Báo cáo hóa học: "CONTINUITY OF MULTILINEAR OPERATORS ON TRIEBEL-LIZORKIN SPACES" potx

11 264 0
Báo cáo hóa học: "CONTINUITY OF MULTILINEAR OPERATORS ON TRIEBEL-LIZORKIN SPACES" potx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CONTINUITY OF MULTILINEAR OPERATORS ON TRIEBEL-LIZORKIN SPACES LANZHE LIU Received 4 February 2006; Revised 20 September 2006; Accepted 28 September 2006 The continuity of some multilinear operators related to certain convolution operators on the Triebel-Lizorkin space is obtained. The operators include Littlewood-Paley operator and Marcinkiewi cz operator. Copyright © 2006 Lanzhe Liu. This is an open access article distributed under the Cre- ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction Let T be the Calder ´ on-Zygmund singular integral operator, a well-known result of Coif- man et al. (see [6]) states that the commutator [b,T]( f ) = T(bf) −bT(f )(whereb ∈ BMO) is bounded on L p (R n )(1<p<∞); Chanillo (see [1]) proves a similar result when T is replaced by the fractional integr al operator; in [8, 9], these results on the Triebel- Lizorkin spaces and the case b ∈ Lipβ (where Lipβ is the homogeneous Lipschitz space) are obtained. The main purpose of this paper is to study the continuity of some multi- linear operators related to certain convolution operators on the Triebel-Lizorkin spaces. In fact, we will obtain the continuity on the Triebel-Lizorkin spaces for the multilinear operators only under certain conditions on the size of the operators. As the applications, the continuity of the multilinear operators related to the Littlewood-Paley oper ator and Marcinkiewicz operator on the Triebel-Lizorkin spaces are obtained. 2. Notations and results Throughout this paper, Q will denote a cube of R n with side parallel to the axes, and for a cube Q,let f Q =|Q| −1  Q f (x)dx and f # (x) = sup x∈Q |Q| −1  Q |f (y) − f Q |dy.For 1 ≤ r<∞ and 0 ≤δ<n,let M δ,r ( f )(x) =sup x∈Q  1 |Q| 1−δr/n  Q   f (y)   r dy  1/r , (2.1) Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 58473, Pages 1–11 DOI 10.1155/JIA/2006/58473 2 Continuity of multilinear operators we denote M δ,r ( f ) = M r ( f )ifδ = 0, which is the Hardy-Littlewood maximal function when r = 1 (see [10]). For β>0andp>1, let ˙ F β,∞ p be the homogeneous Triebel-Lizorkin space, and let the Lipschitz space ˙ ∧ β be the space of functions f such that f  ˙ ∧ β = sup x, h∈R n , h=0   Δ [β]+1 h f (x)   |h| β < ∞ , (2.2) where Δ k h denotes the kth difference operator (see [9]). We are going to study the multilinear operator as follows. Let m be a positive integer and let A be a function on R n . We denote R m+1 (A;x, y) =A(x) −  |α|≤m 1 α! D α A(y)(x − y) α . (2.3) Definit ion 2.1. Let F(x,t)defineonR n ×[0,+∞), denote F t ( f )(x) =  R n F(x − y,t) f (y)dy, F A t ( f )(x) =  R n R m+1 (A;x, y) |x − y| m F(x − y,t) f (y)dy. (2.4) Let H be the Hilbert space H ={h : h< ∞}such that, for each fixed x ∈ R n , F t ( f )(x) and F A t ( f )(x) may be viewed as a mapping from [0,+∞)toH. Then, the multilinear operators related to F t is defined by T A ( f )(x) =   F A t ( f )(x)   ; (2.5) and also define T(f )(x) =F t ( f )(x). In particular, consider the following two sublinear operators. Definit ion 2.2. Fix ε>0, n>δ ≥ 0. Let ψ be a fixed function which satisfies the following properties: (1)  ψ(x)dx =0; (2) |ψ(x)|≤C(1 + |x|) −(n+1−δ) ; (3) |ψ(x + y) −ψ(x)|≤C|y| ε (1 + |x|) −(n+1+ε−δ) when 2|y| < |x|. The multilinear Littlewood-Paley operator is defined by g A δ ( f )(x) =   ∞ 0   F A t ( f )(x)   2 dt t  1/2 , (2.6) where F A t ( f )(x) =  R n R m+1 (A;x, y) |x − y| m ψ t (x − y) f (y)dy (2.7) Lanzhe Liu 3 and ψ t (x) =t −n+δ ψ(x/t)fort>0. Denote that F t ( f ) =ψ t ∗ f , and also define that g δ ( f )(x) =   ∞ 0   F t ( f )(x)   2 dt t  1/2 , (2.8) which is the Littlewood-Paley g function w hen δ = 0 (see [11]). Let H be the space H ={h : h=(  ∞ 0 |h(t)| 2 dt/t) 1/2 < ∞},then,foreachfixedx ∈ R n , F A t ( f )(x) may be viewed as a mapping from [0,+∞)toH, and it is clear that g δ ( f )(x) =   F t ( f )(x)   , g A δ ( f )(x) =   F A t ( f )(x)   . (2.9) Definit ion 2.3. Let 0 ≤ δ<n,0<γ≤ 1andΩ be homogeneous of degree zero on R n such that  S n−1 Ω(x  )dσ(x  ) = 0. Assume that Ω ∈ Lip γ (S n−1 ), that is, there exists a con- stant M>0 such that for any x, y ∈ S n−1 , |Ω(x) −Ω(y)|≤M|x − y| γ . The multilinear Marcinkiewicz operator is defined by μ A δ ( f )(x) =   ∞ 0   F A t ( f )(x)   2 dt t 3  1/2 , (2.10) where F A t ( f )(x) =  |x−y|≤t Ω(x − y) |x − y| n−1−δ R m+1 (A;x, y) |x − y| m f (y)dy; (2.11) denote F t ( f )(x) =  |x−y|≤t Ω(x − y) |x − y| n−1−δ f (y)dy, (2.12) and also define that μ δ ( f )(x) =   ∞ 0   F t ( f )(x)   2 dt t 3  1/2 , (2.13) which is the Marcinkiewicz operator when δ = 0 (see [12]). Let H be the space H ={h : h=(  ∞ 0 |h(t)| 2 dt/t 3 ) 1/2 < ∞}. Then, it is clear that μ δ ( f )(x) =   F t ( f )(x)   , μ A δ ( f )(x) =   F A t ( f )(x)   . (2.14) It is clear that Definitions 2.2 and 2.3 are the particular examples of Definition 2.1. Note that when m = 0, T A is just the commutator of F t and A, while when m>0, it is nontrivial generalizations of the commutators. It is well known that multilinear oper- ators are of great interest in harmonic analysis and have been widely studied by many authors (see [2–5, 7]). The main purpose of this paper is to study the continuity for the multilinear opera tors on the Triebel-Lizorkin spaces. We will prove the following theo- rems in Section 3. Theorem 2.4. Let g A δ be the mult ilinear Littlewood-Paley operator as in Definition 2.2.If 0 <β<min(1,ε) and D α A ∈ ˙ ∧ β for |α|=m, then 4 Continuity of multilinear operators (a) g A δ maps L p (R n ) continuously into ˙ F β,∞ q (R n ),for1 <p<n/δand 1/q = 1/p−δ/n; (b) g A δ maps L p (R n ) continuously into L q (R n ) for 1 <p<n/(δ + β) and 1/p− 1/q = (δ +β)/n. Theorem 2.5. Let μ A δ be the multilinear Marcinkiewiz operator as in Definition 2.3.If0 < β<min(1/2, γ) and D α A ∈ ˙ ∧ β for |α|=m, then (a) μ A δ maps L p (R n ) continuously into ˙ F β,∞ q (R n ) for 1 <p<n/δand 1/q =1/p−δ/n, (b) μ A δ maps L p (R n ) continuously into L q (R n ) for 1 <p<n/(δ + β) and 1/p−1/q = (δ +β)/n. 3. Main theorem and proof We first prove a general theorem. Theorem 3.1 (main theorem). Let 0 ≤ δ<n, 0 <β<1,andD α A ∈ ˙ ∧ β for |α|=m.Sup- pose F t , T,andT A are the same as in Definition 2.1,ifT is bounded from L p (R n ) to L q (R n ) for 1 <p<n/δand 1/q = 1/p−δ/n,andT satisfies the following size condition:   F A t ( f )(x) −F A t ( f )  x 0    ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 f (x) (3.1) for any cube Q with supp f ⊂ (2Q) c and x ∈Q, then (a) T A is bounded from L p (R n ) to ˙ F β,∞ q (R n ) for 1 <p<n/δand 1/q =1/p−δ/n, (b) T A is bounded from L p (R n ) to L q (R n ) for 1 <p<n/(δ + β) and 1/q = 1/p−(δ + β)/n. To prove the theorem, we need the following lemmas. Lemma 3.2 (see [9]). For 0 <β<1, 1 <p< ∞, f  ˙ F β,∞ p ≈     sup Q 1 |Q| 1+β/n  Q   f (x) − f Q   dx     L p ≈     sup ·∈Q inf c 1 |Q| 1+β/n  Q   f (x) −c   dx     L p . (3.2) Lemma 3.3 (see [9]). For 0 <β<1, 1 ≤ p ≤∞, f  ˙ ∧ β ≈ sup Q 1 |Q| 1+β/n  Q   f (x) − f Q   dx ≈ sup Q 1 |Q| β/n  1 |Q|  Q   f (x) − f Q   p dx  1/p . (3.3) Lemma 3.4 (see [1, 2]). Suppose that 1 ≤ r<p<n/δand 1/q = 1/p−δ/n. Then   M δ,r ( f )   L q ≤ Cf  L p . (3.4) Lanzhe Liu 5 Lemma 3.5 (see [5]). Let A be a function on R n and D α A ∈L q (R n ) for |α|=m and some q>n. Then   R m (A;x, y)   ≤ C|x − y| m  |α|=m  1    Q(x, y)     Q(x,y)   D α A(z)   q dz  1/q , (3.5) where  Q(x, y) isthecubecenteredatx and has side length 5 √ n|x − y|. Proof of Theorem 3.1 (main theorem). Fix a cube Q = Q(x 0 ,l)andx ∈ Q.Let  Q = 5 √ nQ and  A(x) = A(x) −  |α|=m (1/α!)(D α A)  Q x α ,thenR m (A;x, y) = R m (  A;x, y)andD α  A = D α A −(D α A)  Q for |α|=m.Wewrite,for f 1 = fχ  Q and f 2 = fχ R n \  Q , F A t ( f )(x) =  R n R m+1   A;x, y  |x − y| m F(x − y,t) f (y)dy =  R n R m+1   A;x, y  |x − y| m F(x − y,t) f 2 (y)dy +  R n R m   A;x, y  |x − y| m F(x − y,t) f 1 (y)dy −  |α|=m 1 α!  R n F(x − y,t)(x − y) α |x − y| m D α  A(y) f 1 (y)dy, (3.6) then   T A ( f )(x) −T  A  f 2  x 0    =     F A t ( f )(x)   −   F  A t  f 2  x 0      ≤     F t  R m   A;x,·  |x −·| m f 1  (x)     +  |α|=m 1 α!     F t  (x −·) α |x −·| m D α  Af 1  (x)     +   F  A t  f 2  (x) −F  A t  f 2  x 0    = A(x)+B(x)+C(x), (3.7) thus, 1 |Q| 1+β/n  Q   T A ( f )(x) −T  A ( f )  x 0    dx ≤ 1 |Q| 1+β/n  Q A(x)dx + 1 |Q| 1+β/n  Q B(x)dx + 1 |Q| 1+β/n  Q C(x)dx :=I + II +III. (3.8) 6 Continuity of multilinear operators Now, let us estimate I, II,andIII, respectively. First, for x ∈ Q and y ∈  Q, using Lemmas 3.3 and 3.5,weget   R m   A;x, y    ≤ C|x − y| m  |α|=m sup x∈  Q   D α A(x) −  D α A   Q   ≤ C|x − y| m |Q| β/n  |α|=m   D α A   ˙ ∧ β , (3.9) thus, taking r, s such that 1 ≤ r<pand 1/s =1/r −δ/n,bythe(L r ,L s ) boundedness of T and Holder’ inequality, we obtain I ≤ C  |α|=m   D α A   ˙ ∧ β 1 |Q|  Q   T  f 1  (x)   dx ≤ C  |α|=m   D α A   ˙ ∧ β   T  f 1    L s |Q| −1/s ≤ C  |α|=m   D α A   ˙ ∧ β   f 1   L r |Q| −1/s ≤ C  |α|=m   D α A   ˙ ∧ β M δ,r ( f )(x). (3.10) Secondly, using the following inequality (see [9]):    D α A −  D α A   Q  fχ  Q   L r ≤ C|Q| 1/s+β/n   D α A   ˙ ∧ β M δ,r ( f )(x), (3.11) and similar to the proof of I,wegain II ≤ C  |α|=m   D α A   ˙ ∧ β M δ,r ( f )(x). (3.12) For III, using the size condition of T,wehave III ≤ C  |α|=m   D α A   ˙ ∧ β M δ,1 ( f )(x). (3.13) We now put these estimates together; and taking the supremum over all Q such that x ∈Q, and using Lemmas 3.2 and 3.4,weobtain   T A ( f )   ˙ F β,∞ q ≤ C  |α|=m   D α A   ˙ ∧ β f  L p . (3.14) This completes the proof of (a). (b) By same argument as in proof of (a), we have 1 |Q|  Q   T A ( f )(x) −T  A  f 2  x 0    dx ≤ C  |α|=m   D α A   ˙ ∧ β  M δ+β,r ( f )+M δ+β,1 ( f )  , (3.15) thus,  T A ( f )  # ≤ C  |α|=m   D α A   ˙ ∧ β  M δ+β,r ( f )+M δ+β,1 ( f )  . (3.16) Lanzhe Liu 7 Now, using Lemma 3.4,wegain   T A ( f )   L q ≤ C    T A ( f )  #   L q ≤ C  |α|=m   D α A   ˙ ∧ β    M δ+β,r ( f )   L q +   M δ+β,1 ( f )   L q  ≤ Cf  L p . (3.17) This completes the proof of (b) and the theorem.  To prove Th e or e m s 2.4 and 2.5, since g δ and μ δ are all bounded from L p (R n )toL q (R n ) for 1 <p<n/δand 1/q = 1/p−δ/n (see [11, 12]), it suffices to verify that g A δ and μ A δ satisfy the size condition in Theorem 3.1 (main theorem). Suppose supp f ⊂ (2Q) c and x ∈ Q = Q(x 0 ,l). Note that |x 0 − y|≈|x − y| for y ∈ (2Q) c . For g A δ ,wewrite F  A t ( f )(x) −F  A t ( f )  x 0  =  R n \  Q  ψ t (x − y) |x − y| m − ψ t  x 0 − y    x 0 − y   m  R m   A;x, y  f (y)dy +  R n \  Q ψ t  x 0 − y  f (y)   x 0 − y   m  R m   A;x, y  − R m   A;x 0 , y  dy −  |α|=m 1 α!  R n \  Q  ψ t (x − y)(x − y) α |x − y| m − ψ t  x 0 − y  x 0 − y  α   x 0 − y   m  D α  A(y) f (y)dy = I 1 + I 2 + I 3 . (3.18) By the condition on ψ,weobtain   I 1   ≤ C  R n \  Q   x −x 0     x 0 − y   m+1   R m   A;x, y      f (y)     ∞ 0 tdt  t +   x 0 − y    2(n+1−δ)  1/2 dy + C  R n \  Q   x −x 0   ε   x 0 − y   m   R m   A;x, y      f (y)     ∞ 0 tdt  t +   x 0 − y    2(n+1+ε−δ)  1/2 dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=0  2 k+1  Q\2 k+1  Q    x −x 0     x 0 − y   n+1−δ +   x −x 0   ε   x 0 − y   n+ε−δ    f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=1  2 −k +2 −kε   1   2 k  Q   1−δ/n  2 k  Q   f (y)   dy  ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x). (3.19) 8 Continuity of multilinear operators For I 2 , by the formula (see [5]): R m   A;x, y  − R m   A;x 0 , y  =  |η|<m 1 η! R m−|η|  D η  A;x,x 0  (x − y) η (3.20) and Lemma 3.5,weget   R m   A;x, y  − R m   A;x 0 , y    ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n   x −x 0     x 0 − y   m−1 , (3.21) thus, similar to the proof of I 1 ,   I 2   ≤ C  R n \  Q   R m   A;x, y  − R m   A;x 0 , y      x 0 − y   m+n−δ   f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=0  2 k+1  Q\2 k  Q   x −x 0     x 0 − y   n+1−δ   f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x). (3.22) For I 3 , similar to the proof of I 1 ,weobtain   I 3   ≤ C  |α|=m  R n \  Q    x −x 0     x 0 − y   n+1−δ +   x −x 0   ε   x 0 − y   n+ε−δ    f (y)     D α  A(y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=1  2 k(β−1) +2 k(β−ε)  M δ,1 ( f )(x) ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x) (3.23) so that   F  A t ( f )(x) −F  A t ( f )  x 0    ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x). (3.24) Lanzhe Liu 9 For μ A δ ,wewrite   F  A t ( f )(x) −F  A t ( f )  x 0    ≤   ∞ 0   |x−y|≤t, |x 0 −y|>t   Ω(x − y)     R m   A;x, y    |x − y| m+n−1−δ   f (y)   dy  2 dt t 3  1/2 +   ∞ 0   |x−y|>t, |x 0 −y|≤t   Ω  x 0 − y      R m   A;x 0 , y      x 0 − y   m+n−1−δ   f (y)   dy  2 dt t 3  1/2 +   ∞ 0   |x−y|≤t,|x 0 −y|≤t      Ω(x − y)R m (  A;x, y) |x − y| m+n−1−δ − Ω  x 0 − y  R m   A;x 0 , y    x 0 − y   m+n−1−δ        f (y)   dy  2 dt t 3  1/2 + C  |α|=m   ∞ 0      |x−y|≤t  Ω(x − y)(x − y) α |x − y| m+n−1−δ −  |x 0 −y|≤t Ω  x 0 − y  x 0 − y  α   x 0 − y   m+n−1−δ  × D α  A(y) f (y)dy      2 dt t 3  1/2 := J 1 + J 2 + J 3 + J 4 . (3.25) Then J 1 ≤ C  R n \  Q   f (y)     R m   A;x, y    |x − y| m+n−1−δ   |x−y|≤t<|x 0 −y| dt t 3  1/2 dy ≤ C  R n \  Q   f (y)     R m   A;x, y    |x − y| m+n−1−δ   x 0 −x   1/2 |x − y| 3/2 dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=1 2 −k/2 1   2 k  Q   1−δ/n  2 k  Q   f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x), (3.26) similarly, we have J 2 ≤ C  |α|=m D α A ˙ ∧ β |Q| β/n M δ,1 ( f )(x). For J 3 , by the following inequality (see [12]):      Ω(x − y) |x − y| m+n−1−δ − Ω  x 0 − y    x 0 − y   m+n−1−δ      ≤ C    x −x 0     x 0 − y   m+n−δ +   x −x 0   γ   x 0 − y   m+n−1−δ+γ  , (3.27) 10 Continuity of multilinear operators we gain J 3 ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n  R n \  Q    x −x 0     x 0 − y   n−δ +   x −x 0   γ   x 0 − y   n−1−δ+γ  ×   |x 0 −y|≤t, |x−y|≤t dt t 3  1/2   f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=1  2 −k +2 −γk  M δ,1 ( f )(x) ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x). (3.28) For J 4 , similar to the proof of J 1 , J 2 ,andJ 3 ,weobtain J 4 ≤ C  |α|=m  R n \  Q    x −x 0     x 0 − y   n+1−δ +   x −x 0   1/2   x 0 − y   n+1/2−δ +   x −x 0   γ   x 0 − y   n+γ−δ  ×   D α  A(y)   f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n ∞  k=1  2 k(β−1) +2 k(β−1/2) +2 k(β−γ)  1   2 k  Q    2 k  Q   f (y)   dy ≤ C  |α|=m   D α A   ˙ ∧ β |Q| β/n M δ,1 ( f )(x). (3.29) These yield the desired results. Acknowledgment The author would like to express his gratitude to the referee for his comments and sug- gestions. References [1] S. Chanillo, Anoteoncommutators, Indiana University Mathematics Journal 31 (1982), no. 1, 7–16. [2] W. Chen, A Besov estimate for multilinear singular integrals, Acta Mathematica Sinica. English Series 16 (2000), no. 4, 613–626. [3] J. Cohen, A sharp est i mate for a multilinear singular integral in R n , Indiana University Mathe- matics Journal 30 (1981), no. 5, 693–702. [4] J.CohenandJ.A.Gosselin,On mult ilinear singular integrals on R n , Studia Mathematica 72 (1982), no. 3, 199–223. [5] , A BMO estimate for multilinear singular integrals, Illinois Journal of Mathematics 30 (1986), no. 3, 445–464. [6] R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Annals of Mathematics. Second Series 103 (1976), no. 3, 611–635. [...]... Ding and S Z Lu, Weighted boundedness for a class of rough multilinear operators, Acta Mathematica Sinica English Series 17 (2001), no 3, 517–526 [8] S Janson, Mean oscillation and commutators of singular integral operators, Arkiv f¨ r Matematik o 16 (1978), no 2, 263–270 ´ [9] M Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana University... (1995), no 1, 1–17 [10] E M Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol 43, Princeton University Press, New Jersey, 1993 [11] A Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, vol 123, Academic Press, Florida, 1986 [12] A Torchinsky and S L Wang, A note on the Marcinkiewicz integral, Colloquium... vol 123, Academic Press, Florida, 1986 [12] A Torchinsky and S L Wang, A note on the Marcinkiewicz integral, Colloquium Mathematicum 60/61 (1990), no 1, 235–243 Lanzhe Liu: Department of Mathematics, Changsha University of Science and Technology, Changsha 410077, China E-mail address: lanzheliu@163.com . Triebel-Lizorkin spaces for the multilinear operators only under certain conditions on the size of the operators. As the applications, the continuity of the multilinear operators related to the Littlewood-Paley. is to study the continuity of some multi- linear operators related to certain convolution operators on the Triebel-Lizorkin spaces. In fact, we will obtain the continuity on the Triebel-Lizorkin. CONTINUITY OF MULTILINEAR OPERATORS ON TRIEBEL-LIZORKIN SPACES LANZHE LIU Received 4 February 2006; Revised 20 September 2006; Accepted 28 September 2006 The continuity of some multilinear operators

Ngày đăng: 22/06/2014, 22:20

Mục lục

    3. Main theorem and proof

Tài liệu cùng người dùng

Tài liệu liên quan