Báo cáo hóa học: " Research Article Integral Means Inequalities for Fractional Derivatives of a Unified Subclass of Prestarlike Functions with Negative Coefficients" ppt

9 277 0
Báo cáo hóa học: " Research Article Integral Means Inequalities for Fractional Derivatives of a Unified Subclass of Prestarlike Functions with Negative Coefficients" ppt

Đang tải... (xem toàn văn)

Thông tin tài liệu

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2007, Article ID 97135, 9 pages doi:10.1155/2007/97135 Research Article Integral Means Inequalities for Fractional Derivatives of a Unified Subclass of Prestarlike Functions with Negative Coefficients H. ¨ Ozlem G ¨ uney and Shigeyoshi Owa Received 24 May 2007; Revised 13 July 2007; Accepted 28 July 2007 Recommended by Narendra K. Govil Integral means inequalities are obtained for the fractional derivatives of order p + λ(0 ≤ p ≤ n,0≤ λ<1) of functions belonging to a unified subclass of prestarlike functions. Relevant connections with various known integral means inequalities are also pointed out. Copyright © 2007 H. ¨ O. G ¨ uney and S. Owa. T his is an open access article distributed un- der the Creative Commons Attribution License, which permits unrestricted use, dist ribu- tion, and reproduction in any medium, provided the original work is properly cited. 1. Introduction Let ᏿ denote the class of (normalized) functions of the form f (z) = z + ∞  n=2 a n z n , (1.1) which are analytic and univalent in the open unit disk U ={ z ∈ C : |z| < 1}. Also let ᐀ denote the subclass of ᏿ consisting of functions f of the form f (z) = z − ∞  n=2 a n z n  a n ≥ 0  . (1.2) The Hadamard product (or convolution) of two functions f given by (1.1)andg given by g(z) = z + ∞  n=2 b n z n (1.3) 2 Journal of Inequalities and Applications is defined by ( f ∗g)(z) = z + ∞  n=2 a n b n z n . (1.4) We denote the subclass ᏾(α,β)of᏿ consisting of α-prestarlike functions of order β by ᏾(α,β) =  f ∈ ᏿ :  f ∗s α  (z) ∈ ᏿ ∗ (β), 0 ≤ α<1, 0 ≤ β<1  , (1.5) where ᏿ ∗ (β) denotes the class of starlike functions of order β(0 ≤ β<1) and s α is the well-known extremal function for ᏿ ∗ (α)givenby s α (z) = z(1 − z) −2(1−α) (1.6) (cf. [1, 2]). Letting c n (α) =  n k =2 (k − 2α) (n − 1)! (n = 2,3, ), (1.7) s α can be written in the form s α (z) = z + ∞  n=2 c n (α)z n . (1.8) The class ᏾(α,β) was investigated by Sheil-Small et al. [3]. We also denote the subclass Ꮿ(α,β)of᏿, which was investigated by Owa and Uralegaddi [4], by Ꮿ(α,β) =  f ∈ ᏿ : zf  (z) ∈ ᏾(α,β)  . (1.9) In particular, the subclasses ᏾[α,β] = ᏾(α,β) ∩ ᐀, Ꮿ[α,β] = Ꮿ(α,β) ∩ ᐀ (1.10) were considered earlier by Srivastava and Aouf [5]. Let us define the unified class ᏼ(α, β,σ) of the classes ᏾[α,β]andᏯ[α,β]by ᏼ(α,β,σ) = (1 − σ)᏾[α,β]+σᏯ[α, β](0≤ σ ≤ 1), (1.11) so that ᏼ(α,β,0) = ᏾[α,β], ᏼ(α,β,1) = Ꮿ[α,β]. (1.12) The unified class ᏼ(α,β, σ) was studied by Raina and Srivastava [6]. H. ¨ O. G ¨ uney and S. Owa 3 We begin by recalling the following useful characterizations of the function class ᏼ(α,β,σ) due to Raina and Srivastava [6]. Lemma 1.1. Afunction f defined by (1.2)belongstotheclassᏼ(α,β,σ) if and only if ∞  n=2  (n − β)(1 − σ + σn) 1 − β  c n (α)a n ≤ 1, (1.13) for some α(0 ≤ α<1), β(0 ≤ β<1), σ(0 ≤ σ ≤ 1). We continue by proving the following lemma. Lemma 1.2. Let f 1 (z) = z, f k (z) = z − 1 − β (k − β)(1 − σ + σk)c k (α) z k (k = 2,3, ). (1.14) Then f ∈ ᏼ(α,β,σ) if and only if it can be expressed in the form f (z) = ∞  k=1 λ k f k (z), (1.15) where λ k ≥ 0 and  ∞ k=1 λ k = 1. Proof. Assume that f (z) = ∞  k=1 λ k f k (z). (1.16) Then f (z) = λ 1 f 1 (z)+ ∞  k=2 λ k f k (z) = λ 1 z + ∞  k=2 λ k  z − 1 − β (k − β)(1 − σ + σk)c k (α) z k  =  ∞  k=1 λ k  z − ∞  k=2 λ k 1 − β (k − β)(1 − σ + σk)c k (α) z k = z − ∞  k=2 λ k 1 − β (k − β)(1 − σ + σk)c k (α) z k . (1.17) Thus ∞  k=2 λ k  1 − β (k − β)(1 − σ + σk)c k (α)  (k − β)(1 − σ + σk)c k (α) 1 − β  = ∞  k=2 λ k = ∞  k=1 λ k − λ 1 = 1 − λ 1 ≤ 1. (1.18) Therefore, we have f ∈ ᏼ(α,β,σ).  4 Journal of Inequalities and Applications Conversely, suppose that f ∈ ᏼ(α,β,σ). Since |a k |≤ 1 − β (k − β)(1 − σ + σk)c k (α) (k = 2,3, ), (1.19) we can set λ k = (k − β)(1 − σ + σk)c k (α) 1 − β (k = 2,3, ), λ 1 = 1 − ∞  k=1 λ k . (1.20) Then f (z) = z − ∞  k=2 a k z k = z − ∞  k=2 λ k 1 − β (k − β)(1 − σ + σk)c k (α) z k =  1 − ∞  k=2 λ k  z + ∞  k=2 λ k f k (z) = λ 1 f 1 (z)+ ∞  k=2 λ k f k (z) = ∞  k=1 λ k f k (z). (1.21) This completes the assertion of Lemma 1.2. Lemma 1.2 g ives us the following. Corollar y 1.3. The extreme points of ᏼ(α,β,σ) are given by f 1 (z) = z, f k (z) = z − 1 − β (k − β)(1 − σ + σk)c k (α) z k . (1.22) We will make use of the following definitions of fractional derivatives by Owa [7](also by Srivastava and Owa [8]). Definit ion 1.4. The fractional derivative of order λ is defined, for a function f ,by D λ z f (z) = 1 Γ(1 − λ) d dz  z 0 f (ξ) (z − ξ) λ dξ (0 ≤ λ<1), (1.23) where the function f is analytic in a simply connected region of the complex z-plane containing the origin, and the multiplicity of (z − ξ) −λ is removed by requiring log(z − ξ) to be real when (z − ξ) > 0. H. ¨ O. G ¨ uney and S. Owa 5 Definit ion 1.5. Under the hypothesis of Definition 1.4, the fractional derivative of order (n + λ) is defined, for a function f ,by D n+λ z f (z) = d n dz n D λ z f (z), (1.24) where 0 ≤ λ<1andn = 0,1,2, It readily follows from (1.23)inDefinition 1.4 that D λ z z k = Γ(k +1) Γ(k − λ +1) z k−λ (0 ≤ λ<1). (1.25) We will also need the concept of subordination between analytic functions and a subor- dination theorem of Littlewood [9] in our investigation. Given two functions f and g, which are analytic in U, the function f is said to be subordinate to g in U if there exists a function w analytic in U with w(0) = 0,   w(z)   < 1(z ∈ U), (1.26) such that f (z) = g  w(z)  (z ∈ U). (1.27) We denote this subordination by f (z) ≺ g(z). (1.28) Lemma 1.6. If the functions f and g are analytic in U with g(z) ≺ f (z), (1.29) then, for μ>0 and z = re iθ (0 <r<1),  2π 0   g  re iθ    μ dθ ≤  2π 0   f  re iθ    μ dθ. (1.30) 2. The main integral means inequalities We discuss the integral means inequalities for functions f in ᏼ(α,β,σ). Our main theo- rem is contained in the following. Theorem 2.1. Let f ∈ ᏼ(α,β,σ) and suppose that ∞  n=2 (n − p) p+1 a n ≤ (1 − β)Γ(k +1)Γ(3 − λ− p) (k − β)(1 − σ + σk)c k (α)Γ(k +1− λ − p)Γ(2 − p) (k ≥ 2) (2.1) for 0 ≤ λ<1,where(n − p) p+1 denotes the Pochhammer symbol defi ned by (n − p) p+1 = (n − p)(n − p +1)···n. (2.2) 6 Journal of Inequalities and Applications Also let the function f k be defined by f k (z) = z − 1 − β (k − β)(1 − σ + σk)c k (α) z k . (2.3) If there exists an analytic function w defined by  w(z)  k−1 = (k − β)(1 − σ + σk)c k (α) 1 − β Γ(k +1 − λ − p) Γ(k +1) ∞  n=2 (n − p) p+1 Φ(n)a n z n−1 (2.4) with Φ(n) = Γ(n − p) Γ(n +1− λ− p) (0 ≤ λ<1, n = 2,3, ), (2.5) then, for μ>0 and z = re iθ (0 <r<1),  2π 0   D p+λ z f (z)   μ dθ ≤  2π 0   D p+λ z f k (z)   μ dθ (0 ≤ λ<1, μ>0). (2.6) Proof. By virtue of the fractional derivative formula (1.25)andDefinition 1.5,wefind from (1.1)that D p+λ z f (z) = z 1−p−λ Γ(2 − λ− p)  1 − ∞  n=2 Γ(2 − λ− p)Γ(n +1) Γ(n +1− λ− p) a n z n−1  = z 1−p−λ Γ(2 − λ− p)  1 − ∞  n=2 Γ(2 − λ− p)(n − p) p+1 Φ(n)a n z n−1  , (2.7) where Φ(n) = Γ(n − p) Γ(n +1− λ− p) (0 ≤ λ<1, n = 2,3, ). (2.8) Since Φ is a decreasing function of n,wehave 0 < Φ(n) ≤ Φ(2) = Γ(2 − p) Γ(3 − λ− p) (0 ≤ λ<1, n = 2,3, ). (2.9) Similarly, from (2.3), (1.25), and Definition 1 .5,weobtain D p+λ z f k (z) = z 1−p−λ Γ(2 − λ− p)  1 − 1 − β (k − β)(1 − σ + σk)c k (α) Γ(2 − λ − p)Γ(k +1) Γ(k +1− λ − p) z k−1  . (2.10) H. ¨ O. G ¨ uney and S. Owa 7 For μ>0andz = re iθ (0 <r<1), we must show that  2π 0      1 − ∞  n=2 Γ(2 − λ− p)(n − p) p+1 Φ(n)a n z n−1      μ dθ ≤  2π 0      1 − 1 − β (k − β)(1 − σ + σk)c k (α) Γ(2 − λ − p)Γ(k +1) Γ(k +1− λ − p) z k−1      μ dθ. (2.11) Thus, by applying Lemma 1.6,itwouldsuffice to show that 1 − ∞  n=2 Γ(2 − λ− p)(n − p) p+1 Φ(n)a n z n−1 ≺ 1 − 1 − β (k − β)(1 − σ + σk)c k (α) Γ(2 − λ − p)Γ(k +1) Γ(k +1− λ − p) z k−1 . (2.12) If the subordination (2.12) holds true, then we have an analytic function w with w(0) = 0 and |w(z)| < 1suchthat 1 − ∞  n=2 Γ(2 − λ− p)(n − p) p+1 Φ(n)a n z n−1 = 1 − 1 − β (k − β)(1 − σ + σk)c k (α) Γ(2 − λ − p)Γ(k +1) Γ(k +1− λ − p)  w(z)  k−1 . (2.13) By the condition of the theorem, we define the function w by  w(z)  k−1 = (k − β)(1 − σ + σk)c k (α) 1 − β Γ(k +1 − λ − p) Γ(k +1) ∞  n=2 (n − p) p+1 Φ(n)a n z n−1 (2.14) which readily yields w(0) = 0. For such a function w,wehave   w(z)   k−1 ≤ (k − β)(1 − σ + σk)c k (α) 1 − β Γ(k +1 − λ − p) Γ(k +1) ∞  n=2 (n − p) p+1 Φ(n)a n |z| n−1 ≤|z| (k − β)(1 − σ + σk)c k (α) 1 − β Γ(k +1 − λ − p) Γ(k +1) Φ(2) ∞  n=2 (n − p) p+1 a n =|z| (k−β)(1−σ +σk)c k (α) 1−β Γ(k+1 −λ− p) Γ(k+1) Γ(2 − p) Γ(3−λ− p) ∞  n=2 (n− p) p+1 a n =|z| < 1, (2.15) by means of the hypothesis of the theorem.  This means that the subordination (2.12) holds true; therefore the theorem is proved. As special case p = 0, Theorem 2.1 readily yields. 8 Journal of Inequalities and Applications Corollar y 2.2. Let f ∈ ᏼ(α,β,σ) and suppose that ∞  n=2 n   a n   ≤ (1 − β)Γ(k +1)Γ(3 − λ) (k − β)(1 − σ + σk)c k (α)Γ(k +1− λ) (k ≥ 2). (2.16) If there exists an analytic function w given by  w(z)  k−1 = (k − β)(1 − σ + σk)c k (α) 1 − β Γ(k +1 − λ) Γ(k +1) ∞  n=2 nΦ(n)a n z n−1 (2.17) with Φ(n) = Γ(n) Γ(n +1− λ) (0 ≤ λ<1, n = 2,3, ), (2.18) then, for μ>0 and z = re iθ (0 <r<1),  2π 0   D λ z f (z)   μ dθ ≤  2π 0   D λ z f k (z)   μ dθ (0 ≤ λ<1, μ>0). (2.19) Letting p = 1inTheorem 2.1, we have the following. Corollar y 2.3. Let f ∈ ᏼ(α,β,σ) and suppose that ∞  n=2 n(n − 1)   a n   ≤ (1 − β)Γ(k +1)Γ(2 − λ) (k − β)(1 − σ + σk)c k (α)Γ(k − λ) (k ≥ 2). (2.20) If there exists an analytic function w given by  w(z)  k−1 = (k − β)(1 − σ + σk)c k (α) 1 − β Γ(k − λ) Γ(k +1) ∞  n=2 (n − 1) 2 Φ(n)a n z n−1 (2.21) with Φ(n) = Γ(n − 1) Γ(n − λ) (0 ≤ λ<1, n = 2, 3, ), (2.22) then, for μ>0 and z = re iθ (0 <r<1),  2π 0   D 1+λ z f (z)   μ dθ ≤  2π 0   D 1+λ z f k (z)   μ dθ (0 ≤ λ<1, μ>0). (2.23) References [1] P. L. Duren, Univalent Functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983. [2] H.M.SrivastavaandS.Owa,Eds.,Current Topics in Analytic Function Theory, World Scientific, River Edge, NJ, USA, 1992. [3] T. Sheil-Small, H. Silverman, and E. Silvia, “Convolution multipliers and starlike functions,” Journal d’Analyse Math ´ ematique, vol. 41, pp. 181–192, 1982. H. ¨ O. G ¨ uney and S. Owa 9 [4] S. Owa and B. A. Uralegaddi, “A class of functions α-prestarlike of order β,” Bulletin of the Korean Mathematical Society, vol. 21, no. 2, pp. 77–85, 1984. [5] H. M. Srivastava and M. K. Aouf, “Some applications of fractional calculus operators to certain subclasses of prestarlike functions with negative coefficients,” Computers & Mathematics with Applications, vol. 30, no. 1, pp. 53–61, 1995. [6] R. K. Raina and H. M. Srivastava, “A unified presentation of certain subclasses of prestar- like functions with negative coefficients,” Computers & Mathematics with Applications, vol. 38, no. 11-12, pp. 71–78, 1999. [7] S. Owa, “On the distortion theorems. I,” Kyungpook Mathematical Journal,vol.18,no.1,pp. 53–59, 1978. [8] H.M.SrivastavaandS.Owa,Eds.,Univalent Functions, Fractional Calculus, and Their Applica- tions, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK; John Wiley & Sons, New York, NY, USA, 1989. [9] J. E. Littlewood, “On inequalities in the theory of functions,” Proceedings of the London Mathe- matical Society, vol. 23, no. 1, pp. 481–519, 1925. H. ¨ Ozlem G ¨ uney: Department of Mathematics, Faculty of Science and Letters, University of Dicle, 21280 Diyarbakır, Turkey Email address: ozlemg@dicle.edu.tr Shigeyoshi Owa: Department of Mathematics, Kinki University, Osaka 577-8502, Higashi-Osaka, Japan Email address: owa@math.kindai.ac.jp . Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2007, Article ID 97135, 9 pages doi:10.1155/2007/97135 Research Article Integral Means Inequalities for Fractional Derivatives. by Narendra K. Govil Integral means inequalities are obtained for the fractional derivatives of order p + λ(0 ≤ p ≤ n,0≤ λ<1) of functions belonging to a unified subclass of prestarlike functions. Relevant. and M. K. Aouf, “Some applications of fractional calculus operators to certain subclasses of prestarlike functions with negative coefficients,” Computers & Mathematics with Applications, vol.

Ngày đăng: 22/06/2014, 18:20

Từ khóa liên quan

Mục lục

  • 1. Introduction

  • 2. The main integral means inequalities

  • References

Tài liệu cùng người dùng

Tài liệu liên quan