A textbook of Computer Based Numerical and Statiscal Techniques part 14 ppsx

10 278 0
A textbook of Computer Based Numerical and Statiscal Techniques part 14 ppsx

Đang tải... (xem toàn văn)

Thông tin tài liệu

116 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 14. Evaluate the following: I. ∆ 2 (cos 2x) II. ∆ 2 (3e x ) III. ∆ tan –1 x IV. ∆(x + cos x) the interval of differencing being h. Sol. I. We have ∆ 2 (cos 2x)= (E – 1) 2 cos 2x because ∆ = E – 1. =(E 2 – 2 E + 1) cos 2x = E 2 cos 2x – 2E cos 2x + cos 2x = cos (2x + 4h) – 2 cos (2x + 2h) + cos 2x = cos (2x + 4h) – cos (2x + 2h) – cos (2x + 2h) + cos 2x = 2 sin (2x + 3h) sin (– h) – 2 sin (2x + h) sin h = – 2 sin h [sin (2x + 3h) – sin (2x + h)] = – 2 sin h [2 cos (2x + 2h) sin h] = – 4 sin 2 h cos (2x + 2h). II. We have ∆ (3e x ) = 3( ∆ e x ) = 3 (e x +h – e x ) =3e x (e h –1) ∴ ∆ 2 (3e x )=∆ (∆3e x ) = ∆{3e x (e h –1)} =3 (e h –1) (∆e x ) = 3(e h –1) (e x+h – e x ) =3 (e h –1) e x (e h –1) = 3e x (e h –1) 2 . III. We have ∆ tan –1 x = tan –1 (x + h) – tan –1 x = tan –1 () () 1 xh x xhx +− ++ = tan –1 2 1 h xh x   ++   . IV. We have ∆ (x + cos x) = ∆ x + ∆ cos x ={(x + h) – x} + {cos (x + h) – cos x} = h + 2 sin 2 2 xh+ sin 2 h  −   = h – 2 sin 2 h x  +   sin . 2 h Example 15. Evaluate ∆ 2 E sin (x + h) + () () 2 sin x h Esin x h ∆+ + , where h being the interval of differencing. Sol. To evaluate the given problem we use the operator property that is, ∆ = E – 1 Now 2 E ∆ sin (x + h) + () () 2 sin sin xh Exh ∆+ + = () 2 1 E E − sin (x + h) + ()() () 2 1sin sin 2 Exh xh −+ + CALCULUS OF FINITE DIFFERENCES 117 = (E – 2 + E –1 ) sin (x + h) + −+ + + 2 (21)sin() (2) EE xh sin x h = [sin (x + 2h) – 2 sin (x + h) + sin x] + sin( 3 ) 2 sin( 2 ) sin( ) sin( 2 ) xh xh xh xh +− ++ +  +  = 2 sin (x + h) [cos h – 1] + 2sin( 2 )[cos 1] sin( 2 ) xh h xh +− + = 2 (cos h – 1) {sin (x + h) – 1}. Example 16. Show that B(m + 1, n) = (–1) m ∆ m    1 n where m is a positive integer. Sol. We know that 0 nx e ∞ − ∫ dx = 1 n . Therefore, 0 mnx e ∞ − ∆ ∫ dx = ∆ m 1 n    or 0 mnx e ∞ − ∆ ∫ dx = ∆ m 1 n    , where for m ∆ e –nx , n is to be regarded variable and x is to be regarded as constant. Now, ∆ m e –nx = ∆ m–1 [e –(n+1)x – e –nx ] = ∆ m–1 e –nx (e –x – 1) = (e –x – 1) ∆ m–1 e –nx = (e –x – 1) 2 ∆ m–2 e –nx = = (e –x – 1) m e –nx Therefore, () 0 1 nx x ee ∞ −− − ∫ m dx = ∆ m 1 n    Put e –x = z, so that –e –x dx = dz or dx = – (1/z) dz. Then, 0 1 ∫ n z (z–1) m (–1/z) dz = ∆ m 1 n    or (–1) m 1 1 0 n z − ∫ (1 – z) m dz = ∆ m 1 n    or 1 1 0 n z − ∫ (1 – z) (m + 1)–1 dz = (–1) m ∆ m 1 n    or B (m + 1, n) = (–1) m ∆ m 1 n    118 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 17. Show that e x =  ∆   2 E e x . ∆ x 2x Ee e ; the interval of differencing being h. Sol. Let f(x) = e x , then Ef (x) = f(x + h), therefore Ee x = e x+h . Now, f∆ (x)= f (x + h) – f (x) ∴ x e ∆ = e x+h – e x = e x (e h – 1) ∴ 2 x e ∆ = ∆ ( ∆ e x ) = ∆ {e x (e h – 1)} 2 x e ∆ = (e h – 1) ∆ e x = (e h – 1) 2 e x ∴ 2 E  ∆   e x = ( ∆ 2 E –1 ) e x = ∆ 2 (E –1 e x ) = ∆ 2 (e x–h ) = ∆ 2 (e x e –h ) = e –h ∆ 2 e x = e –h (e h – 1) 2 e x . ∴ 2 E  ∆   e x 2 x x Ee e ∆ = e –h (e h – 1) 2 e x () 2 1 xh hx e ee + − = e –h e x+h = e x . Example 18. Evaluate ∆ 2  +  ++  2 5x 12 x5x6 ; the interval of differencing being unity. Sol. We have ∆ 2 2 512 56 x xx  +   ++  Therefore, ∆ 2 2 512 56 x xx  +   ++  = ∆ 2 ()() 512 23 x xx  +   ++   = ∆ 2   +=∆∆ +∆   ++ + +    23 2 3 23 2 3xx x x = ∆ 11 11 23 32 43xx xx   −+ −   ++ ++    = – 2 ∆ ()() ()() 11 3 23 3 4xx xx   −∆  ++ ++   = – 2 ()()()() 11 34 23xx xx  −  ++ ++   – 3 ()()()() 11 45 34xx xx  −  ++ ++   = ()()()()()() 46 234 345xxx xxx + +++ +++ = () ()()()() 25 16 2345 x xxxx + ++++ . CALCULUS OF FINITE DIFFERENCES 119 Example 19. Evaluate ∆ n e ax+b ; where the interval of differencing taken to be unity? Sol. Given ∆ n e ax+b ; which shows that f(x) = e ax+b . Now ∆f (x)= f(x + 1) – f(x) ∴ ∆(e a + bx )= e a(x + 1)+b – e ax + b = e ax + b (e a – 1) ∴ ∆ 2 (e a + bx )= ∆ ( ∆ e a + bx ) = ∆ {e ax + b (e a –1)} = (e a – 1) (∆ e ax + b ) = (e a – 1) e ax + b (e a –1) = (e a –1) 2 e ax + b . Proceeding in the same way, we get ∆ n e ax + b = (e a –1) n e ax + b Example 20. With usual notations, prove that, ∆ n    1 x = (–1) n . () ( ) ! n nh x x h x nh ++ Sol. 1 n x  ∆   = 1 1 n x −  ∆∆   = 1 11 n xhx −  ∆−  +  = 1 () n h xx h −  − ∆  +  = −  −∆ ∆  +  2 1 () () n h xx h = −   −∆ ∆ −   +   2 11 (1) n xxh = 2 11 1 1 (1) 2 n xhx x hxh −    −∆ − − −    +++    = 2 21 1 (1) 2 n xh x x h −  −∆ − −  ++  = 2 2 2 (1) ()(2) n h xx h x h −  − −∆  ++  = −  −∆  ++  2 22 2! (1) ()(2) n h xx h x h = 3 33 ! (1) ()(2)(3) n h xx hx hx h −  3 −∆  ++ +  . . . . . = ! (1) ( ) ( ) n n nh xx h x nh − ++ Example 21. Prove that: (a) µµ −δδ  µ=   −+ 1 f(x) g(x) f(x) g(x) f(x) 4 11 g(x) g(x )g(x ) 22 Here, interval of differencing being unity. 120 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES (b) ∇ 2 = h 2 D 2 – h 3 D 3 + 7 12 h 4 D 4 – (c) ∇ – ∆ = – ∇ ∆ (d) 1 +    2 2 δ = + 22 1 δµ (e) µδ = 1 2 ()∆+∇ Sol. (a) Here R.H.S. is = 1 () () () () 4 11 ()() 22 fx gx fx gx gx gx µµ −δδ −+ Now numerator of R.H.S. is given by: = 1 2 [E 1/2 + E –1/2 ] f(x) . 1 2 (E 1/2 + E –1/2 ) g(x) – 1 4 (E 1/2 – E –1/2 ) f(x) (E 1/2 – E –1/2 )g(x) = 1 4 [ f (x + 1 2 ) + f(x – 1 2 )] [g(x + 1 2 ) + g(x – 1 2 )] – 1 4 [ f (x + 1 2 ) – f(x– 1 2 ] [g(x + 1 2 ) – g(x – 1 2 )] = 1 4 [f (x + 1 2 )g(x + 1 2 ) + f(x + 1 2 ) g(x – 1 2 ) + f (x – 1 2 ) g(x + 1 2 ) f(x – 1 2 )g(x – 1 2 ) – 1 4 [f(x + 1 2 ) g(x + 1 2 ) – f (x + 1 2 ) g(x – 1 2 ) – f (x – 1 2 ) g(x + 1 2 ) + f(x – 1 2 ) f(x– 1 2 )] = 1 2 [f (x + 1 2 ) g(x – 1 2 ) + f (x – 1 2 ) g(x + 1 2 ) ] Therefore right hand side is = 111 11 222 22 11 22 fx gx fx gx gx gx   +−+−+      −+   = () () () () 1/2 1/2 11 1 22 11 22 22 fx fx fx fx EE gx gx gx gx −   +−    +  += =µ      +−     (b) We know E = e hD and ∇ = 1 – E –1 , therefore ∇ 2 = (1 – e –hD ) 2 . = () () () 2 234 1 1 2! 3! 4! hD hD hD hD     −− + − + −      = () () ()   −+−+    2 234 2! 3! 4! hD hD hD hD CALCULUS OF FINITE DIFFERENCES 121 = h 2 D 2 ()     −− +      2 2 1 26 hD hD = h 2 D 2 () ()       +− + − − +        2 22 1 2 26 26 hD hD hD hD = h 2 D 2 ()   −++ −     2 11 1 43 hD hD = h 2 D 2  −+ −   22 7 1 12 hD h D = h 2 D 2 – h 3 D 3 + 7 12 h 4 D 4 – (c) ∇−∆ = (1 – E –1 ) – (E – 1) = 1E E −    – (E – 1) = (E – 1) (E –1 – 1) = – (E – 1) (1 – E –1 ) = – ∇∆ (d) L.H.S. = 2 1 2 x y   δ  +      = () 2 1/2 1/2 1 2 x EE y −  −  +    = 1 2 1 2 EE −   +−  +       y x = 1 2 (E + E –1 )y x . R.H.S. = ( ) 22 1 +δ µ y x = ()() {} 1/2 22 1/2 1/2 1/2 1/2 1 1. 4 x EE EE y −−  +− +   = () 1/2 2 1 1 4 EE −   −   +       y x = 1/2 22 2 4 EE −  ++    y x = 1 2 EE −  +    y x Hence, L.H.S. = R.H.S. (e) x y µδ = µ (E 1/2 – E –1/2 )y x = µ 22 hh xx yy +−  −    = µ 2 h x y +     – µ 2 h x y −     = 1 2 (E 1/2 + E –1/2 ) 2 h x y +     – 1 2 (E 1/2 + E –1/2 ) 2 h x y −     = 1 2 (y x+h + y x ) – 1 2 (y x + y x–h ) = 1 2 (y x+h – y x ) + 1 2 (y x – y x–h ) = 1 2 () x y ∆ + 1 2 () x y ∇ = 1 2 () ∆+∇ y x Hence, µδ = 1 2 () ∆+∇ . 122 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 22. Evaluate: ∆ n [sin (ax + b)] Sol. We know f∆ (x) = f(x + h) – f (x) therefore ∆ sin (ax + b) = sin [a (x + h)+b] – sin)(ax + b) = 2 sin 2 ah cos 2 h ax b   ++     = 2 sin 2 ah sin 2 ah ax b +π  ++   Therefore, ∆ 2 sin (ax + b)= ∆ 2sin sin 22 ah ah ax b +π   ++     = (2 sin 2 ah ) (2 sin 2 ah ) sin [ax + b + 2 ah +π + 2 ah +π ] = 2 2sin 2 ah    sin 2 2 ah ax b π +  ++     On continuing in the same manner, we get ∆ 3 sin (ax + b) = 3 2sin 2 ah    sin 3( ) 2 ah ax b π +  ++     ∆ n sin (ax + b) = 2sin 2 n ah    sin () 2 nah ax b π +  ++     Example 23. Show that: u 0 – u 1 + u 2 – = 1 2 u 0 – 1 4 ∆ u 0 + 1 8 ∆ 2 u 0 – Sol. On taking left hand side = u 0 – u 1 + u 2 – u 3 + = u 0 – Eu 0 + E 2 u 0 – E 3 u 0 + = (1 – E + E 2 – E 3 + )u 0 = () 1 1 E   −−   u 0 = 1 1 E   +  u 0 = 1 11   ++∆  u 0 = 1 2   +∆  u 0 = 1 2 1 1 2 − ∆  +   u 0 = 1 2  ∆∆ ∆ −+−+   23 1 24 8 u 0 = 1 2 u 0 – 1 4 ∆ u 0 – 1 8 ∆ 2 u 0 – 1 16 ∆ 3 u 0 + (R.H.S.) CALCULUS OF FINITE DIFFERENCES 123 Example 24. Prove that: (1) () () δ   fxgx = fµ (x) () gx δ + () gx µ () fx δ (2) () () () () () ()  µδ−µδ δ=    −+   fx gx fx fx gx 11 gx gx g x 22 Interval of differencing is unity. Sol. (1) R.H.S. = fµ (x) () gx δ + () gx µ () fx δ = 1/2 1/2 2 EE − + f(x). (E 1/2 – E –1/2 ) g(x) + 1/2 1/2 2 EE − + g(x). (E 1/2 – E –1/2 ) f(x) = 1 2 [{f(x + 1 2 ) + f(x – 1 2 )} {g (x + 1 2 ) – g (x – 1 2 )} + {g (x + 1 2 ) + g (x – 1 2 )} {f (x + 1 2 ) – f (x – 1 2 )}] = 1 2 [{f(x + 1 2 ) g (x + 1 2 )– f (x+ 1 2 ) g (x – 1 2 ) + f(x – 1 2 ) g (x + 1 2 ) – f (x – 1 2 ) g (x – 1 2 )} + {f(x + 1 2 ) g (x + 1 2 ) + f(x + 1 2 ) g (x – 1 2 ) – f (x – 1 2 ) g (x + 1 2 ) – f (x – 1 2 ) g (x – 1 2 )}] = 1 4 f(x + 1 2 ) g(x + 1 2 ) – f (x – 1 2 ) g (x – 1 2 ) = E 1/2 f (x) g(x) – E –1/2 f(x) g(x) = (E 1/2 – E –1/2 ) f (x) g(x) = fδ (x) g(x). (2) R.H.S. = () () () () 11 22 gx f x f x gx gx gx µδ−µδ  −+   Now first we solve the numerator of right hand side. = 1/2 1/2 2 EE − + g(x) (E 1/2 – E –1/2 ) f(x) – 1/2 1/2 2 EE − + f(x) (E 1/2 – E –1/2 ) g(x) = 1 2 [{g(x + 1 2 ) + g(x – 1 2 )} {f(x + 1 2 ) – f(x – 1 2 )} – {f(x + 1 2 ) + f(x – 1 2 )} {g(x + 1 2 ) – g(x – 1 2 )}] = 111 11 11 1 1 [( )( ) ( )( ) ( )( ) ( ) ( )] 222 22 22 2 2 f x gx f x gx fx gx f x gx++++−−−+−− − – 111 11 11 1 1 [( )( ) ( )( ) ( )( ) ( ) ( )] 222 22 22 2 2 fx gx fx gx fx gx f x gx++−+−+−+−− − = f (x + 1 2 ) g(x – 1 2 ) – f(x – 1 2 ) g(x + 1 2 ) 124 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Therefore right hand side as = 11 11 ()()()() 22 22 11 ()() 22 fx gx fx gx gx g x +−−−+ −+ = 1 () 2 1 () 2 fx gx + + – 1 () 2 1 () 2 fx gx − − = E 1/2 () () fx gx    – E –1/2 () () fx gx    = (E 1/2 – E –1/2 ) () () fx gx    = () () fx gx  δ   . Example 25. Evaluate: (a) x 2 (x 1)! ∆ + ; differencing 1. (b) ∆(log) ax ebx . Sol. (a) Let f(x)= 2 x , g(x) = (x + 1)!, therefore 1 () 2 2 2 xxx fx + ∆= −= and g∆ (x) = (x + 1 + 1)! – (x + 1)! = (x + 1) (x + 1)! () () fx gx  ∆   = ∆− ∆ + () () () () ( )() gx fx fx gx gx hgx = (1)!.22.(1)(1)! ( 1 1)!( 1)! xx xxx xx +−++ ++ + (Because h = 1) = 2 ( 1) (!(1 1) 2 (2)!(1)! (2)! x x xx x xx x +−− =− ++ + . (b) Again let, f(x)= e ax , g(x) = log bx, therefore ∆f(x)= () (1) ax h ax ax ah eeee + −= − ∆g(x)= +− = +log ( ) log log(1 ) h bx h bx x We know that ()()fxgx∆ = ( ) () () ()fx h gx gx fx+∆ + ∆ Therefore (log) ax ebx ∆ = () +  ++ −   ) log 1 (log ) ( 1) ax h ax ah h ebxee x ∆(e ax log bx)= e ax [e ah log 1 h x  +   + (e ah –1) log bx]. Example 26. Prove that, hD =– log (1 – ∇ ) = sin h –1 (µδ). Sol. Because, E –1 =1 – ∇ therefore, hD = log E = – log (E –1 ) = – log (1 – ∇ ) CALCULUS OF FINITE DIFFERENCES 125 Also, µ = 1/2 1/2 1 () 2 EE − + δ = E 1/2 – E –1/2 Therefore, µδ = −− −= − = 1 11 ()( )sin() 22 hD hD EE e e hhD hD = sin h –1 (µδ). Example 27. Show that ∆ log f(x) =  ∆ +   f(x) log 1 f(x) Sol. L.H.S. log ( )fx∆ = log ( ) log ( )fx h fx+− = () () log log () () fx h Efx fx fx  + =   = (1 ) ( ) log () fx fx  +∆   = () () log () fx fx fx  +∇   = () log 1 () fx fx  ∆ +   Example 28. Evaluate (1)  ∆   n 1 x (2) n ∆ (ab cx ). Sol. (1) We have, 1 n x  ∆   = ∆n –1 ∆ 1 x    . Now, ∆ 1 x    = 1 1x + – 1 x = () () 1 1 xx xx −+ + = () () 1 1xx − + ∆ 2 1 x    = ∆∆ 1 x    = ∆ () () 1 1xx  −   +   = (–1) ∆ () 1 1xx    +   = (–1) ()()() 11 12 1xx xx   −  ++ +   = (–1) () ()() 2 12 xx xx x −+ ++ = ()() ()() −− ++ 12 12xx x ∆ 3 1 x    = ()()() ()()() 123 123xx x x −−− +++ . 116 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 14. Evaluate the following: I. ∆ 2 (cos 2x) II. ∆ 2 (3e x ) III. ∆ tan –1 x IV. ∆(x + cos x) the interval of differencing. () ∆+∇ . 122 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 22. Evaluate: ∆ n [sin (ax + b)] Sol. We know f∆ (x) = f(x + h) – f (x) therefore ∆ sin (ax + b) = sin [a (x + h)+b] – sin)(ax. nh − ++ Example 21. Prove that: (a) µµ −δδ  µ=   −+ 1 f(x) g(x) f(x) g(x) f(x) 4 11 g(x) g(x )g(x ) 22 Here, interval of differencing being unity. 120 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES (b)

Ngày đăng: 04/07/2014, 15:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan