Đề thi và đáp án môn Toán cao cấp 2.pdf

2 10,458 378
Yeu Khoa Hoc

Yeu Khoa Hoc

Tải lên: 2,278 tài liệu

Tải xuống (Miễn phí)
  • Loading...
1/2 trang
Tải xuống (Miễn phí)

Thông tin tài liệu

Ngày đăng: 15/08/2012, 09:02

Tài liệu chia sẻ đề thi và đáp án môn Toán cao cấp 2. ĐỀ THI HỌC KỲ I NĂM HỌC 2009-2010.Môn học: Giải tích 1.Thời gian làm bài: 90 phút. Đề thi gồm 7 câu.HÌNH THỨC THI: TỰ LUẬNCA 2Câu 1 : Tính giới hạn (trình bày lời giải cụ thể) I = limx→0s in x − ln ( s in x +√1 + x2)t a n x − x c o s2x.Câu 2 : Khảo sát và vẽ đồ thò của đường cong y = ( 1 + x)11+x.Câu 3 : Tìm và phân loại tất cả các điểm gián đoạn của đồ thò hàm số y = lg ( x2+ 3 x) .Câu 4 : Giải phương trình vi phân y′−yx= −ln xxvới điều kiện y( 1 ) = 1 .Câu 5 : Giải phương trình vi phân y′′− 2 y′+ y = s in h ( 2 x) .Câu 6 : Tính tích phân suy rộng+∞1dxx13/3·3√1 + x2Câu 7 : Giải hệ phương trình vi phân bằng phương pháp khử hoặc trò riêng, véctơ riêng.dxdt= 5 x + y + zdydt= 2 x + 6 y + 2 zdzdt= x + y + 5 zĐáp ánCâu 1(.5 điểm). Khai triển: s in x + ln ( s in x +( 1 + x2) =x36+ o( x3) ; t a n x− x c o s2x =4x33+ o( x3)→ I = limx→0s in x + ln ( s in x +( 1 + x2)t a n x − x c o s2x= limx→0x36+ o( x3)4x33+ o( x3)=18.Câu 2(1.5 điểm). Tập xác đònh x > −1 , đạo hàm: y′= ( 1 + x)1/(x+1)·1(1+x)2( 1 − ln ( x + 1 ) )→ y′≥ 0 ⇔ 0 < x ≤ e − 1 . Hàm tăng trên ( 0 , e − 1 ) , giảm trên ( e − 1 , +∞) , cực đại tạix = e− 1 , fcd= e1/elimx→−1+( x + 1 )1/(x+1)= 0 , không có tiệm cận đứng, limx→+∞( x + 1 )1/(x+1)= 1 , tiệm cận ngang y = 1 .Lập bảng biến thiên, tìm vài điểm đặc biệt, vẽ.Câu 3(1.0đ). Miền xác đònh x < −3 , x > 0 , y liên tục trên toàn MXĐ, không có điểm gián đoạn.Câu 4(1.5đ). y = e−p(x)dxq( x) · ep(x)dxdx + C;y = e1/xdx− ln xx· e−1/xdxdx + Cy = x− ln xx2dx + C= xln x+1x+ C; y( 1 ) = 1 ⇔ C = 0 → y = ln x + 1 .Câu 5(1.5đ). Ptrình đặc trưng k2− 2 k + 1 = 0 ⇔ k = 1 → y0= C1ex+ C2· x· ex. Tìm nghiệm riêng:yr= yr1+ yr2, với yr1=e2x2là nghiệm riêng của y′′− 2 y′+ y =e2x2yr2=−e−2x1 8là nghiệm riêng của y′′− 2 y′+ y =−e−2x2. Kết luận: ytq= y0+ yr1+ yr2.1 -CA 2.Câu 6 (1.5đ)+∞1dx3√x13+ x15⇔+∞1dxx531 +1x2. Đặt t =31 +1x2⇔ t3= 1 +1x2I =13√2−32t( t3− 1 ) dt =−32 0·3√4 +92 0Câu 7(1.5đ). Ma trận A =3 1 12 4 21 1 3. Chéo hóa A = P DP−1,với P =1 −1 −12 1 01 0 1,D =8 0 00 4 00 0 4,Hệ phương trình X′= A · X ⇔ X′= P DP−1X ⇔ P−1X′= DP−1X,đặt X = P−1Y , có hệY′= DY ⇔ y′1= 8 y1; y′2= 4 y2; y′3= 4 y3→ y1( t) = C1e8t; y2( t) = C2e4t; y3( t) = C3e4tKluận: X = P Y ⇔ x1( t) = C1e8t− C2e4t− C3e4t; x2( t) = 2 C1e8t+ C2e4t; x3( t) = C1e8t+ C3e4t2 -CA 2. . yr1+ yr2, với yr1=e2x2là nghiệm riêng của y′′− 2 y′+ y =e2x2yr2=−e−2x1 8là nghiệm riêng của y′′− 2 y′+ y =−e−2x2. Kết luận: ytq= y0+ yr1+ yr2.1 -CA 2. Câu. ĐỀ THI HỌC KỲ I NĂM HỌC 20 09 -20 10 .Môn học: Giải tích 1.Thời gian làm bài: 90 phút. Đề thi gồm 7 câu.HÌNH THỨC THI: TỰ LUẬNCA 2Câu 1 : Tính
- Xem thêm -

Xem thêm: Đề thi và đáp án môn Toán cao cấp 2.pdf, Đề thi và đáp án môn Toán cao cấp 2.pdf, Đề thi và đáp án môn Toán cao cấp 2.pdf

Bình luận về tài liệu de-thi-va-dap-an-mon-toan-cao-cap-2-pdf

Gợi ý tài liệu liên quan cho bạn

Nạp tiền Tải lên
Đăng ký
Đăng nhập
× Nạp tiền Đã
xem
RFD TOP