LRFD pre-stressed beam.mcd

71 494 1
LRFD pre-stressed beam.mcd

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

LRFD pre-stressed beam.mcd

LRFD pre-stressed beam.mcd7/1/2003 1 of 71Number of Spans =spans 1:= n 0 spans 1− := n2 0 1 :=Which span is used in design =comp1 1:=Length of all spans (ft) =Ln100:=Should the haunch depth be used in calculations (yes or no) =ha_dec "yes":=Depress point to use for draped strands =depress 0.4:=Number of span points calculations shall be done to =(Please choose only an even number of points) sp 20:= ns10 0 10 :=Interior or Exterior beam used in design (intput "int" or "ext") =aa "int":=Beam Datamp 10:=Beam length (ft) = length 100:=Composite slab strength (ksi) =fc 4:=Concrete unit weight (kcf) =γc 0.150:=Initial strength of concrete (ksi) =fci 6:=Final Strength of concrete (ksi) =fcf 8:=Modulus of beam concrete based on final (ksi) =Ec 33000 γc1.5⋅ fcf⋅:= Ec 5422.453=Modulus of slab concrete (ksi) =Esl 33000 γc1.5⋅ fc⋅:= Esl 3834.254= LRFD pre-stressed beam.mcd7/1/2003 2 of 71bwt 0.822=Beam weight (k/ft) =fwt 20=Width of top flange (in) =Inc 260730=Section inertia (in^2) =h 54=Total beam depth (in) =yb 24.73=Distance from bottom to cg (in) =web 8=Web thickness (in) =Area 789=Beam area (in^2) =a5 0:=Web (in) =a4 0:=Bottom Flange (in) =type 4:=a3 0:=Top flange (in) =a2 0:=Depth (in) =a1 0:=Width (in) =8 = IDOT 36 INCH9 = IDOT 42 INCH10 = IDOT 48 INCH11 = IDOT 54 INCH12 = Box1 = AASHTO TYPE I2 = AASHTO TYPE II3 = AASHTO TYPE III4 = AASHTO TYPE IV5 = BT546 = BT637 = BT72Box Beam dimensions (if no box set to zero)Beam type to use LRFD pre-stressed beam.mcd7/1/2003 3 of 71transfer 36=transfer 60 Strand_diameter⋅:=Transfer length = 60*bdStrand_type "LL"=Strand_type strands_type 5,:=Strand_strength 270=Strand_strength strands_type 4,:=Strand_weight 0.745=Strand_weight strands_type 3,:=Strand_area 0.217=Strand_area strands_type 2,:=Strand_diameter 0.6=Strand_diameter strands_type 1,:=Strand_description "6/10-270k-LL"=Strand_description strands_type 0,:=s_type 1:=Strand Type to usestrandPICK Description DIAMETER AREA WEIGHT PER LENGTH Fpu STEEL TYPETYPE english in in^2 lb/ft ksi0 6/10-270k 0.6000 0.2170 0.7446 270 SR1 6/10-270k-LL 0.6000 0.2170 0.7446 270 LL2 9/16-270k 0.5625 0.1920 0.6588 270 SR3 9/16-270k-LL 0.5625 0.1920 0.6588 270 LL4 1/2-270k 0.5000 0.1530 0.5250 270 SR5 1/2-270k-LL 0.5000 0.1530 0.5250 270 LL6 1/2-270k-SP 0.5000 0.1670 0.5730 270 LL7 7/16-270k 0.4375 0.1150 0.3946 270 SR8 7/16-270k-LL 0.4375 0.1150 0.3946 270 LL9 3/8-270k 0.3750 0.0800 0.2745 270 SR10 3/8-270k-LL 0.3750 0.0800 0.2745 270 LL:=Strand pattern Data LRFD pre-stressed beam.mcd7/1/2003 4 of 71fwt 20=Width of top flange of beam (in) =max_span 100=max_span length:=Max span length (ft) =(for ETFW)bwt 0.822=Beam weight per foot (k/ft) =ha 4.5=ha if ha_dec "yes"= haunch, 0,( ):=haunch 4.5=haunch tstw slab−:=Haunch Selectiontstw 12.75:=Top slab to top beam (in) = RF 1.0:=Multiple presence factor =lane_width 10:=Width of one lane (ft) =beams 5:=Number of beams =wear 0.025:=Wearing surface (ksf) =ts slab:=slab 8.25:=Slab thickness (ft) =bs 8:=Beam spacing (ft) =oto 40.5:=Out to out width (ft) =General InformationCalculations of Dead Loads, non-composite and composite LRFD pre-stressed beam.mcd7/1/2003 5 of 71gt .5:=If the user so desires, you may adjust the deck weight for the deck grooving, just enter the depth of grooving. Enter a positive value for an increased thickness, and enter a negative value for an decreased thickness. This adjustment in really not necessary at all, and the user may set the value equal to 0.sipd 0.5:=Amount of deflection in SIP form (in) =vald 2:=Depth of valley in SIP form (in) =sipw 3:=SIP form weight (psf) =If you do not wish to use any of the optional loads then simply set the values to zero. If SIP metal forms will be used then the first three should probably be used. However, it is most certanly not necessary to adjust for the deck grooving.Optional Loadsndia 2:=Number of Diaphragms (k) =Note: Program assumes diaphragms are point loads at equal spaces over the length of the beam.wdia 1.664:=Weight of Diaphragms (k) =Diaphragm Datanmed 0:=Number of barriers = median 0:=Median barrier weight (k/ft) =med_width 0:=Median barrier width (ft) =MEDIAN BARRIER DATAnpar 2:=Number of parapet's = railwt 0.5:=Rail weight per foot (k/ft) =outside 1.0:=Rail width on outside (ft) =RAIL OR PARAPET DATA LRFD pre-stressed beam.mcd7/1/2003 6 of 71DLc 0.417=DLcroadway wear⋅ railwt npar⋅+ median nmed⋅+beamsgroov+:=roadway 38.5=roadway oto npar outside⋅− med_width−:=Roadway width (ft) =COMPOSITE DL (DW)DLnc 1.047=DLnc maxotoslab12⋅beamsγc⋅bsslab12⋅ γc⋅optional+:=NON COMPOSITE DL (excluding beam weight) (DLnc) (DC)Final Composite and Non-Composite Loadsoptional 0.212=optional filler SIP+ valley+ wdefl+:=Total optional loads (k/ft) =groov 0.025=groov bsgt24⋅ γc⋅:=Deck grooving (k/ft) = (Say that the deck grooving adds 1/4"in depth)wdefl 0.02=wdefl bsfwt12−sipd24⋅ γc⋅:=Weight from deflections (k/ft) =(this assumes that the SIP formwill deflect, adding about 1/2"depth for every 1" of deflection)valley 0.079=valley bsfwt12−vald24⋅ γc⋅:=Concrete in valley of SIP form (k/ft) =(say each inch of valley is equal to1/2" of concrete depth)SIP 0.019=SIP bsfwt12−sipw1000⋅:=SIP form (k/ft) =say (3 psf)filler 0.094=fillerfwt haunch⋅144γc⋅:=Filler weight (k/ft) = LRFD pre-stressed beam.mcd7/1/2003 7 of 71Unit Load for Diaphragm, to be used only for Deflections (the actual point loads will be used for shear and moment)dwtwdia ndia⋅length:= dwt 0.033=Unit weight to be used in in the calculation of Non-Composite DL Deflectionw_defl DLncrailwt npar⋅ median nmed⋅+beams+ dwt+:= LRFD pre-stressed beam.mcd7/1/2003 8 of 71ETFW 96=ETFW ETFW_ext aa "ext"=ifETFW_int otherwise:=Effective flange width used in designETFW_int 96=ETFW_ext minetfw1etfw2etfw3:=etfw3 51=etfw3oto beams 1−( ) bs⋅−212⋅:=etfw2 59.5=etfw2 6 slab⋅fwt2+:=etfw1 150=etfw1length812⋅:=1. 1/8 Effective Span2. 6*ts + B ; B = largter of the web thickness or 1/2 top flange width3. overhangExterior - 1/2 effective width of adjacent interior beam plus the smaller of the followingETFW_int 96=ETFW_int minetfw1etfw2etfw3:=etfw3 109=etfw3 12 slab⋅fwt2+:=etfw2 96=etfw2 bs 12⋅:=etfw1 300=etfw1length412⋅:=1. 1/4 span length2. center to center beams3. 12*T+B ; B = larger of the web thickness or 1/2 top flange widthInterior - smaller of the followingEffective flange width (LRFD 4.6.2.6.1) (use the smaller of interior or exterior) LRFD pre-stressed beam.mcd7/1/2003 9 of 71Section Diagram40 20 0 20 40 60 80010203040506070Sectionbeamxa 1,xhxhn 1,xexhn 1,beamxa 0,xhxhn 0,, xexhn 0,, LRFD pre-stressed beam.mcd7/1/2003 10 of 71Composite moment of inertia (in^t) =Ic Incb ts3⋅12+ Area yb ybc−( )2⋅+ b ts⋅ ytsts2−2⋅+:=Ic 734265.849=Composite Section ModulusSection modulus bottom of beam (in^3) =SbcIcybc:= Sbc 18147.259=Section modulus top beam (in^3) =StbIcytb:= Stb 54235.51=Section modulus top concrete (in^3) =StcIcyts1η⋅:= Stc 39500.538=Non-Composite Section ModulusSection modulus bottom of beam (in^3) =SbIncyb:= Sb 10543.065=Section modulus top beam (in^3) =StInch yb−:= St 8907.755=Composite moment of InertiaEffective compression slab width (in) =ETFW 96=Modular ratio =ηfcfcf:= η 0.707=Transformed slab width (in) = b ETFW η⋅:= b 67.882=Slab thickness (in) =ts 8.25=Composite distance from bottom to c.g. (in) =ybcb ts⋅ h ha+ts2+⋅ Area yb⋅+b ts⋅ Area+:= ybc 40.462=Composite N.A. to top beam (in) =ytb h ybc−:= ytb 13.538=Composite N.A. to top slab (in) =yts h ts+ ha+ ybc−:= yts 26.288= [...]... 7*fcdp >= 0 fcdp = stress at c.g. strands from all permanent loads, except the loads used in fcgp Creep of concrete LRFD 5.9.5.4.3 SR 6.5=SR 17 0.15 H⋅−:= H 70:= Pretensioned members shrinkage = 17-0.15*H H can be abtained from figure 5.4.2.3.3-1 Shrinkage LRFD 5.9.5.4.2 LRFD pre-stressed beam.mcd 7/1/2003 25 of 71 Strength I loads (shear) Maximum 1.25*DC + 1.5*DW + 1.75*(LL + IM) Minimum 0.9*DC + 0.65*DW... 2 25 2 51 2 y 2 25 x_s x_s1( ) := LRFD pre-stressed beam.mcd 7/1/2003 32 of 71 R1 1.271=R1 log 24 time⋅( ) 40 fpj fpy 0.55−       ⋅ fpj⋅:= Relaxation at transfer = fpj 0.75 fpy⋅:= Initial stress in tendon (ksi) = fpy 270=fpy Strand_strength:= Yield strength of tendons (ksi) = time 0.75:= Time of transfer (18 hours) = 0.75 days Relaxation at Transfer (fpr1) LRFD 5.9.5.4.4b CR 23.219=CR 12 fcgp⋅... OK" 2 -0.502 -0.539 "top OK" 3.357 3.6 "bot OK" = LRFD pre-stressed beam.mcd 7/1/2003 45 of 71 20 2 -0.418 -0.537 "top OK" 2.795 3.2 "bot OK" 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1 0 1 2 3 4 5 Service III Negative Moment Envelope check_1 ns 1, fc1 check_1 ns 4, fft x1 ns Flexural Strength - LRFD 5.7.3.1.1 stress in prestressing tendons I will consider the bonded... ) 12⋅ Sb − SIII3 ns SIII5 ns + ( ) 12⋅ Sbc −:= SIII_nb mp 0.534= Pass fail condition = From LRFD 5.9.4.2.1 under final conditions it is only necessary to check tension under service III load combinations. If the flag "see SIII" is shown in the tables below see the section with service III loads for tension checks. check_1 ns 0, x1 ns := LRFD pre-stressed beam.mcd 7/1/2003 40 of 71 check_1 ns 3, "see SIII"... ) 12⋅ Sb − SI3 ns SI4 ns + ( ) 12⋅ Sbc −:= SI_pb mp 0.725−= Pass fail condition = From LRFD 5.9.4.2.1 under final conditions it is only necessary to check tension under service III load combinations. If the flag "see SIII" is shown in the tables below see the section with service III loads for tension checks. check_1 ns 0, x1 ns := ( ) LRFD pre-stressed beam.mcd 7/1/2003 30 of 71 Calculate Eccentricity 1 1.1 1.2... ) 12⋅ Sb − SI3 ns SI5 ns + ( ) 12⋅ Sbc −:= SI_nb mp 0.534= Pass fail condition = From LRFD 5.9.4.2.1 under final conditions it is only necessary to check tension under service III load combinations. If the flag "see SIII" is shown in the tables below see the section with service III loads for tension checks. check_1 ns 0, x1 ns := LRFD pre-stressed beam.mcd 7/1/2003 34 of 71 disp 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1... "T" section behavior (ts<c) c Aps fpu⋅ As fy⋅+ A's f'y⋅− 0.85 fc⋅ β1⋅ b⋅ k Aps⋅ fpu dp ⋅+ = for rectangular section behavior (ts>c) fpu = ultimate strength of tendions LRFD pre-stressed beam.mcd 7/1/2003 27 of 71 End Strand pattern Input Strand pattern at end (only fill in the columns in red) If the user wants to cut strands in the middle (break bond in middle) input a "y"... INCH 11 = IDOT 54 INCH 12 = Box 1 = AASHTO TYPE I 2 = AASHTO TYPE II 3 = AASHTO TYPE III 4 = AASHTO TYPE IV 5 = BT54 6 = BT63 7 = BT72 Box Beam dimensions (if no box set to zero) Beam type to use LRFD pre-stressed beam.mcd 7/1/2003 4 of 71 fwt 20= Width of top flange of beam (in) = max_span 100=max_span length:= Max span length (ft) = (for ETFW) bwt 0.822= Beam weight per foot (k/ft) = ha 4.5=ha if ha_dec... surface (ksf) = ts slab:=slab 8.25:= Slab thickness (ft) = bs 8:= Beam spacing (ft) = oto 40.5:= Out to out width (ft) = General Information Calculations of Dead Loads, non-composite and composite LRFD pre-stressed beam.mcd 7/1/2003 18 of 71 Load Combinations Combination 1: The effect of the design tandem combined with the effect of the design lane. Combination 2: The effect of the design truck combined... -32.88 -43.54 -16.70 4.89 -85.51 -71.09 -270.23 1.95 -36.99 -48.78 -18.79 2.44 -91.62 -85.13 -295.73 2 -41.10 -54.02 -20.88 0.00 -97.73 0.00 -321.23 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 fullv := LRFD pre-stressed beam.mcd 7/1/2003 29 of 71 0 5 10 15 20 25 30 0 10 20 30 40 50 60 End Pattern beam xa 1, x_s1 xa4 1, k1 xa4 1, k_b1 n8 1, k_b2 n8 1, k_b3 n8 1, beam xa 0, x_s1 xa4 0, , k1 xa4 0, , k_b1 n8 0, , . TYPE IV5 = BT546 = BT637 = BT72Box Beam dimensions (if no box set to zero )Beam type to use LRFD pre-stressed beam. mcd7 /1/2003 3 of 71transfer 36=transfer. interior or exterior) LRFD pre-stressed beam. mcd7 /1/2003 9 of 71Section Diagram40 20 0 20 40 60 80010203040506070Sectionbeamxa 1,xhxhn 1,xexhn 1,beamxa 0,xhxhn

Ngày đăng: 06/09/2012, 15:17

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan