A textbook of Computer Based Numerical and Statiscal Techniques part 34 docx

10 306 0
A textbook of Computer Based Numerical and Statiscal Techniques part 34 docx

Đang tải... (xem toàn văn)

Thông tin tài liệu

316 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES 6.5 TRAPEZOIDAL RULE Putting n =1 in equation (2) and taking the curve y = f(x) through (x 0 , y 0 ) and (x 0 , y 0 ) as a polynomial of degree one so that differences of order higher than one vanish, we get ()() 0 0 00 010 01 1 () 2 22 2 xh x hh fxdx hy y y y y y y +  =+∆= +−=+    ∫ Similarly, for the next sub interval () 00 ,2, xhx h ++ we get () 00 00 2 12 1 (1) ( ) ( ) ( ) 22 xnh xh nn xh x n h hh f x dx y y f x dx y y + + − ++− =+ = + ∫∫ Adding the above integrals, we get () 0 0 012 1 () 2( ) 2 xnh nn x h f x dx y y y y y + − =+++++  ∫ which is known as Trapezoidal rule. 6.6 SIMPSON’S ONE-THIRD RULE Putting n = 2 in equation (2 ) and taking the curve through 00 11 (,),(,) xy xy and 22 (,) xy as a polynomial of degree two so that differences of order higher than two vanish, we get 0 0 2 2 00 0 1 () 2 6 xh x fxdx hy y y +  =+∆+∆   ∫ () 010210 012 2 66 (2 ) (4 ) 63 hh yyyyyy yyy  =+−+−−=++  Similarly, () 0 0 4 234 2 ( ) 4 , 3 xh xh h fxdx y y y + + =++ ∫ 0 0 21 (2) () ( 4 ) 3 xnh nnn xnh h fxdx y y y + −− +− =++ ∫ Adding the above integrals, we get ()( ) 0 0 0131242 () 4 2( ) 3 xnh nn n x h fxdx y y y y y y y y + −− = + + + ++ + + ++  ∫ which is known as Simpson’s one-third rule. Note: Using the formula, the given interval of integration must be divided into an even number of sub- intervals. NUMERICAL DIFFERENTIATION AND INTEGRATION 317 6.7 SIMPSON’S THREE-EIGHT RULE Putting n = 3 in equation (2) and taking the curve through (x 0 , y 0 ), (x 1 , y 1 ), (x 2 , y 2 ) and (x 3 , y 3 ) as a polynomial of degree three so that differences of order higher than three vanish, we get 0 0 3 23 00 0 0 33 1 () 3 24 8 xh x fxdx hy y y y +  =+∆+∆+∆   ∫ ()( ) 0 10 2 10 3 2 10 3 812 6 2 (33 ) 8 h y yy yyy yyyy  =+−+−++−+−  () 0123 3 33 8 h yyyy =+++ Similarly, () 0 0 6 3456 3 3 ( ) 3 3 , 8 xh xh h fxdx y y y y + + =+++ ∫ 0 0 6 321 (3) 3 () ( 3 3 ) 8 xh nnnn xnh h fxdx y y y y + −−− +− =+++ ∫ Adding the above integrals, we get 0 0 0) 1245 2 1 36 3 3 ( ) [( 3( ) 2( )] 8 xnh nnnn x h fxdx y y y y y y y y y y y + −− − =+++++++++++ ∫ which is known as Simpson’s three-eighth rule. Note: Using this formula, the given interval of integration must be divided into sub-intervals whose number n is a multiple of 3. 6.8 BOOLE’S RULE Putting n = 4 in equation (2) and neglecting all differences of order higher than four, we get 0 0 4 4 23 4 00 0 0 0 0 (1)(1)(2)(1)(2)(3) () 2! 3! 4! xh x rr rr r rr r r fxdx h y r y y y y dr + −−−−−−  = +∆+ ∆+ ∆+ ∆   ∫∫ (By Newton’s forward interpolation formula) 4 4 2432 23 0 00 0 0 0 (2 3) ( 2) 3 11 43 212 24 5234! y nnn nn nnn hy y y y n   ∆ −− =+∆+ −∆+ ∆+−+−      23 4 0000 0 52 7 42 3390 hyyyy y  = +∆+∆+∆+∆   01234 2 (7 32 12 32 7 ) 45 h yyyyy=++++ Similarly, 08 04 45678 2 ( ) (7 32 12 32 7 ) 45 h h x x h fxdx y y y y y + + =++++ ∫ and so on. 318 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Adding all these integrals from x 0 to x 0 + nh, where n is a multiple of 4, we get 0 0 012345678 2 ( ) (7 32 12 32 14 32 12 32 14 ) 45 xnh x h fxdx yyyyyyyyy + = ++++++++ ∫ This is known as Boole’s rule. Note: Using Boole’s rule, the number of sub-intervals should be taken as a multiple of 4. 6.9 WEDDLE’S RULE Putting n = 6 in equation (2) and neglecting all differences of order higher than six, we get 0 0 6 6 23 00 0 0 0 (1) (1)(2) () 2! 3! xh x rr rr r fxdx h y ry y y + −−−  =+∆+ ∆+ ∆   ∫∫ 45 00 (1)(2)(3) (1)(2)(3)(4) 4! 5! rrrr rrrrr yy −−− −−−− +∆+ ∆ 6 0 ( 1)( 2)( 3)( 4)( 5) 6! rr r r r r ydr −−−−−  +∆   232 4 2323 00 0 0 11 2232 64 rrr r hry y y r r y     =+∆+−∆+−+∆          54 3 6 4 3 24 5 25 00 1311 1 3550 3212 24 5 2 3 120 6 4 3 rr r r r r ry r ry   +−+−∆+ −+−+∆     78 4 3 52 6 6 0 0 1 5 225 274 17 60 720 7 2 4 3 rr r r rry         +−+−+−∆ = 63 9 2 4 41 20 11 20 41 840 00 2 0 3 0 4 0 5 0 6 0 hy y y y y y y ++ + + + + L N M O Q P ∆∆ ∆ ∆ ∆ ∆ 2345 6 00 0 0 0 0 0 641 20 60 90 80 41 11 20 42 h yy y y y y y  = +∆+∆+∆+∆+∆+∆   ()( )( ) 010 210 3210 3 20 60 90 2 80 3 3 10 h yyy yyy yyyy  =+−+−++−+−  43210 54 3 210 41(464 )11(510105 ) yyyyy yy y yyy+ −+−++ −+−+− 65 4 3 210 ( 6 15 20 15 6 )] yy y y yyy+−+−+−+ 3 41 42 1 ≈ L N M O Q P () 0 12 34 56 3 565 10 h yyyyyyy = + ++ ++ + NUMERICAL DIFFERENTIATION AND INTEGRATION 319 Similarly, () () 0 0 12 6 7 8 9 10 11 12 6 3 56 5 10 xh xh h fxdx y y y y y y y + + =++++++ ∫ 0 0 654321 (6) 3 () ( 5 6 5 ) 10 xnh nnynnnn xnh h fxdxyyyyyyy + −−−−−− +− =++++++ ∫ Adding the above integrals, we get 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 3 () ( 5 6 5 2 5 6 5 2 ) 10 xnh x h fxdx yyyyyyyyyyy y y + = + ++ ++ + + ++ + + + + ∫ which is known as Weddle’s rule. Here n must be a multiple of 6. Example 1. Use Trapezoidal rule to evaluate 1 0 1 . 1 dx x+ ∫ Sol. Let h = 0.125 and y = f(x) = 1 1 x+ , then the values of y are given for the arguments which are obtained by dividing the interval [0,1] into eight equal parts are given below: x 0 0.125 0.250 0.375 0.5 0.625 0.750 0.875 1.0 1 1 y x = + 1.0 0.8889 0.8000 0.7273 0.6667 0.6154 0.5714 0.5333 0.5 y 0 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 Now by Trapezoidal rule 1 0 1234567 8 0 1 [2( )] 12 h dx y yyyyyyy y x = + ++++++ + + ∫ 0.125 [1 2(0.8889 0.800 0.7273 0.6667 0.6154 0.5714 0.5333) 0.5] 2 = + ++++++ + 0.125 [1.5 2(4.803)] 2 =+ = 0.125 2 [11.106] = 0.69413. Ans. Example 2. Evaluate 1 2 0 1 dx x+ ∫ using (i) Simpson’s 1 3 rule taking 1 4 h = (ii) Simpson’s 3 8 rule taking 1 6 h = (iii) Weddle’s rule taking 1 6 h = Hence compute an approximate value of π in each case. 320 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Sol. (i) The values of 2 1 () 1 fx x = + at 123 0, , , ,1 444 x = are given below: () 01234 11 3 01 42 4 16 1 0.8 0.64 0.5 17 x fx yyy y y By Simpon’s 1 3 rule () 1 04 13 2 2 0 [4()2] 3 1 dx h yy yy y x =++++ + ∫ {} 116 (1 0.5) 4 .64 2(0.8) 0.78539215 12 17  =++++ =   Also, 1 11 2 0 0 tan tan 1 4 1 dx x x −− π  ===  + ∫ ∴ 0.785392156 3.1415686 4 π =⇒π≈ . Ans. (ii) The values of 2 1 () 1 fx x = + at x = 0, 12345 ,,,,,1 66666 are given below: () 0123456 12345 0 1 66666 36 9 4 9 36 1 1 37 10 5 13 61 2 x fx yyyyyyy By Simpson’s 3 8 rule [] 1 06 1245 3 2 0 3 ()3( )2 8 1 dx h yy yyyy y x =++++++ + ∫ = 3 1 6 8 1 1 2 3 36 37 9 10 9 13 36 61 2 4 5 F H I K + F H G I K J ++++ R S T U V W + F H G I K J L N M O Q P = 0.785395862 Also, 1 2 0 4 1 dx x π = + ∫ ∴ 0.785395862 4 π = ⇒ π = 3.141583. Ans. NUMERICAL DIFFERENTIATION AND INTEGRATION 321 (iii) By Weddle’s rule () 1 0123456 2 0 3 565 10 1 dx h yyyyyyy x =++++++ + ∫ 1 3 36949361 6 15 6 5 10 37 10 5 13 61 2        = + ++ ++ +         = 0.785399611 Since 1 2 0 4 1 dx x π = + ∫ ∴ 0.785399611 4 π = ⇒ π = 3.141598 Example 3. Evaluate 6 2 0 1 dx x+ ∫ by using (i) Trapezoidal Rule (ii) Simpson’s one-third rule (iii) Simpson’s three-eighth rule (iv) Weddle’s rule. Sol. Divide the interval (0, 6) into six parts each of width h = 1. The value of 2 1 () 1 fx x = + are given below: x 01 2 3 4 5 6 f(x) 1 0.5 0.2 0.1 1 17 1 26 1 37 y 0 y 1 y 2 y 3 y 4 y 5 y 6 (i) By Trapezoidal rule, 6 06 12345 2 0 [( ) 2( )] 2 1 dx h yy yyyyy x = + + ++++ + ∫ 11 11 120.50.20.1 237 1726    =++++++       = 1.410798581. Ans. (ii) By Simpson’s one-third rule, ()( ) 6 06 135 24 2 0 [4 2()] 3 1 dx h yy yyy yy x =++++++ + ∫ 11 1 1 140.50.120.2 337 26 17     =++ ++++         = 1.366173413. Ans. 322 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES (iii) By Simpson’s three-eighth rule, 6 06 1245 3 2 0 3 [( ) 3( ) 2 ] 8 1 dx h yy yyyy y x =++++++ + ∫ = 31 11 1 3 0.5 0.2 2(0.1) 837 1726    ++ ++++       = 1.357080836. Ans. (iv) By Weddle’s rule, 6 0123456 2 0 3 (5 6 5 ) 10 1 dx h yyyyyyy x =++++++ + ∫ 3111 1 5(0.5) 0.2 6(0.1) 5 10 17 26 37   =+ ++ ++ +     1.373447475.= Ans. Example 4. Using Simpson’s one-third rule, find 6 2 0 (1 ) dx x+ ∫ . (B. Tech. 2002) Sol. Divide the interval [0,6] into 6 equal parts with 60 6 h − = = 1. The values of 2 1 (1 ) y x = + at each points of sub-divisions are given by x 01 2 3 4 5 6 2 1 (1 ) y x = + 1 0.25 0.11111 0.0625 0.04 0.02778 0.02041 y 0 y 1 y 2 y 3 y 4 y 5 y 6 By Simpson’s one-third rule, we get [] 6 0 135 24 6 2 0 4( ) 2( ) 3 (1 ) dx h y yyy yy y x =++++++ + ∫ = [] 1 1 4(0.25 0.0625 0.02778) 2(0.11111 0.04) 0.02041 3 +++ + ++ = [] 1 1.02041 4(0.34028) 2(0.15111) 3 ++ = [] 11 1.02041 1.36112 0.30222 (2.68375) 33 ++ = 0.89458. Ans. Example 5. Evaluate 4 2 0 1 dx x x+ ∫ using Boole’s rule taking (i) h = 1 (ii) h = 0.5 Compare the rusults with the actual value and indicate the error in both. NUMERICAL DIFFERENTIATION AND INTEGRATION 323 Sol. (i) Dividing the given interval into 4 equal subintervals (i.e. h = 1), the table is as below: x 01234 y 1 1 2 1 5 1 10 1 17 y 0 y | y 2 y 3 y 4 Using Boole’s rule, 1 4 0234 0 2 (7 32 12 32 7 ) 45 h ydx y y y y y=++++ ∫ = 21 45 71 32 1 2 12 1 5 32 1 10 7 1 17 () ()+ F H I K + F H I K + F H I K + F H I K L N M O Q P = 1.289412 (approx.) ∴ 4 2 0 1.289412. 1 dx x = + ∫ Ans. (ii) Dividing the given interval into 8 equal subintervals (i.e. h = 0.5), the table is as below: x 0 0.5 1 1.5 2 2.5 3 3.5 4 y 1.0 0.8 0.5 4 13 0.2 4 29 0.1 4 53 1 17 y 0 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 Using Boole’s rule, [] 4 012345678 0 2 7321232143212327 45 h ydx y y y y y y y y y =++++++++ ∫ = () () () 14441 7(1) 32(8) 12(5) 32 7 .2 7 .2 32 12 .1 32 7 45 13 29 53 17      +++ +++ + + +           = 1.326373 ∴ dx x1 2 0 4 + z = 1.326373 But the actual value is () 0 4 4 11 2 0 tan tan (4) 1.325818 1 dx x x −− === + ∫ Error in I result = 1.325818 1.289412 100 2.746% 1.325818 −  ×=   Error in II result = 1.325818 1.326373 100 0.0419% 1.325818 −  ×=−   324 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 6. Evaluate the integral 6 3 0 1 dx x+ ∫ by using Weddle’s rule. Sol. Divide the interval [0,6] into 6 equal parts each of width 60 1 6 h − == . The value of 3 1 1 y x = + at each points of sub-divisions are given below: x 0123456 y 1.0000 0.5000 0.1111 0.0357 0.0153 0.0079 0.0046 y 0 y 1 y 2 y 3 y 4 y 5 y 6 By Weddle’s Rule, we get [] 6 0152436 3 0 3 5( ) 6 10 1 dx h yyyyyyy x =++++++ + ∫ [] 3 1.0000 5(0.5000 0.0079) 0.1111 0.0153 6(0.357) 0.0046 10 =++++++ ()() 3 1.131 5 0.5079 6 0.0357 10 =+ +   [] 3 1.131 2.5395 0.2142 10 =++ 3 (3.8847) 1.1654. 10 == Ans. Example 7. Evaluate the integral 3 1.5 0 1 x x dx e − ∫ by using Weddle’s rule. Sol. Dividing the interval [0, 1, 5] into 6 equal parts of each of width 1.5 0 0.25 6 h − == and the values of 3 1 x x y e = − at each points of sub-interval are given by x 0 0.25 0.50 0.75 1.00 1.25 1.50 y 0 0.0549 0.1927 0.3777 0.5820 0.7843 0.9694 y 0 y 1 y 2 y 3 y 4 y 5 y 6 Now by Weddle’s rule, we get [] 3 1.5 0152436 0 3 5( ) 6 10 1 x xh dx y y y y y y y e =++++++ − ∫ [] 3(0.25 0 5(0.0549 0.7843) 0.1927 0.5820 0.9694 6(0.3777) 10 = + + ++++ = 0.075[1.7441 + 5(0.8392) +6(0.3777)] NUMERICAL DIFFERENTIATION AND INTEGRATION 325 = 0.075[1.7441 + 4.196 + 2.2662] = 0.075(8.2063) = 0.6155. Ans. Example 8. Evaluate the integral 5.2 4 log , xdx ∫ using Weddle’s rule. Sol. Divide the interval [4, 5.2] into 6 equal sub-interval of each width 5.2 4 0.2 6 − == and values of y = log x are given below: x 4.0 4.2 4.4 4.6 4.8 5.0 5.2 y 1.3862 1.4350 1.4816 1.5261 1.5686 1.6094 1.6486 y 0 y 1 y 2 y 3 y 4 y 5 y 6 By Weddle’s Rule, we get 5.2 0152436 4 3 log [ 5( ) 6 ] 10 h xdx y y y y y y y= + + +++ + ∫ 3(0.2) [1.3862 5(1.4350 1.6094) 1.4816 1.5686 6(1.5261) 1.6486] 10 =++++++ 0.6 [1.3862 5(3.0444) 1.4816 1.5686 6(1.526) 1.6486] 10 = + +++ + 0.6 [6.085 5(3.0444) 6(1.5261)] 10 =++ 0.6 [6.085 15.222 9.1566] 10 =++ == 0.6 (30.4636) 1.8278 10 Ans. Example 9. A river is 80 m wide. The depth y of the river at a distance ‘x’ from one bank is given by the following table: x 01020304050607080 y 0 4 7 9 12 15 14 8 3 Find the approximate area of cross section of the river using (i) Boole’s rule. (ii) Simpson’s one-third rule. Sol. The required area of the cross-section of the river. 80 0 ydx= ∫ (1) Here no. of sub intervals is 8 (i) Boole’s rule, [] = ++++++++ ∫ 80 012345678 0 2 7321232143212327 45 h ydx yyyyyyyyy . 316 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES 6.5 TRAPEZOIDAL RULE Putting n =1 in equation (2) and taking the curve y = f(x) through (x 0 , y 0 ) and (x 0 , y 0 ) as a polynomial of. approximate value of π in each case. 320 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Sol. (i) The values of 2 1 () 1 fx x = + at 123 0, , , ,1 444 x = are given below: () 01 234 11 3 01 42. 0.0419% 1.325818 −  ×=−   324 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 6. Evaluate the integral 6 3 0 1 dx x+ ∫ by using Weddle’s rule. Sol. Divide the interval [0,6] into 6 equal parts each of width

Ngày đăng: 04/07/2014, 15:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan