2)( 3) 2 x x x x       3 2 3 2 6 11 6 6 12 8 x x x x x x         2 x    Thử lại, 2 x   thỏa mãn phương trình (*). Vậy nghiệm của phương trình là: 2 x   . Bài 3: Giải phương trình: 3 3 1 2 2 2 x x x x       Giải: Điều kiện: 0 x  Bình phương 2 vế không âm của phương trình ta được:       1 3 3 1 2 2 1 x x x x x       , để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : 3 1 2 2 4 3 x x x x       Bình phương hai vế ta được phương trình hệ quả : 2 2 6 8 2 4 12 x x x x     2 2( 1) 0 1 x x      Thử lại, 1 x  thỏa mãn phương trình. Vậy nghiệm của phương trình là: 1 x  .  Nhận xét : Nếu phương trình :         f x g x h x k x    www.VNMATH.com Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû NguyÔn V¨n Rin – To¸n 3A Page 7 Mà có :         f x h x g x k x    , thì ta biến đổi phương trình về dạng :         f x h x k x g x    sau đó bình phương hai vế, giải phương trình hệ quả và thử lại nghiệm. Bài 4: Giải phương trình : 3 2 1 1 1 3 (1) 3 x x x x x x          Giải: Điều kiện : 1 x   Bình phương 2 vế phương trình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : 3 2 1 . 3 1. 1 3 x x x x x x        , từ nhận xét này ta có lời giải như sau : 3 2 1 (1) 3 1 1 3 x x x x x x           Bình phương 2 vế ta được phương trình hệ quả: 3 2 2 1 3 1 1 2 2 0 3 1 3 x x x x x x x x                   Thử lại : 1 3, 1 3 x x    là nghiệm của phương trình.  Nhận xét : Nếu phương trình :         f x g x h x k x    Mà có :         . . f x h x k x g x  thì ta biến đổi phương trình về dạng:         f x h x k x g x    sau đó bình phương hai vế, giải phương trình hệ quả và thử lại nghiệm. Bài tập áp dụng: Giải các phương trình sau: 1. 2 2 2 2 1 3 4 1 x x x x x       . 2. 3 1 4 1 x x     . 3. 1 6 5 2 x x x       . 4. 11 11 4 x x x x       . 5. 3 3 12 14 2 x x     . 6. 3 3 3 1 2 2 1 x x x      . 2. Trục căn thức: 2.1 Trục căn thức để xuất hiện nhân tử chung: Một số phương trình vô tỉ ta có thể nhẩm được nghiệm 0 x . Như vậy, phương trình luôn đưa về được dạng tích     0 0 x x A x   ta có thể giải phương trình www.VNMATH.com NguyÔn V¨n Rin – To¸n 3A Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû Page 8   0 A x  hoặc chứng minh   0 A x  vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh giá   0 A x  vô nghiệm. Bài 1: Giải phương trình:   2 2 2 2 3 5 1 2 3 1 3 4 x x x x x x x           Giải: Điều kiện: 2 1 5 2 x x          . Ta nhận thấy :       2 2 3 5 1 3 3 3 2 2 x x x x x         và       2 2 2 3 4 3 2 x x x x       .   2 2 2 2 3 5 1 3 1 2 3 4 pt x x x x x x x              2 2 2 2 2( 2) 3( 2) 2 3 4 3 5 1 3 1 x x x x x x x x x               .   2 2 2 2 3 2 ( 2) 0 2 3 4 3 5 1 3 1 x x x x x x x x                        . 2 x   (thỏa). Dễ dàng chứng minh được phương trình   2 2 2 2 3 2 0 2 3 4 3 5 1 3 1 x x x x x x x            vô nghiệm vì  1 5 0, ; 2 ; 2 VT x                  . Vậy 2 x  là nghiệm của phương trình. Bài 2: Giải phương trình: 2 2 12 5 3 5 x x x      Giải: Để phương trình có nghiệm thì : 2 2 5 12 5 3 5 0 3 x x x x         Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng     2 0 x A x   , để thực hiện được điều đó ta phải nhóm , tách như sau : 2 2 12 4 3 6 5 3 pt x x x         www.VNMATH.com Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû NguyÔn V¨n Rin – To¸n 3A Page 9   2 2 2 2 4 4 3 2 12 4 5 3 x x x x x             2 2 2 2 2 3 0 12 4 5 3 x x x x x                  2 x   Dễ dàng chứng minh được : 2 2 2 2 5 3 0, 3 12 4 5 3 x x x x x            . Vậy 2 x  là nghiệm của phương trình. Bài 3: Giải phương trình : 2 33 1 2 x x x     Giải: Điều kiện: 3 2 x  Nhận thấy 3 x  là nghiệm của phương trình , nên ta biến đổi phương trình: 2 33 1 2 3 2 5 pt x x x                 2 2 3 2 23 3 3 3 9 3 3 1 2 5 1 2 1 4 x x x x x x x x                           2 2 3 2 23 3 3 3 9 ( 3) 1 0 2 5 1 2 1 4 x x x x x x x                           2 3 2 2 2 3 3 3 3 9 3 (*) 1 2 5 1 2 1 4 x x x x x x x                    Phương trình (*) vô nghiệm vì:     2 2 2 2 23 3 3 3 3 1 1 2 1 2 1 4 1 1 3 x x x x x              2 3 3 9 2 5 x x x      Vậy phương trình có nghiệm duy nhất 3 x  . 2.2. Đưa về “hệ tạm”: Nếu phương trình vô tỉ có dạng A B C   , mà : A B C    ở đây C có thể là hằng số, có thể là biểu thức của x . Ta có thể giải như sau : www.VNMATH.com NguyÔn V¨n Rin – To¸n 3A Mét sè ph¬ng ph¸p gi¶i ph¬ng tr×nh v« tû Page 10 A B C A B A B        , khi đó ta có hệ: 2 A B C A C A B               Bài 1: Giải phương trình sau : 2 2 2 9 2 1 4 x x x x x        Giải: Ta thấy:       2 2 2 9 2 1 2 4 x x x x x        Phương trình đã cho có nghiệm 4 0 4 x x       4 x   không phải là nghiệm của phương trình. Xét 4 x   trục căn thức ta có : 2 2 2 2 2 8 4 2 9 2 1 2 2 9 2 1 x x x x x x x x x x                Ta có hệ phương trình: 2 2 2 2 2 0 2 9 2 1 2 2 2 9 6 8 2 9 2 1 4 7 x x x x x x x x x x x x x x                               Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0; x= 8 7 . Bài tập áp dụng: Giải các phương trình sau : 1.   2 2 3 1 3 1 x x x x      2. 4 3 10 3 2 x x     3. 23 4 1 2 3 x x x      4. 2 33 1 3 2 3 2 x x x      5. 2 3 2 11 21 3 4 4 0 x x x      6. 2 2 2 16 18 1 2 4 x x x x       7. 2 2 15 3 2 8 x x x      8.         2 2 5 2 10 x x x x x       2.3. Phương trình biến đổi về tích: 2.3.1 Sử dụng đẳng thức:     1 1 1 0 u v uv u v            0 au bv ab vu u b v a        2 2 A B  Bài 1: Giải phương trình : 23 3 3 1 2 1 3 2 x x x x        Giải: 3 3 3 3 1 2 1 1. 2 PT x x x x             3 3 1 1 2 1 0 x x       0 1 x x        www.VNMATH.com [...]... class was commended for having the best attendance for January ào tháng giêng.) (L khen ng vì 3 Cur / 62 [ n ] /k = Worthless dog ( Con chó vô d ) Ex: Lassie is a kind and intelligent animal Please don’t refer to her as a ‘cur’ ( Lassie là 1 con v êu nó là 1 ‘con chó vô d ) 4 Despotic / 64: [ adj ] / des'p / = Of a despot (a monarch having absolute power); domineering; dictatorial; tyrannical ( Thu ài... larger; enlarge; amplify (Làm cho l àm to lên ) Ex: The bacteria shown in your textbook have been greatly magnified; their actual size is considerably smaller (Nh ùng in trên sách giáo khoa cu ã lên r th ì vô cùng nh 14) Municipal / [adj] /mju:’nisip = Of a city or town (Thu ành ph Ex: Your father works for the city? How interesting! My father is also a municipal employee (Cha anh làm vi ành ph t là thú . phương trình (*). Vậy nghiệm của phương trình là: 2 x   . Bài 3: Giải phương trình: 3 3 1 2 2 2 x x x x       Giải: Điều kiện: 0 x  Bình phương 2 vế không âm của phương trình. nhân tử chung: Một số phương trình vô tỉ ta có thể nhẩm được nghiệm 0 x . Như vậy, phương trình luôn đưa về được dạng tích     0 0 x x A x   ta có thể giải phương trình www.VNMATH.com NguyÔn.  , để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : 3 1 2 2 4 3 x x x x       Bình phương

Ngày đăng: 19/10/2014, 10:58

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan