Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

61 1.3K 3
Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH ------------------------ LÝ THANH NGUYÊN KHẢO SÁT HIỆU SUẤT GHI CỦA DETECTƠ NHẤP NHÁY THEO NĂNG LƯỢNG BỨC XẠ GAMMA BẰNG PHƯƠNG PHÁP PHỎNG MONTE CARLO Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao Mã số : 60.44.05 LUẬN VĂN THẠC SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. NGUYỄN MINH CẢO Thành phố Hồ Chí Minh - 2010 THƯ VIỆN LỜI CẢM ƠN Để hoàn thành được luận văn này bản thân tôi đã nhận được sự quan tâm giúp đỡ tận tình và chu đáo của rất nhiều người. Tôi xin bày tỏ lòng tri ân sâu sắc và trân trọng cảm ơn đến: Thầy PGS.TS. Nguyễn Minh Cảo, người Thầy kính mến, người đã không những truyền cho tôi ý tưởng, cung cấp những định hướng và phương pháp nghiên cứu khoa học mà còn dạy bảo tôi về đạo đức trong nghiên cứu khoa học. Trong quá trình thực hiện luận văn, Thầy là người tận tình chỉ dẫn giúp tôi gỡ bỏ những khó khăn. Những kinh nghiệm và kiến thức quý báu của Thầy là điều kiện tiên quyết giúp tôi hoàn thành luận văn này. Thầy TS. Nguyễn Văn Hùng, người Thầy kính mến. Sự giúp đỡ của Thầy trong giai đoạn đầu thực hiện luận văn, thiếu thốn về điều kiện thực hiện, là nguồn động viên rất lớn giúp tôi tự tin tiến hành những nghiên cứu để có thể hoàn thành luận văn. Thầy ThS Hoàng Đức Tâm, người đã tạo điều kiện thuận lợi cho tôi khi làm thực nghiệm tại phòng Thí nghiệm. Thầy cũng là người đã có những chỉ dẫn tận tình khi tôi gặp những khó khăn khi làm việc tại đây. Cô TS. Trương Thị Hồng Loan và ThS. Trần Thiện Thanh đã có những chỉ bảo tận tình giúp tôi thấu hiểu về việc phỏng bằng MCNP và các vấn đề khác. Bạn Phạm Nguyễn Thành Vinh và bạn Trịnh Hoài Vinh đã cung cấp tài liệu và hết sức nhiệt tình giúp đỡ để tôi có thể vào làm thực nghiệm tại phòng Thí nghiệm cũng như tạo điều kiện tốt nhất khi tôi làm thực nghiệm tại đây. Ban chủ nhiệm Khoa vật lý trường ĐH Sư phạm TP. Hồ Chí Minh đã tạo điều kiện thuận lợi về cơ sở vật chất và phòng Thí nghiệm để tôi có thể hoàn thành luận văn. Cảm ơn cha mẹ đã tần tảo nắng mưa, hi sinh bản thân nuôi nấng và cho con được học hành. Cảm ơn những người bạn tôi những người luôn động viên giúp đỡ cho tôi. Tp.Hồ Chí Minh ngày 26 tháng 08 năm 2010 Lý Thanh Nguyên LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi hoặc của Thầy hướng dẫn khoa học. Kết quả nêu trong luận văn là trung thực và chưa từng ai công bố trong bất kỳ công trình nào khác. Tác giả Lý Thanh Nguyên BẢNG CÁC CHỮ VIẾT TẮT Chữ viết tắt Tiếng Việt Tiếng Anh ACTL Thư viện kích hoạt từ Livemore EGS4 Chương trình phỏng Monte Carlo EGS4 của nhóm Nelson et al. 1985, Stanford Linear Accelerator Center. ENDF Thư viện các số liệu hạt nhân ENDF Evaluated Nuclear Data File ENDL Thư viện các số liệu hạt nhân ENDL Evaluated Nuclear Data Library FOM Thông số đánh giá độ tin cậy của phương pháp Monte Carlo Figure Of Merit FWHM Full Width at Half Maximum Ge(Li) Đầu dò germanium “khuếch tán lithium” GEANT Chương trình phỏng Monte Carlo GEANT của nhóm R. Brun et al. 1986, CERN Data Handling Division, Geneva. GEB Gaussian Energy Broadenning HPGe High Purity Germanium MCG Chương trình Monte-Carlo gamma xử lý các photon năng lượng cao Monte Carlo Gamma MCNG Chương trình Monte-Carlo ghép cặp neutron- gamma. Monte Carlo Neutron Gamma MCN Có thể giải bài toán các neutron tương tác. Monte Carlo Neutron MCNP Chương trình Monte-Carlo phỏng vận chuyển hạt N của nhóm J.F. Briesmeister, 1997, Los Alamos National Laboratory Report, LA- 12625-M Monte Carlo N-particle NJOY Mã định dạng các thư viện số liệu hạt nhân trong MCNP P/C Tỉ số đỉnh/Compton Peak/Compton P/T Tỉ số đỉnh / toàn phần Peak/Total REGe Đầu dò germanium điện cực ngược Reverse Electrode Coaxial Germanium Detector MỞ ĐẦU Kể từ khi con người khám phá ra hiện tượng phóng xạ, một chân trời mới về nghiên cứu các kĩ thuật ghi nhận bức xạ đã được mở ra. Từ đó, việc nghiên cứu các phương pháp ghi nhận trong lãnh vực nghiên cứu hạt nhân, vật lý các hạt cơ bản được tiến hành đã hơn 70 năm nay và ngày càng phát triển mạnh mẽ. Nhìn lại các giai đoạn phát triển của các phương pháp ghi nhận trong vật lý hạt nhân và các hạt cơ bản, chúng ta thấy sự ra đời và phát triển của các loại detector: các buồng bọt, buồng Strimơ, các buồng ion, buồng tỷ lệ, ống đếm Geiger Muller, ống đếm tia lửa, detector nhấp nháy, detector tinh thể Tren-ren-cốp, detector bán dẫn…Có thể nói các detector bán dẫn siêu tinh khiết là đỉnh cao của việc ghi nhận bức xạ với ưu điểm nổi bật về khả năng phân giải. Tuy nhiên các detector khác cũng có ưu điểm riêng và những ứng dụng phù hợp với tính chất của nó. Detector nhấp nháy do Hofstadter phát minh từ năm 1948 tuy không có độ phân giải năng lượng cao nhưng lại có ưu thế về hiệu suất ghi, khả năng chế tạo ra các hình học đa dạng và kích thước khác nhau đáp ứng các yêu cầu thí nghiệm. Mặc dù được phát kiến đã khá lâu nhưng với những ưu điểm của nó, cho đến ngày nay trên thế giới và ở nước ta, việc ứng dụng detector nhấp nháy vẫn diễn ra hết sức mạnh mẽ trong nhiều lĩnh vực. Trong lĩnh vực an ninh, detector nhấp nháy được sử dụng trong các thiết bị phát hiện phóng xạ ở các lối ra vào, các máy phát hiện phóng xạ cầm tay…Trong lĩnh vực an toàn bức xạ và môi trường, detector nhấp nháy hiện diện trong các máy đo liều, các thiết bị kiểm soát an toàn, trong các máy dò tìm rác thải độc hại…Bên cạnh đó, detector nhấp nháy còn được sử dụng tích cực trong lĩnh vực giảng dạy và nghiên cứu hạt nhân. Điều này cho thấy việc nghiên cứu để sử dụng hiệu quả các detector loại này vẫn hết sức cần thiết. Năm 2008, Phòng thí nghiệm Vật lý hạt nhân thuộc khoa Vật lý trường Đại học Sư Phạm Tp.HCM chính thức đi vào hoạt động để phục vụ việc giảng dạy thực hành vật lý hạt nhân. Các thiết bị được trang bị tại phòng thí nghiệm gồm có một hệ phổ gamma đầu dò Germanium siêu tinh khiết, hai hệ phổ kế đơn kênh dùng đầu dò nhấp nháy và hệ phổ kế 8k kênh Gamma Rad 76BR76 sử dụng đầu dò NaI(Tl) kích thước 3 inch x 3 inch. Các thiết bị này đang trong giai đoạn triển khai sử dụng và do đó việc nghiên cứu các thiết bị này đang được diễn ra tích cực tại phòng thí nghiệm. Phạm vi của luận văn này hướng tới việc thực hiện nghiên cứu một khía cạnh của hệ phổ kế 8k kênh đầu dò nhấp nháy NaI(Tl) đó là nghiên cứu sự phụ thuộc của hiệu suất ghi của detector này theo năng lượng bức xạ gamma với sự hỗ trợ của phương pháp phỏng Monte Carlo. Hiện nay trên thế giới, việc sử dụng phương pháp phỏng bằng máy tính để nghiên cứu các đối tượng vật lý đã trở nên phổ biến và thu được những kết quả nhất định. Trong nước ta đã có những nghiên cứu áp dụng các phương pháp phỏng trong các ngành khoa học và kỹ thuật, đặc biệt là trong lĩnh vực nghiên cứu vật lý hạt nhân và cũng mang lại các kết quả nhất định. Việc áp dụng các phương pháp phỏng cho thấy sự phù hợp với tình hình khoa học kĩ thuật hiện tại của đất nước: cơ sở vật chất hạn chế không cho phép thực hiện các nghiên cứu trực tiếp, nhất là trong lĩnh vực vật lý vi mô. Điều này cũng cho thấy nếu các phương pháp phỏng được khai thác tốt sẽ tạo ra hướng nghiên cứu triển vọng cho lĩnh vực vật lý hạt nhân nói riêng và khoa học kĩ thuật trong nước nói chung. Luận văn này hướng tới hai mục tiêu chính là khảo sát sự phụ thuộc của hiệu suất ghi của detector nhấp nháy theo năng lượng gamma để sử dụng hiệu quả thiết bị này và thông qua quá trình khảo sát đó nắm bắt được một phương pháp nghiên cứu mới – phương pháp phỏng (Monte Carlo). Trong đó, detector nhấp nháy được khảo sát ở đây có kí hiệu 76BR76 do hãng Amptek (Mỹ) sản xuất và dãy năng lượng khảo sát được cung cấp bởi bộ nguồn chuẩn RSS8EU do hãng Spectrum Techniques chế tạo (cả 2 thiết bị này đều thuộc phòng Thí nghiệm vật lí hạt nhân Trường Đại học Sư Phạm Tp.HCM). Để thực hiện các mục tiêu trên, phương pháp Monte Carlo được áp dụng thông qua việc phỏng bằng chương trình MCNP4C2. Trong luận văn này, detector nhấp nháy và bố trí hình học đo được hình hóa bằng chương trình MCNP4C2. Song song với phỏng các đo đạc thực nghiệm cũng được tiến hành. Các kết quả phỏng và thực nghiệm sẽ được đem ra so sánh với nhau để rút ra những nhận xét và những định hướng nghiên cứu nhằm cải thiện hiệu quả làm việc của detector. Bên cạnh phương pháp phỏng, phương pháp thực nghiệm và các phương pháp xử lý số liệu như phương pháp làm khớp bình phương tối thiểu phi tuyến cũng được thực hiện. Nội dung của luận văn gồm bốn chương: Chương 1 là phần tổng quan, trình bày về tình hình nghiên cứu trên thế giới và trong nước trong việc ứng dụng phương pháp phỏng Monte Carlo trong nghiên vận chuyển bức xạ và nghiên cứu detector nhấp nháy; trình bày khái quát về các đặc trưng của bức xạ gamma và khái quát về các thiết bị ghi nhận bức xạ trong đó đặc biệt quan tâm đến detector nhấp nháy; trình bày về hiệu suất ghi của detector. Chương 2 là phần khái quát về phương pháp Monte Carlo, trình bày giới thiệu chương trình MCNP và các đặc trưng của chương trình phỏng vận chuyển bức xạ này. Chương 3 là phần xây dựng phỏng tính toán hiệu suất. Trong chương này, cấu trúc và đặc điểm của nguồn chuẩn RSS8EU, hệ phổ kế Gamma Rad 76BR76 và detector nhấp nháy NaI(Tl) kích thước 3 inch x 3 icnh được thể hiện; việc hình hóa detector và xây dựng tệp đầu vào của phỏng tính toán hiệu suất được trình bày chi tiết. Trong chương này, việc khảo sát sự phù hợp của chương trình phỏng tính toán hiệu suất detector cũng được thực hiện. Chương 4 trình bày về kết quả luận văn và những nhận xét. Trong chương này, kết quả hiệu suất phỏnghiệu suất thực nghiệm nêu ra và so sánh với nhau từ đó nảy sinh các định hướng nghiên cứu tiếp theo. CHƯƠNG 1. TỔNG QUAN 1.1. TÌNH HÌNH NGHIÊN CỨU, ỨNG DỤNG PHƯƠNG PHÁP MONTE CARLO TRONG LĨNH VỰC GHI NHẬN BỨC XẠ HẠT NHÂN 1.1.1. Tình hình nghiên cứu trên thế giới Năm 1972, Peterman, Hontzeas và Rystephanick [39] đã xây dựng chương trình tính toán các thông số đặc trưng của detector Ge(Li): hiệu suất đỉnh năng lượng toàn phần, hiệu suất tương đối của đỉnh thoát kép. Năm 1975, Grosswendt và Waibel [24] đã xây dựng chương trình tính toán hiệu suất đỉnh thoát kép đối với detector bán dẫn Ge(Li) dạng planar và dạng hình trụ với thể tích hoạt động 26 cm 3 và năng lượng photon từ 100 keV đến 15 MeV. Đồng thời công trình cũng tính toán hiệu suất đỉnh năng lượng toàn phần của detector có thể tích 42 cm 3 . Năm 1982, Gardner và cộng sự [25] đã áp dụng Monte Carlo để phỏng phân bố độ cao xung của tia X và gamma tức thời từ phản ứng bắt neutron đối với hai loại đầu dò Si(Li) và Ge . Năm 1990, He, Gardner và Verghese [28] đã mở rộng nghiên cứu hàm đáp ứng của đầu dò Si(Li) tới miền năng lượng 5 keV đến 60 keV. Năm 1991, Sánchez và cộng sự [42] đề nghị một phương pháp tính toán hiệu suất đỉnh năng lượng toàn phần có hiệu chỉnh sự tự hấp thụ sử dụng kỹ thuật Monte Carlo với phần mềm GEANT 3. Trong công trình này sự tự hấp thụ được các tác giả nghiên cứu đối với mẫu Petri và Marinelli. Kết quả công trình cho thấy sự phù hợp tốt với thực nghiệm ( độ lệch lớn nhất là 12,8%). Năm 1993, Haase, Tail và Wiechen [27] đã triển khai phỏng Monte Carlo đối với hệ phổ kế gamma cho phép tính toán quãng đường đi của photon trong nguồn và đầu dò cũng như hiệu suất toàn phần. Từ đó hệ số hiệu chỉnh tự hấp thụ và trùng phùng tổng được đánh giá. Hệ số hiệu chỉnh trùng phùng tổng đối với các nguồn 22 Na, 57 Co, 60 Co và 88 Y phù hợp tốt với kết quả thực nghiệm và các hình tính toán khác. Năm 1997, nhóm Sima và Dovlete [43] bổ sung hiệu ứng matrix trong phép đo hoạt độ mẫu môi trường. Năm 2000, nhóm tác giả Talavera, Neder, Daza và Quintana [21] đã sử phần mềm GEANT3 để phỏng hàm đáp ứng hệ đầu dò HPGe loại n của hãng Canberra . Từ các tính toán hiệu suất đỉnh toàn phần các tác giả đã so sánh với thực nghiệm với nhiều hình học đo để phát hiện sự không chính xác trong tả các đặc trưng của detector mà nhà sản xuất cung cấp nhằm xác định lại các thông số này. Năm 2001, nhóm tác giả Vidmar, Korun, Likar và cicMartin  [47] đã dùng MCNP và GEANT để tạo bộ số liệu về đường cong hiệu suất đỉnh năng lượng toàn phần cho hệ đầu dò HPGe loại n và loại p để kiểm tra hình bán thực nghiệm cho việc xây dựng đường cong hiệu suất cho các đầu dò này trong khoảng năng lượng từ 4 keV đến 3000 keV ; trong đó có quan tâm đến hiệu ứng tự hấp thụ đối với mẫu đo thể tích. Năm 2002, Tsutsumi, Oishi, Kinouchi, Sakamoto và Yoshida [45] đã ứng dụng chương trình phỏng Monte Carlo EGS-4 để tính toán phỏng và nghiên cứu thiết kế hệ phổ kế gamma dùng detector HPGe triệt Compton được sử dụng trong việc xác định hoạt độ của mẫu đo mà bản thân nó là nguồn phông đáng kể Năm 2004, Hurtado, GarcíaLeón và García Tenorio [32] bằng chương trình phỏng Monte Carlo GEANT4 đã xây dựng đường cong hiệu suất đặc trưng của detector REGe (Reverse Electrode Germanium) và khi tiến hành hiệu chỉnh một số thông số vật lý của detector được nhà sản xuất cung cấp trong tính toán đã làm cho hiệu suất tính toán phù hợp với hiệu suất thực nghiệm. Năm 2006, Salgado, Conti và Becker [17] đã tính toán các đặc trưng của detector HPGe kiểu planar bằng chương trình phỏng Monte Carlo MCNP5 đối với các tia X trong miền năng lượng 20 keV - 150 keV và đã phát hiện có sự khác biệt về hiệu suất detector giữa tính toán và thực nghiệm khoảng 10%. Sự khác biết trên được lý giải bởi bề dày lớp chết mà nhà sản xuất cung cấp là không chính xác và các tác giả đã thực hiện hiệu chỉnh tăng bề dày lớp chết. Năm 2007, Hoover [31] đã sử dụng GEANT4 xác định đặc trưng của hiệu ứng đầu dò điểm ảo đối với các đầu dò HPGe đồng trục. Khái niệm đầu dò điểm ảo để tả mối quan hệ phức tạp giữa hiệu suất đầu dò, dạng đầu dò, và khoảng cách nguồn. Trong công trình này phỏng Monte Carlo thể hiện rõ ưu thế của nó là tiết kiệm được thời gian và công sức. phỏng Monte Carlo cho phép đặc trưng hóa hiệu ứng điểm ảo khắp trong khoảng năng lượng khảo sát của đầu dò. Nó có cho phép mở rộng ở những miền năng lượng cao mà việc sử dụng thực nghiệm với các nguồn chuẩn thích hợp là khó đạt được. Martin [36] đã dùng MCNP4C2 để phỏng hai hệ đầu dò Germanium đồng trục: REGe và XtRa. Sự sai biệt lớn 10-20% giá trị hiệu suất phỏng so với thực nghiệm ở các năng lượng photon khác nhau và hình học đo khác nhau cho thấy cần phải điều chỉnh thông số đầu dò từ nhà sản xuất. Để có được thông tin chính xác tác giả đã dùng phương pháp quét (scanning) với chùm bức xạ photon không chuẩn trực. hình Monte Carlo hệ đầu dò sau đó được điều chỉnh các thông số theo phương pháp thử và sai cho đến khi cho kết quả hiệu suất phù hợp nhất với thực nghiệm . Huy N.Q, Binh D.Q, An V.X [34] nghiên cứu sự tăng của bề dày lớp bất hoạt trong đầu dò Germanium siêu tinh khiết sau một khoảng thời gian dài hoạt động bằng chương trình phỏng MCNP. 1.1.2. Tình hình nghiên cứu ở Việt Nam. [...]... PHỎNG VẬN CHUYỂN BỨC XẠ MCNP 2.1 PHƯƠNG PHÁP MONTE CARLO 2.1.1 Giới thiệu: phỏng bằng phương pháp Monte Carlophương pháp phỏng trên máy tính, dựa vào việc phát sinh các số ngẫu nhiên Phương pháp này thường được sử dụng nghiên cứu các quá trình ngẫu nhiên của hệ thống Phương pháp Monte Carlo hay còn gọi là phương pháp thử thống kê cung cấp những lời giải gần đúng cho các bài toán bằng cách thực... nhiều lần Hình 1.6 hình tương tác và hình phổ năng lượng của detector kích thước trung bình 1.4 HIỆU SUẤT 1.4.1 Định nghĩa về hiệu suất Hiệu suất ghi của đầu dò được xác định như là tỉ lệ phần trăm của bức xạ ion hóa đập tới đầu dò và được ghi nhận Cơ chế ghi nhận của đầu dò dựa theo tương tác của bức xạ trong môi trường đầu dò Một photon tới tương tác với vật liệu đầu dò theo ba cơ chế: hấp... của hạt đi qua môi trường phải lớn Thứ hai, tỉ số giữa năng lượng photon đi ra từ chất nhấp nháy này trên năng lượng mà hạt mất mát trong thể tích chất nhấp nháy được gọi là hiệu suất kỹ thuật hay suất ra kỹ thuật phải tốt tức là đòi hỏi môi trường nhấp nháy phải trong suốt đối với bức xạ nhấp nháy phát ra Và cuối cùng, để bảo đảm độ phân giải cao theo thời gian, thời gian phát sáng của chất nhấp nháy. .. trị hiệu suất tại các năng lượng xác định Bước tiếp theo là sử dụng bộ các điểm này để xây dựng một đường cong chuẩn Phương pháp thông dụng nhất là sử dụng các hàm giải tích được làm khớp với các dữ liệu thực nghiệm bằng phương pháp bình phương tối thiểu Hình 1.7 Khớp hiệu suất đỉnh bằng hàm đa thức đối với detector NaI(Tl) 3”x3”[29] CHƯƠNG 2 PHƯƠNG PHÁP PHỎNG MONTE CARLO VÀ PHẦN MỀM PHỎNG VẬN... của các kết quả phỏng 1.2 TƯƠNG TÁC CỦA BỨC XẠ GAMMA VỚI VẬT CHẤT Khi hạt nhân chuyển từ trạng thái kích thích cao về trạng thái kích thích thấp hay trở về trạng thái cơ bản nó sẽ phát kèm theo một bức xạ điện từ có bước sóng rất ngắn đó là bức xạ gamma Bức xạ gamma có khả năng xuyên sâu rất lớn Các nhân phóng xạ xác định phát ra bức xạ gamma có năng lượng xác định Năng lượng bức xạ gamma cao nhất... hai loại hiệu suất được định nghĩa: – Hiệu suất toàn phần (total efficiency) t: đó là xác suất của một photon phát ra từ nguồn để lại bất cứ năng lượng nào khác không trong thể tích vùng hoạt của đầu dò – Hiệu suất đỉnh (peak efficiency) p được xác định bằng xác suất của một photon phát ra từ nguồn để lại toàn bộ năng lượng của nó trong thể tích vùng hoạt của đầu dò Hiệu suất đỉnh và hiệu suất toàn... thuộc theo năng lượng Hiệu suất giảm ở vùng năng lượng thấp (dưới 120keV) là do cơ chế hấp thụ quang điện của tinh thể detector và sự hấp thụ tia gamma năng lượng thấp trên các lớp bao bọc bên ngoài tinh thể detector tăng lên Tại vùng năng lượng cao, hiệu suất giảm là do hạn chế về thể tích của detector Đo đạc các hiệu suất chuẩn với các nguồn chuẩn đơn năng cung cấp cho chúng ta một bộ các giá trị hiệu. .. phản xạ ánh sáng toàn phần Trong detector 76BR76 mà sẽ khảo sát trong luận văn này, phần dẫn quang rất mỏng và chỉ đóng vai trò liên kết tinh thể nhấp nháy với ống quang điện 1.3.2.2.2 Chất nhấp nháy Chất nhấp nháy được sử dụng để chế tạo detector nhấp nháy phải thỏa mãn một số yêu cầu cơ bản Thứ nhất, chất nhấp nháy phải có hiệu suất biến đổi cao, tức là tỷ số năng lượng của các photon trên năng lượng. .. và Meiger bằng chương trình phỏng Monte Carlo MCNP4C đã phỏng phổ gamma của các chuỗi 40K, 232 Th, 238 U được đo trên hệ phổ kế gamma dùng detector nhấp nháy BGO Năm 2002, Hu-Xia Shi, Bo-Xian Chen, Ti-Zhu Li, Di Yun [33] thuộc trường đại học Tsinghua ở Bắc Kinh Trung Quốc đã khảo sát hàm đáp ứng phổ gamma của detector nhấp nháy NaI(Tl) trong miền năng lượng 0.4118 đến 7.11 theo phương pháp Berger–Seltzer’s... pháp phỏng Monte Carlo trog việc giải quyết các bài toán vận chuyển bức xạ hình thành và phát triển 2.1.2 Đặc trưng của phương pháp Monte Carlo Tính đúng đắn của phương pháp Monte Carlo phụ thuộc vào một số yếu tố như: luật số lớn, định lý giới hạn trung tâm, số ngẫu nhiên Định lý giới hạn trung tâm tả cách ước lượng Monte Carlo tiến đến giá trị thực Theo lý thuyết, ước lượng Monte Carlo luôn phân . THANH NGUYÊN KHẢO SÁT HIỆU SUẤT GHI CỦA DETECTƠ NHẤP NHÁY THEO NĂNG LƯỢNG BỨC XẠ GAMMA BẰNG PHƯƠNG PHÁP MÔ PHỎNG MONTE CARLO Chuyên ngành:. khảo sát sự phụ thuộc của hiệu suất ghi của detector nhấp nháy theo năng lượng gamma để sử dụng hiệu quả thiết bị này và thông qua quá trình khảo sát

Ngày đăng: 15/03/2013, 16:45

Hình ảnh liên quan

BẢNG CÁC CHỮ VIẾT TẮT - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo
BẢNG CÁC CHỮ VIẾT TẮT Xem tại trang 4 của tài liệu.
Hình 1.1. Hiệu ứng quang điện. - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.1..

Hiệu ứng quang điện Xem tại trang 15 của tài liệu.
Hình 1.2. Hiệu ứng tán xạ Compton - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.2..

Hiệu ứng tán xạ Compton Xem tại trang 16 của tài liệu.
Hình 1.3. Hiệu ứng tạo cặp - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.3..

Hiệu ứng tạo cặp Xem tại trang 18 của tài liệu.
Hình 1.4. Đồ thị hàm số của các hệ số hấp thụ theo năng lượng tia  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.4..

Đồ thị hàm số của các hệ số hấp thụ theo năng lượng tia  Xem tại trang 19 của tài liệu.
Hình 1.5. Cấu tạo của ống nhân quang điện - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.5..

Cấu tạo của ống nhân quang điện Xem tại trang 23 của tài liệu.
Hình 1.6. Mơ hình tương tác và mơ hình phổ năng lượng      của detector kích thước trung bình  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.6..

Mơ hình tương tác và mơ hình phổ năng lượng của detector kích thước trung bình Xem tại trang 26 của tài liệu.
Hình 1.7. Khớp hiệu suất đỉnh bằng hàm đa thức đối với detector NaI(Tl) 3”x3”[29] - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 1.7..

Khớp hiệu suất đỉnh bằng hàm đa thức đối với detector NaI(Tl) 3”x3”[29] Xem tại trang 28 của tài liệu.
Hình 2.1. Sơ đồ các bước trong quá trình mơ phỏng bằng MCNP - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 2.1..

Sơ đồ các bước trong quá trình mơ phỏng bằng MCNP Xem tại trang 35 của tài liệu.
Hình 3.1. Bộ nguồn Bộ nguồn chuẩn RSS8EU - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 3.1..

Bộ nguồn Bộ nguồn chuẩn RSS8EU Xem tại trang 39 của tài liệu.
Nguồn cĩ hình dạng đĩa trụ nhỏ gồm: vỏ bọc ngồi làm bằng plexiglas; trên vỏ cĩ một hốc, hoạt chất được chế tạo dạng đĩa mỏng đặt trong hốc và hốc được lấp đầy bởi expoxy - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

gu.

ồn cĩ hình dạng đĩa trụ nhỏ gồm: vỏ bọc ngồi làm bằng plexiglas; trên vỏ cĩ một hốc, hoạt chất được chế tạo dạng đĩa mỏng đặt trong hốc và hốc được lấp đầy bởi expoxy Xem tại trang 39 của tài liệu.
Hình 3.3. Mặt cắt ngang của nguồn chuẩn Hình 3.4. Mặt cắt dọc của nguồn chuẩn - Đường kính tồn phần: 2,54 cm  0,0254 cm   - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 3.3..

Mặt cắt ngang của nguồn chuẩn Hình 3.4. Mặt cắt dọc của nguồn chuẩn - Đường kính tồn phần: 2,54 cm  0,0254 cm Xem tại trang 40 của tài liệu.
Hình 3.6. Mặt cắt dọc đầu dị NaI(Tl) (hình vẽ khơng theo đúng tỉ lệ) - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 3.6..

Mặt cắt dọc đầu dị NaI(Tl) (hình vẽ khơng theo đúng tỉ lệ) Xem tại trang 43 của tài liệu.
Hình 3.7. Mặt cắt dọc của hệ nguồ n- đầu dị- buồng chì ở khoảng cách 5cm vẽ bằng MCNP4C2 - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 3.7..

Mặt cắt dọc của hệ nguồ n- đầu dị- buồng chì ở khoảng cách 5cm vẽ bằng MCNP4C2 Xem tại trang 45 của tài liệu.
Dưới đây là hình vẽ các phổ mơ phỏng và phổ thực nghiệm (đã trừ phơng mơi trường) của các đồng vị  60Co, 57Co và 133 Ba - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

i.

đây là hình vẽ các phổ mơ phỏng và phổ thực nghiệm (đã trừ phơng mơi trường) của các đồng vị 60Co, 57Co và 133 Ba Xem tại trang 46 của tài liệu.
Trước khi sử dụng mơ hình mơ phỏng để khảo sát hiệu suất của detector, ta sẽ tiến hành xem xét sự phù hợp của chương trình mơ phỏng vừa được xây dựng - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

r.

ước khi sử dụng mơ hình mơ phỏng để khảo sát hiệu suất của detector, ta sẽ tiến hành xem xét sự phù hợp của chương trình mơ phỏng vừa được xây dựng Xem tại trang 46 của tài liệu.
Hình 3.11. Phổ thực nghiệm và phổ mơ phỏng của đồng vị 133Ba ở khoảng cách đo 10cm - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 3.11..

Phổ thực nghiệm và phổ mơ phỏng của đồng vị 133Ba ở khoảng cách đo 10cm Xem tại trang 47 của tài liệu.
Bảng 4.2. Diện tích đỉnh tại các giá trị năng lượng  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Bảng 4.2..

Diện tích đỉnh tại các giá trị năng lượng Xem tại trang 49 của tài liệu.
Bảng 4.5. Hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 10cm - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Bảng 4.5..

Hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 10cm Xem tại trang 50 của tài liệu.
Hình 4.1. Đường cong hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 5cm theo thang đo logarithm (các đường cong được làm khớp theo hàm đa thức bậc 4)  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 4.1..

Đường cong hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 5cm theo thang đo logarithm (các đường cong được làm khớp theo hàm đa thức bậc 4) Xem tại trang 50 của tài liệu.
Bảng 4.6. Hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 15cm - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Bảng 4.6..

Hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 15cm Xem tại trang 51 của tài liệu.
Hình 4.2. Đường cong hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 10cm theo thang đo logarithm (các đường cong được làm khớp theo hàm đa thức bậc 4)  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 4.2..

Đường cong hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 10cm theo thang đo logarithm (các đường cong được làm khớp theo hàm đa thức bậc 4) Xem tại trang 51 của tài liệu.
Hình 4.3. Đường cong hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 15cm theo thang đo logarithm (các đường cong được làm khớp theo hàm đa thức bậc 4)  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

Hình 4.3..

Đường cong hiệu suất mơ phỏng và thực nghiệ mở khoảng cách 15cm theo thang đo logarithm (các đường cong được làm khớp theo hàm đa thức bậc 4) Xem tại trang 52 của tài liệu.
Hình PL.1. Bố trí thí nghiệm - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

nh.

PL.1. Bố trí thí nghiệm Xem tại trang 60 của tài liệu.
Hình PL.2. Phổ đo của đồng vị 57Co ở khoảng cách 10cm  - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

nh.

PL.2. Phổ đo của đồng vị 57Co ở khoảng cách 10cm Xem tại trang 60 của tài liệu.
Hình PL.4. Bản vẽ mặt cắt dọc của detector 76BR76 NaI(Tl)    - Khảo sát hiệu suất ghi của Detecto nhấp nháy theo năng lượng bức xạ gama bằng phương pháp mô phỏng monte carlo

nh.

PL.4. Bản vẽ mặt cắt dọc của detector 76BR76 NaI(Tl) Xem tại trang 61 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan