Chuyên đề nghiên cứu sinh: Nơtron và một số vấn đề về kênh thực nghiệm số 3 của lò phản ứng hạt nhân Đà Lạt

49 757 0
Chuyên đề nghiên cứu sinh: Nơtron và một số vấn đề về kênh thực nghiệm số 3 của lò phản ứng hạt nhân Đà Lạt

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM _____________________ NGUYỄN XUÂN HẢI NƠTRON VÀ MỘT SỐ VẤN ĐỀ VỀ KÊNH THỰC NGHIỆM SỐ 3 CỦA LÒ PHẢN ỨNG HẠT NHÂN ĐÀ LẠT CHUYÊN ĐỀ NGHIÊN CỨU SINH NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS. TS. VƯƠNG HỮU TẤN 2. TS. PHẠM ĐÌNH KHANG ĐÀ LẠT – 2007 1 MỞ ĐẦU Vật lý nơtron là một môn học quan trọng của vật lý hạt nhân và càng quan trọng hơn trong các công việc liên quan đến lò phản ứng hạt nhân, đo đạc số liệu hạt nhân trên chùm nơtron hay các công việc liên quan đến chùm nơtron trên các kênh thực nghiệm của lò phản ứng. Nghiên cứu phân rã gamma nối tầng của các hạt nhân sau khi bắt nơtron nhiệt là công việc liên quan nhiều đến vật lý nơtron như nhi ệt hoá nơtron, chuẩn trực dẫn dòng, che chắn an toàn cho người và thiết bị,… Chính vì vậy các kiến thức về vật lý nơtron là cần thiết cho công việc này. Trong tài liệu này nghiên cứu sinh (NCS) tiến hành tìm hiểu và trình bày các đặc điểm của nơtron, nguồn nơtron từ lò phản ứng, các quá trình tương tác của nơtron với vật chất,… thiết kế hệ thống dẫn dòng và che chắn bức xạ trong bố trí hệ đo thực nghiệm trên kênh ngang của lò phản ứng. Hy vọng các kiến thức được NCS tìm hiểu và trình bày trong tài liệu sẽ giúp cho NCS có thêm kiến thức bổ sung cho quá trình thực hiện luận án của mình. 2 MỘT SỐ VẤN ĐỀ VỀ VẬT LÝ NƠTRON I. Lịch sử phát hiện ra nơtron Năm 1930 Bothe và Broker đã phát hiện bức xạ gamma nhân tạo. Khi chiếu chùm hạt anpha phát ra từ Poloni vào các bia Li, Be, B và các hạt nhân nhẹ khác, họ đã phát hiện ra các tia gamma bằng các ống đếm chứa khí, năng lượng của bức xạ gamma đo được bằng phương pháp hấp thụ trong chì cũng tương đương năng lượ ng bức xạ của các nguồn gamma tự nhiên. Với bia Li, các tia gamma xuất hiện là do quá trình kích thích hạt nhân trong tán xạ đàn hồi của hạt anpha; với B thì bức xạ gamma sinh ra là do hạt nhân con C 13 ở trạng thái kích thích trong phản ứng B 10 (α,p)C 13 . Với bia Be, tia gamma phát ra là do phản ứng bắt hạt anpha và tia gamma này có khả năng đâm xuyên mạnh nhất. Phản ứng Be+α đã được Joliot và Curie nghiên cứu tỉ mỉ. Sử dụng buồng ion hoá, họ đã phát hiện thêm còn có bức xạ làm bật ra các proton có động năng khoảng 5 MeV từ các hợp chất chứa hydro. Nếu giả thuyết rằng các proton bật ra là do các tia gamma gây ra thì năng lượng của các tia gamma này là quá cao. Kết hợp với một s ố thông tin thu được khác, Chadwick đã đưa ra kết luận vào 1932 là bên cạnh bức xạ gamma đã được Bothe tìm ra còn có một hạt mới có khối lượng xấp xỉ với hạt proton được tạo ra. Chadwick đã gọi hạt này là nơtron (ký hiệu “n”) và tạo ra trong phản ứng của Be với hạt anpha theo phản ứng sau: Be 9 + α → C 12 + n và thường được ký hiệu như sau: Be 9 (α,n)C 12 . Vì các nơtron tự do trước đó chưa từng được phát hiện nên người ta giả thuyết rằng đây là loại hạt gần như không bền ở trạng thái tự do. Mặt khác, việc phát 3 hiện ra nơtron đã cho phép giải thích nhiều vấn đề về cấu trúc hạt nhân. Cụ thể là năm 1932, Heisenberg đã kết luận rằng hạt nhân chỉ chứa các nơtron và proton. Như vậy giả thuyết hạt nhân nguyên tử chỉ chứa các proton và các electron trước đó đã bị sụp đổ hoàn toàn. Nơtron được coi là bền vững trong hạt nhân và giả thuyết này vẫn được coi là đúng cho đến ngày nay. Ngày nay, nơ tron có một vai trò vô cùng quan trọng trong khoa học và công nghệ nói chung và lĩnh vực khoa học và công nghệ hạt nhân nói riêng. Đã có hẳn một ngành khoa học nghiên cứu về vật lý nơtron và các ứng dụng của nó trong các lĩnh vực khác nhau của đời sống xã hội. II. Các tính chất của nơtron tự do Dựa trên thí nghiệm khảo sát sự cân bằng động năng của proton giật lùi do nơtron gây nên, Chadwich đã rút ra kết luận là khối lượng của nơtron g ần bằng khối lượng của proton. Chadwich và Goldhaber đã chứng minh: việc xác định chính xác khối lượng của nơtron có thể thực hiện bằng cách tính năng lượng liên kết của đơtron: Khối lượng đơtron m d bằng tổng khối lượng của nơtron và proton m p +m n trừ đi một lượng hụt khối tương ứng với năng lượng liên kết E d . Như vậy: m n = m d - m p + E d /c 2 Đại lượng E d có thể tìm được bằng cách đo năng lượng của lượng tử gamma khi proton bắt nơtron (E d = 2,225 ± 0,0003 MeV) hoặc bằng cách đo phản ứng ngưỡng quang phân rã của đơtron (E d = 2,227 ± 0,0003 MeV). Khi biết năng lượng E d và các giá trị m p và m d , rất dễ dàng tính được khối lượng nơtron. Bảng 1 là các giá trị khối lượng và một số đặc trưng khác của nơtron và một số hạt nhẹ. 4 Bảng 1. Tính chất của một số hạt Hạt Khối lượng 10 -24 g Khối lượng đvnt Điện tích Spin Mô men từ Nơtron 1,674663 1,008665 < 10 -18 e 1/2 -0,913148 NM 2 Proton 1,672537 1,007276 e 1/2 2,79276 NM Nguyên tử H 1,673268 1,007285 - - - Đơtron 3,343057 2,013554 e 1 0,857407 NM Electron 9,1081.10 -4 5,4859×10 -4 -e 1/2 1,0011596 M 1 đvnt = 1/12 khối lượng nguyên tử carbon = 1,660277.10 -24 g = 931,441 MeV. 1 NM = s.g/erg10.927249,0 cm2 e M1;s.g/erg10.505038,0 cm2 e 20 e 23 p −− === hh Như vậy, nơtron nặng hơn nguyên tử hydro 0,840.10 -3 đơn vị khối lượng nguyên tử. Vì vậy nơtron có thể phân rã thành proton và electron với năng lượng cực đại là 0,84×0,9314 MeV = 782 keV. Phân rã β của nơtron tự do được Xnell phát hiện lần đầu tiên vào năm 1948. Giá trị năng lượng cực đại mà Robson đo được là 782 ± 13 keV phù hợp tốt với kết quả tính theo hiệu số khối lượng. Xpivac và các tác giả khác đã đo được chu kỳ bán rã bằng 11,7 ± 3 phút. Như vậy, nơtron là hạ t sống dài và có thể khảo sát nó như là hạt bền vững. Spin của nơtron bằng 1/2. Thực vậy, vì đơtron không có mô men góc quỹ đạo còn spin của nó bằng 1, trong khi đó spin của proton bằng 1/2 nên spin của nơtron phải bằng 1/2 hoặc 3/2. Giá trị 3/2 bị loại bỏ do kết quả một loạt thí nghiệm khác ví dụ như thí nghiệm khảo sát tiết diện tán xạ nơtron – proton phụ thuộc năng lượng. Nơ tron cũng có mô men từ - điều này do Alvares và Block phát hiện ra vào năm 1940. Các giá trị chính xác hơn do Kohen, Corngold và Ramsay xác định bằng phương pháp lọc Rabi. Vì có mô men từ, nơtron tương tác từ với các 5 nguyên tử của chất sắt từ. Hiện tượng này được gọi là tán xạ từ - để thu được nơtron phân cực. Trong bảng 1 cũng đã đưa ra giá trị điện tích của nơtron. Shapiro và Estulin (1956) đã thử đo độ lệch của nơtron trong điện trường mạnh nhưng không phát hiện hiệu ứng nào trong giới hạn chính xác của thiết bị (10 -12 e). Fermi và Marsan trong các thí nghiệm tán xạ nơtron trên xenon đã thu được giới hạn điện tích là nhỏ hơn 10 -18 e. III. Các khái niệm cơ bản của phản ứng hạt nhân với nơtron Trong va chạm với hạt nhân nguyên tử, tuỳ theo năng lượng của mình mà nơtron tham gia vào các phản ứng hạt nhân khác nhau. Nói chung, người ta chia một cách sơ lược thành hai loại phản ứng tán xạ (nơtron chịu va chạm đàn hồi hoặc không đàn hồi với hạt nhân) và hấp thụ (nơtron bị hấp thụ và hạt nhân phát ra bức xạ thứ cấp). Người ta sử dụng khái niệm tiết diện phản ứng để đặc trưng định lượng cho tương tác của nơtron với hạt nhân. III.1. Tiết diện, quãng chạy tự do trung bình Chúng ta giả thiết rằng chùm nơtron chuẩn trực J (J là số nơtron trong 1 giây đi qua 1 cm 2 và vuông góc với chùm) đi vào môi trường vật chất chứa N hạt nhân nguyên tử trong 1 cm 3 . Số sự kiện tán xạ hoặc hấp thụ xảy ra trong 1 giây trong 1 cm 3 bằng: ψ = J.N.σ (1) Hệ số tỷ lệ σ được gọi là tiết diện tương tác và có thứ nguyên là cm 2 . Trong đo tiết diện người ta hay sử dụng đơn vị barn: 1 barn = 10 -24 cm 2 (2) Tiết diện tán xạ và hấp thụ (σ s , σ a tương ứng) thường khác nhau, mỗi một loại lại bao gồm nhiều tiết diện riêng phần ví dụ như tiết diện tán xạ đàn hồi, 6 không đàn hồi, bắt bức xạ, phân chia Tổng tất cả các tiết diện riêng phần được gọi là tiết diện toàn phần, do vậy: σ t = σ s + σ a (3) Người ta thường sử dụng đại lượng: σ.N = ∑ (4) và gọi là tiết diện vĩ mô. Như vậy, có thể xem tiết diện vĩ mô như xác suất để nơtron bị tán xạ hay hấp thụ trên một đoạn đường 1 cm. Ý nghĩa vật lý của ∑ sẽ được làm rõ ở phần dưới. Số nguyên tử N trong 1 cm 3 vật chất được tính theo biểu thức: N = (Mật độ/Khối lượng nguyên tử) × số Avôgađrô (5) Nếu chất tán xạ hoặc hấp thụ là phân tử gồm nhiều loại nguyên tử có các tiết diện khác nhau thì khi đó công thức (1) có dạng sau: ∑ =Ψ i iimol nJN σ (6) Trong đó: N mol = (Mật độ/Khối lượng phân tử) × số Avôgađrô là số phân tử trong 1 cm 3 , n i là số nguyên tử loại i có tiết diện σ i trong phân tử. Như vậy, tiết diện phản ứng có tính cộng được. Tuy nhiên sẽ có một số ngoại lệ khác với công thức trên. Quãng chạy tự do trung bình là xác suất xảy ra va chạm với nguyên tử vật chất, nó tỷ lệ với quãng chạy ∆x trong vật chất và bằng Σ∆x. Xác suất để nơtron không va chạm trên quãng đường ∆x là 1-Σ∆x. Xác suất đi hết đoạn đường dài n.∆ x=x mà không bị va chạm là: (1 - ∑∆x) n = (1 - ∑∆x) x/∆x = (1 - ∑∆x) ∑x/∑∆x (8) Khi ∆x → 0 với x là hằng số (tức là n → ∞), xác suất không va chạm sẽ bằng: 7 x x x x ex Σ− Σ∆ Σ →∆ =Σ∆− )1(lim 0 (9) Như vậy phần nơtron tới e -Σx đi hết quãng đường x mà không bị va chạm hay nói một cách khác e -Σx là xác suất để nơtron đi quãng đường x mà không bị va chạm. Xác suất để nơtron bị va chạm trên đoạn dx sau khi đi hết quãng đường x là Σdx.e -Σx . Xác suất để nơtron bị va chạm trên đoạn đường rất dài là: (10) ∫ ∞ Σ− =Σ 0 1dxe x Tuy nhiên chúng ta cần quan tâm đến quãng đường trung bình mà nơtron không bị va chạm. Sử dụng phương pháp tính thông thường đối với giá trị trung bình, ta thu được biểu thức đối với quãng chạy tự do trung bình: ∫ ∫ ∫ ∞ Σ− ∞ Σ− ∞ Σ− Σ =Σ= Σ Σ = 0 0 0 1 dxxe dxe dxxe x x x λ (11) Như vậy, đoạn đường trung bình của quãng chạy tự do bằng nghịch đảo tiết diện vĩ mô, tức là: λ = 1 ∑ = 1 Nσ (12) và quãng chạy tự do trung bình trước khi bị tán xạ là: λ s = 1 ∑ s = 1 Nσ s (13) trước khi bị hấp thụ là: λ a = 1 ∑ a = 1 Nσ a (14) Như vậy giá trị tiết diện vĩ mô toàn phần là: 1 λ = ∑ t = 1 λ s + 1 λ a (15) 8 Nếu nơtron chuyển động với vận tốc không đổi, thời gian trung bình giữa hai lần va chạm sẽ là: τ = λ v (16) Số va chạm trong 1 giây bằng: 1 τ = v λ = v.∑ (17) Nếu mật độ nơtron có vận tốc v bằng n thì số sự kiện ψ trong 1 cm 3 trong 1 giây được xác định theo công thức: ψ = n τ = n.v. ∑ (18) III.2. Phân loại phản ứng với nơtron Dựa vào năng lượng của nơtron, có thể chia nơtron thành ba nhóm tương ứng với động năng của chúng E = 1 2 mv 2 (19) cụ thể là nhóm nơtron chậm (E <1000 eV), nhóm nơtron trung gian (1 keV < E < 500 keV) và nhóm nơtron nhanh (500 keV < E < 20 MeV). Ta không xét đến các nơtron có năng lượng cao hơn vì trong các lò phản ứng hạt nhân, không tồn tại nơtron có năng lượng lớn hơn 20 MeV. Ngoafi ra, các hạt nhân cũng được chia thành ba nhóm. Các hạt nhân nhẹ có A < 25, các hạt nhân trung bình có 25 < A < 80 và các hạt nhân nặng có A > 80. Thông thường có hai dạng phản ứng khác nhau: a. Các phản ứng hạt nhân hợp phần: nơtron tới bị hạt nhân bia hấp thụ tạo nên hạ t nhân hợp phần sống tương đối dài (≥10 -17 s), năng lượng kích thích của hạt nhân này bằng tổng động năng trong hệ khối tâm và năng lượng liên kết của nơtron bị hấp thụ (7-10 MeV đối với hạt nhân trung bình và 6-7 MeV đối với hạt nhân nặng). Phân rã của hạt nhân hợp phần có thể xảy ra theo 9 các cách khác nhau: Có thể phát nơtron với năng lượng giống như năng lượng nơtron tới. Quá trình này được gọi là tán xạ đàn hồi thông qua giai đoạn hạt nhân hợp phần hay đôi khi còn được gọi là tán xạ cộng hưởng. Thuật ngữ tán xạ cộng hưởng được sử dụng ở vùng năng lượng mà tiết diện có đặc trưng cộng hưởng. Nếu xét trong hệ khối tâm nơtron - h ạt nhân bia, năng lượng nơtron không thay đổi và quá trình như vậy được gọi là va chạm đàn hồi. Năng lượng kích thích của hạt nhân hợp phần có thể chuyển thành dạng khác bằng cách phát ra một vài lượng tử gamma. Hiện tượng như vậy được gọi là hiện tượng bắt phóng xạ hoặc là phản ứng (n,γ). Hạt nhân con thường không bền và phân rã β. Hình 1. Tiết diện toàn phần của ôxy theo năng lượng nơtron. Khi năng lượng kích thích đủ lớn, hạt nhân hợp phần có thể phát ra các hạt tích điện hoặc hai nơtron [(n,α); (n,p); (n,np); và (n,2n)]. Hạt nhân hợp phần cũng có thể phát ra nơtron có động năng nhỏ hơn năng lượng tới của nơtron. Trong trường hợp này hạt nhân con sẽ ở trạng thái kích thích và phát ra bức xạ gamma (tán xạ không đàn hồi). Cuối cùng là có thể xảy ra phản ứng phân hạ ch đối với các hạt nhân rất nặng. b. Phản ứng hạt nhân trực tiếp: Phản ứng hạt nhân có thể xảy ra trực tiếp mà không qua giai đoạn tạo hạt nhân hợp phần. Đối với vùng năng lượng của nơtron đang được khảo sát, tán xạ đàn hồi là dạng phản ứng trực tiếp quan trọng nhất (tán xạ đàn hồi không tạo hạt nhân hợ p phần). 10 [...]... 3, 60,5 4 ,30 ,4 7 1 8 1 9 ,30 ,7 13Al 14Si 15P 16S 17Cl 18Ar 19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 0,2410,0 03 0,160,02 0,200,02 0,520,02 33 ,81,1 0,660,04 2,070,07 0,440,02 241 5,80,4 5,000,01 3, 10,2 13, 20,1 2,620,06 37 ,11,0 4,60,1 3, 810, 03 1,100,02 2,800, 13 2,450,20 4 ,30 ,2 11,70,1 6,820,06 31 2 0, 730 ,07... 2He 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg 0 ,32 80,002 0 70,40,4 0,0100,001 7584 (3, 730 ,07).10 -3 1,880,05

Ngày đăng: 07/07/2014, 15:25

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan