Aircraft Flight Dynamics Robert F. Stengel Lecture14 RootLocus Analysis of Parameter Variations

11 245 0
Aircraft Flight Dynamics Robert F. Stengel Lecture14 RootLocus Analysis of Parameter Variations

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Root Locus Analysis of Parameter Variations
 Robert Stengel, Aircraft Flight Dynamics
 MAE 331, 2012" •  Effects of system parameter variations on modes of motion" •  Root locus analysis" –  Evanss rules for construction" –  Application to longitudinal dynamic models" Copyright 2012 by Robert Stengel. All rights reserved. For educational use only.! http://www.princeton.edu/~stengel/MAE331.html ! http://www.princeton.edu/~stengel/FlightDynamics.html ! Characteristic Equation: A Critical Component of the Response’s Laplace Transform " sI − F [ ] −1 = Adj sI − F ( ) sI − F = C T s ( ) sI − F (n × n) 1×1 ( ) •  Characteristic equation defines the modes of motion! sI − F = Δ(s) = s n + a n −1 s n −1 + + a 1 s + a 0 = s − λ 1 ( ) s − λ 2 ( ) ( ) s − λ n ( ) = 0 Δx(s) = sI − F [ ] −1 Δx( 0) + G Δu(s) + LΔw(s) [ ] •  Recall: s is a complex variable! s = σ + j ω Real Roots of the Dynamic System " Δ(s) = s − λ 1 ( ) s − λ 2 ( ) ( ) s − λ n ( ) = 0 •  Roots are solutions of the characteristic equation" λ i = µ i (Real number) x t ( ) = x 0 ( ) e µ t •  Real roots" –  are confined to the real axis" –  represent convergent or divergent time response" –  time constant, τ = –1/ λ = –1/ µ , sec # s Plane = σ + j ω ( ) Plane Complex Roots of the Dynamic System " € δ = cos −1 ζ •  Complex roots" –  occur only in complex-conjugate pairs" –  represent oscillatory modes" –  natural frequency, ω n , and damping ratio, ζ , as shown" s Plane = σ + j ω ( ) Plane λ 1 = µ 1 + j ν 1 = − ζω n + j ω n 1− ζ 2 – time constant = –1/μ = 1/ζω n " Stable" Unstable" – decay of exponential time-" response envelope" λ 2 = µ 2 + j ν 2 = µ 1 − j ν 1 = λ 1 * = − ζω n − j ω n 1− ζ 2 Complex Roots, Damping Ratio, and Damped Natural Frequency " s − λ 1 ( ) s − λ 1 * ( ) = s − µ 1 + j ν 1 ( ) $ % & ' s − µ 1 − j ν 1 ( ) $ % & ' = s 2 − µ 1 − j ν 1 ( ) + µ 1 + j ν 1 ( ) $ % & ' s + µ 1 − j ν 1 ( ) µ 1 + j ν 1 ( ) = s 2 − 2 µ 1 s + µ 1 2 + ν 1 2 ( )  s 2 + 2 ζω n s + ω n 2 µ 1 = − ζω n = −1 Time constant ν 1 = ω n 1− ζ 2  ω n damped = Damped natural frequency x 1 t ( ) = Ae − ζω n t sin ω n 1− ζ 2 t + ϕ % & ' ( x 2 t ( ) = Ae − ζω n t ω n 1− ζ 2 % & ' ( cos ω n 1− ζ 2 t + ϕ % & ' ( Identical exponentially decaying envelopes for both displacement and rate" Corresponding Second-Order Initial Condition Response" General form of response" Multi-Modal LTI Responses Superpose Individual Modal Responses" •  With distinct roots, (n = 4) for example, partial fraction expansion for each state element is (Flight Dynamics, p. 325) " Δx i s ( ) = d 1 i s − λ 1 ( ) + d 2 i s − λ 2 ( ) + d 2 i s − λ 3 ( ) + d 2 i s − λ 4 ( ) •  Corresponding 4 th -order time response is" Δx i t ( ) = d 1 i e λ 1 t + d 2 i e λ 2 t + d 3 i e λ 3 t + d 4 i e λ 4 t •  Details in next lecture" Evanss Rules for Root Locus Analysis Root Locus Example: " 4 th- Order Longitudinal Characteristic Equation" Δ Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = s 4 + D V + L α V N − M q ( ) s 3 + g − D α ( ) L V V N + D V L α V N − M q ( ) − M q L α V N − M α $ % & ' ( ) s 2 + M q D α − g ( ) L V V N − D V L α V N $ % & ' ( ) + D α M V − D V M α { } s + g M V L α V N − M α L V V N ( ) = 0 Δ Lon (s) = s 2 + 2 ζω n s + ω n 2 ( ) Ph s 2 + 2 ζω n s + ω n 2 ( ) SP •  Typically factors into oscillatory phugoid and short-period modes " € with L q = D q = 0 Root Locus Analysis of Parametric Effects on Aircraft Dynamics " •  Parametric variations alter eigenvalues of F" •  Graphical technique for finding the roots with a new parameter value" Locus: the set of all points whose location is determined by stated conditions" s Plane! Phugoid " Roots" Short Period" Root" Short Period" Root" Example: How do the roots vary when we change pitch-rate damping, M q ?" Δ Lon (s) = s 4 + D V + L α V N − M q ( ) s 3 + g − D α ( ) L V V N + D V L α V N − M q ( ) − M q L α V N − M α $ % & ' ( ) s 2 + M q D α − g ( ) L V V N − D V L α V N $ % & ' ( ) + D α M V − D V M α { } s + g M V L α V N − M α L V V N ( ) = 0 •  M q could be changed by" –  Variation in aircraft aerodynamic configuration" –  Effect of feedback control, i.e., control of pitching moment (via elevator) that is proportional to pitch rate" Effect of Parameter Variations on Root Location " •  Let root locus gain = k = a i (just a notation change) " –  Option 1: Vary k and calculate roots for each new value" –  Option 2: Apply Evanss Rules of Root Locus Construction" Walter R. Evans" Δ Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = s − λ 1 ( ) s − λ 2 ( ) s − λ 3 ( ) s − λ 4 ( ) = s − λ 1 ( ) s − λ 1 * ( ) s − λ 3 ( ) s − λ 3 * ( ) = s 2 + 2 ζ P ω n P s + ω n P 2 ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 ( ) = 0 Effect of a 0 Variation on Longitudinal Root Location " •  Example: Root locus gain, k = a 0 ! where d(s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s = s − λ ' 1 ( ) s − λ ' 2 ( ) s − λ ' 3 ( ) s − λ ' 4 ( ) n(s) = 1 Δ Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s " # $ % + k [ ] ≡ d(s)+ kn(s) = s − λ 1 ( ) s − λ 2 ( ) s − λ 3 ( ) s − λ 4 ( ) = 0 d s ( ) : Polynomial in s n s ( ) : Polynomial in s •  Example: Root locus gain, k = a 1 ! where d(s) = s 4 + a 3 s 3 + a 2 s 2 + a 0 = s − λ ' 1 ( ) s − λ ' 2 ( ) s − λ ' 3 ( ) s − λ ' 4 ( ) n(s) = s Δ Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + ks + a 0 ≡ d(s)+ kn(s) = s − λ 1 ( ) s − λ 2 ( ) s − λ 3 ( ) s − λ 4 ( ) = 0 Effect of a 1 Variation on Longitudinal Root Location " Three Equivalent Equations for Defining Roots " 1 + k n(s) d(s) = 0 k n(s) d(s) = −1 = (1)e − j π (rad ) = (1)e − j180(deg) d(s) + k n(s) = 0 Longitudinal Equation Example" •  Original 4 th -order polynomial! Δ Lon (s) = s 4 + 2.57s 3 + 9.68s 2 + 0.202s + 0.145 = s 2 + 2 0.0678 ( ) 0.124s + 0.124 ( ) 2 " # $ % s 2 + 2 0.411 ( ) 3.1s + 3.1 ( ) 2 " # $ % = 0 Δ Lon (s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = s − λ 1 ( ) s − λ 2 ( ) s − λ 3 ( ) s − λ 4 ( ) = s − λ 1 ( ) s − λ 1 * ( ) s − λ 3 ( ) s − λ 3 * ( ) = s 2 + 2 ζ P ω n P s + ω n P 2 ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 ( ) = 0 •  Typical flight condition! Phugoid" Short Period" Example: Effect of a 0 Variation" Δ(s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = s 4 + a 3 s 3 + a 2 s 2 + a 1 s ( ) + k = s s 3 + a 3 s 2 + a 2 s + a 1 ( ) + k = s s + 0.21 ( ) s 2 + 2.55s +9.62 " # $ % + k k s s + 0.21 ( ) s 2 + 2.55s + 9.62 ! " # $ = −1 •  Example: k = a 0 ! •  Original 4 th -order polynomial! Δ Lon (s) = s 4 + 2.57s 3 + 9.68s 2 + 0.202s + 0.145 = 0 •  Rearrange:! ks s 2 − 0.00041s + 0.015 " # $ % s 2 + 2.57s + 9.67 " # $ % = −1 •  Example: k = a 1 ! Δ(s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s +a 0 = s 4 + a 3 s 3 + a 2 s 2 + ks + a 0 = s 4 + a 3 s 3 + a 2 s 2 + a 0 ( ) + ks = s 2 − 0.00041s + 0.015 # $ % & s 2 + 2.57 s + 9.67 # $ % & + ks Example: Effect of a 1 Variation" •  Rearrange:! The Root Locus Criterion" •  All points on the locus of roots must satisfy the equation k[n(s)/d(s)] = –1" •  Phase angle(–1) = ±180 deg" k = a 0 : k n(s) d(s) = k 1 s 4 + a 3 s 3 + a 2 s 2 + a 1 s = −1 k = a 1 : k n(s) d(s) = k s s 4 + a 3 s 3 + a 2 s 2 + a 0 = −1 = k s − 0 ( ) s 4 + a 3 s 3 + a 2 s 2 + a 0 = −1 •  Number of roots = 4" •  Number of zeros = 0" •  (n – q) = 4" •  Number of roots = 4" •  Number of zeros = 1" •  (n – q) = 3" •  Number of roots (or poles) of the denominator = n" •  Number of zeros of the numerator = q" Spirule" Origins of Roots (for k = 0)" Δ(s) = d(s) + kn (s) k → 0 # →## d(s) •  Origins of the roots are the Poles of d(s)" Destinations of Roots (for k -> ±∞) " •  q roots go to the zeros of n(s)" d(s)+ kn(s) k = d(s) k + n(s) k→∞ # →## n(s) = s − z 1 ( ) s − z 2 ( )  No zeros when k = a 0 " One zero at origin when k = a 1 " Destinations of Roots (for k -> ±∞) " d(s)+ kn(s) n(s) ! " # $ % & = d(s) n(s) + k ! " # $ % & k→±R→±∞ ) →))) s n s q + k ! " # $ % & → s n−q ( ) ± R →±∞ •  (n – q) roots go to infinite radius from the origin" R(+)" R(–)" s n−q ( ) = Re − j180° → ∞ or Re − j 360° → −∞ s = R 1 n−q ( ) e − j180° n−q ( ) → ∞ or R 1 n−q ( ) e − j 360° n−q ( ) → −∞ •  Asymptotes of the root loci are described by" •  Magnitudes of roots are the same for given k" •  Angles from the origin are different" Destinations of Roots (for k -> ±∞) " 4 roots to infinite radius" 3 roots to infinite radius" (n – q) Roots Approach Asymptotes as k –> ±∞" θ (rad) = π + 2m π n − q , m = 0,1, ,(n − q) − 1 θ (rad) = 2m π n − q , m = 0,1, ,(n − q) − 1 •  Asymptote angles for positive k" •  Asymptote angles for negative k" Origin of Asymptotes = Center of Gravity" "c.g." = σ λ i − σ z j j =1 q ∑ i =1 n ∑ n − q Root Locus on Real Axis" •  Locus on real axis" –  k > 0: Any segment with odd number of poles and zeros to the right" –  k < 0: Any segment with even number of poles and zeros to the right" First Example: Positive and Negative Variations of k = a 0 " k s s + 0.21 ( ) s 2 + 2.55s + 9.62 ! " # $ = −1 Second Example: Positive and Negative Variations of k = a 1 " ks s 2 − 0.00041s + 0.015 " # $ % s 2 + 2.57s + 9.67 " # $ % = −1 Summary of Root Locus Concepts" Origins " of Roots" Destinations " of Roots" Center " of Gravity" Locus on " Real Axis" Root Locus Analysis of Simplified Longitudinal Modes Approximate Phugoid Model " •  Second-order equation" Δ  x Ph = Δ  V Δ  γ # $ % % & ' ( ( ≈ −D V −g L V V N 0 # $ % % % & ' ( ( ( ΔV Δ γ # $ % % & ' ( ( + T δ T L δ T V N # $ % % % & ' ( ( ( Δ δ T •  Characteristic polynomial" sI − F Ph = det sI − F Ph ( ) ≡ Δ(s) = s 2 + D V s + gL V / V N = s 2 + 2 ζω n s + ω n 2 gL V / V N , D V •  Parameters" Δ(s) = s 2 + D V s ( ) + k = s s + D V ( ) + k k = gL V /V N " Effect of L V or 1/V N Variation on Approximate Phugoid Roots " •  Change in damped natural frequency" ω n damped  ω n 1− ζ 2 Effect of D V Variation on Approximate Phugoid Roots " k = D V " Δ(s) = s 2 + gL V / V N ( ) + ks = s + j gL V / V N ( ) s − j gL V / V N ( ) + ks •  Change in damping ratio" ζ Approximate Short-Period Model " •  Approximate Short-Period Equation (L q = 0)" •  Characteristic polynomial" •  Parameters" Δ  x SP = Δ  q Δ  α # $ % % & ' ( ( ≈ M q M α 1 − L α V N # $ % % % & ' ( ( ( Δq Δ α # $ % % & ' ( ( + M δ E −L δ E V N # $ % % % & ' ( ( ( Δ δ E Δ(s) = s 2 + L α V N − M q $ % & ' ( ) s − M α + M q L α V N $ % & ' ( ) = s 2 + 2 ζω n s + ω n 2 M α , M q , L α V N Effect of M α on Approximate Short-Period Roots " k = M α " Δ(s) = s 2 + L α V N − M q $ % & ' ( ) s − M q L α V N $ % & ' ( ) − k = 0 = s + L α V N $ % & ' ( ) s − M q ( ) − k = 0 •  Change in damped natural frequency" Effect of M q on Approximate Short-Period Roots" Δ(s) = s 2 + L α V N s − M α − k s + L α V N $ % & ' ( ) = s − L α 2V N + L α 2V N $ % & ' ( ) 2 + M α * + , , - . / / 0 1 2 3 2 4 5 2 6 2 s − L α 2V N − L α 2V N $ % & ' ( ) 2 + M α * + , , - . / / 0 1 2 3 2 4 5 2 6 2 − k s + L α V N $ % & ' ( ) = 0 k = M q " •  Change primarily in damping ratio" Effect of L ! /V N on Approximate Short-Period Roots" Δ(s) = s 2 − M q s − M α + k s − M q ( ) = s + M q 2 − M q 2 $ % & ' ( ) 2 + M α * + , , - . / / 0 1 2 3 2 4 5 2 6 2 s + M q 2 − M q 2 $ % & ' ( ) 2 + M α * + , , - . / / 0 1 2 3 2 4 5 2 6 2 + k s − M q ( ) = 0 k = L α /V N " •  Change primarily in damping ratio" How do the 4 th -order roots vary when we change pitch-rate damping, M q ?" Δ Lon (s) = s 4 + D V + L α V N ( ) s 3 + g − D α ( ) L V V N + D V L α V N ( ) − M α $ % & ' ( ) s 2 + D α M V − D V M α { } s + g M V L α V N − M α L V V N ( ) − M q s 3 − D V M q ( ) + M q L α V N $ % & ' ( ) s 2 + M q D α − g ( ) L V V N − D V L α V N $ % & ' ( ) s = 0 •  Identify M q terms in the characteristic polynomial" How do the 4 th -order roots vary when we change pitch-rate damping, M q ?" Δ Lon (s) = d s ( ) − M q s 3 + D V + L α V N $ % & ' ( ) s 2 − D α − g ( ) L V V N − D V L α V N $ % & ' ( ) s { } = d s ( ) − M q s s 2 + D V + L α V N $ % & ' ( ) s − D α − g ( ) L V V N − D V L α V N $ % & ' ( ) { } = d s ( ) + kn s ( ) = 0 •  Group M q terms in the characteristic polynomial" k n(s) d(s) = −1 How do the 4 th -order roots vary when we change pitch-rate damping, M q ?" −M q s s 2 + D V + L α V N ( ) s − D α − g ( ) L V V N − D V L α V N # $ % & ' ( { } s 4 + D V + L α V N ( ) s 3 + g − D α ( ) L V V N + D V L α V N ( ) − M α # $ % & ' ( s 2 + D α M V − D V M α { } s + g M V L α V N − M α L V V N ( ) ) * + + , + + - . + + / + + = −1 •  Factor terms that are multiplied by M q to find the 3 zeros" –  2 zeros near origin similar to approximate phugoid roots, effectively canceling M q effect on them " −M q s s − z 1 ( ) s − z 2 ( ) s 2 + 2 ζ P ω n P s + ω n P 2 ( ) s 2 + 2 ζ SP ω n SP s + ω n SP 2 ( ) = −1 s 2 − z 1 s ( )  s 2 + 2 ζ P ω n P s + ω n P 2 ( ) [...]... (s 2 2 − z1s ) ( s − z2 ) + 2ζ Pω nP s + ω 2 nP ) (s 2 + 2ζ SPω nSP s + ω 2 nSP  ) (s −M q ( s − z2 ) 2 2 + 2ζ SPω nSP s + ω nSP ) = −1 Next Time: Transfer Functions and Frequency Response Reading Flight Dynamics, 342-355 Virtual Textbook, Part 15 . Locus Analysis of Parameter Variations Robert Stengel, Aircraft Flight Dynamics MAE 331, 2012" •  Effects of system parameter variations on modes of motion" •  Root locus analysis& quot; – . 0 Root Locus Analysis of Parametric Effects on Aircraft Dynamics " •  Parametric variations alter eigenvalues of F" •  Graphical technique for finding the roots with a new parameter. Variation in aircraft aerodynamic configuration" –  Effect of feedback control, i.e., control of pitching moment (via elevator) that is proportional to pitch rate" Effect of Parameter Variations

Ngày đăng: 04/07/2014, 19:27

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan