Cutting Fluids‘ Everything flows and nothing_5 pptx

10 112 0
Cutting Fluids‘ Everything flows and nothing_5 pptx

Đang tải... (xem toàn văn)

Thông tin tài liệu

Figure 211. Some typical, but extreme skin disorders – attributed to exposure to cutting uids. [Courtesy of Castrol Industrial]. Cutting Fluids  Many  other  skin  conditions  can  occur  and  their  causes can  emanate from a number of MWF sources  –  going  beyond  the  current  scope  and  objectives  of  this chapter. Although through the application of bar - rier and conditioning creams, together with clean and  suitable protective clothing, coupled to good washing  facilities,  these  factors  will  inevitably  lessen  the  pos - sibility of allergic reactions and skin disorders. Tumours and Cancerous Effects However,  less  well  known  than  the  allergic  and  skin  condition  previously  mentioned,  are  the  other  more  serious debilitating health eects on the machine tool  personnel  exposed  to  MWF’s.  Industrial  experience  suggests that continuous and long exposure to certain  mineral oils can give rise to skin thickening, known as  keratosis, whereby ‘warty-elevations’ (i.e. see Fig. 211b)  can slowly develop over a period of some years. Hence,  these warts will either: remain as they are; disappear;  or in the worse case scenario, become malignant.  A  considerable  volume  of  research  in  both  the  chemical  and  biological  elds  has  been  undertaken,  in  particular,  into  the  eects  of  mineral  oils  in  cut - ting uids and their aect on worker’s health. Mineral  oils may contain  carcinogens  – chemical  compounds  which  are  active  in  causing  cancer,  with  currently,  a  number  of  these  compounds  having  been  identied.  ey occur in the main, as polycyclic aromatic hydro- carbons and, when present in modern rened mineral  oils exist in extremely small proportions – making their  ‘positive’  chemical  identication  exceedingly  dicult  to  dene.  Oil  renement  by  acid  treatment  has  now  been  replaced  by  more  modern  rening  techniques,  including solvent-rened treatment and hydrogenera - tion  –  greatly  reducing  the  undesirable  proportions  of  aromatic  compounds  (i.e.  these  latter  compounds  being  potential  carcinogens) 33 .  Moreover,  chemical  coolants  were  originally  based  on  diethanolamine  and  sodium  nitrate,  which  for  some  time  have  been  suspected  of  forming  ethanolnitrosamine  –  another  suspected  carcinogen.  In  order  to  remove  this  pos - sible carcinogen, in 1984, cutting uid manufacturers  removed the nitrates from their formulations. Finally,  33  ‘N-nitrosamines’ ,  and its chemical  compounds  are a signi- cant  danger  to  worker’s  health  and,  the  American  Environ- mental  Protection  Agency  (EPA),  stated  in  a  report  of their  ndings in 1974, that: ‘As a family of carcinogens, the nitrosa- mines have no equal.’ if  one  considers  permissible  exposure  levels  (PEL’s)  from nitrosamine sources. en, it has been stated that  smoking twenty (untipped) cigarettes per  day will de- liver  0.8 micrograms of various nitrosamines which al- most  equates to eating a kilogram of fatty bacon per day  (i.e.  6  microgrames),  thus,  when  undertaking  these   seriously  debilitating  smoking/eating  toxicity  habits  over a signicant period of time, they would consider - ably increase the risk of cancer. Cutting Fluid Mists Mists resulting from  machining  operations  and  their  subsequent collection resulting from the application of  cutting uids, are usually given a low priority by most  manufacturers when compiling a list of potential capi - tal items for the workshop. To press this point still fur - ther, many companies would much sooner purchase a  new  machine  tool,  than  install  a  special-purpose  air  cleaner.  In  the  automotive  industries  interest  in  the  level  of  air  quality  has  some  degree  of  importance,  while elsewhere in smaller production workshops it is  somewhat  of  a  hit-or-miss  aair.  Given  the  potential  worker  health  risks  involved  today,  with  high-speed  machining  (HSM)  coupled  to  increased  tooling  cut - ting  data  and  higher-pressure  coolant  supplies  (i.e.  see  Fig.  195 – top),  possibly  the  greatest  threat  posed  to a worker is from atomised mists (i.e. sub- µm size)  within  the  local  atmosphere.  Many  companies  that  incorporate mist collection ltering, will only remove  particles of >4  µm in size, leaving the critical sub-µm  particles still present in the atmosphere.  e earliest chemical interventions to reduce mist - ing  were  high-molecular-weight  polymer  additives,  that act to stabilise MWF’s and thus suppress mist for - mation.  With  conventional  petroleum-based  uids,  polyisobutylene  has  been  the  preferred  anti-mist  ad - ditive.  While,  for  aqueous-based  cutting uids,  poly - ethylene  oxide  (PEO)  has  been  utilised.  Due  to  the  susceptibility  of  PEO’s  to  shear  degradation,  repeti - tive additions of the PEO polymer are needed to main - tain  mist  reduction.  Today,  a  newer  class  of  shear- stable  polymers has  been developed  to overcome  the  shear degradation  as  indicated  by PEO’s. ese latest  polymer  products  have  been  derived  from  complex:  2-acrylamido-2methlypropane  sulphonic acid  mono - mers,  hence,  providing  longer-term  performance  in  continuously  recirculating  aqueous-based  MWF  sys - tems.  So, very high concentration cutting uid mists will  over  a  short  period  of  time  cause:  ‘smarting’  of  the  eyes; irritation of exposed skin; result in slight irrita -  Chapter  tion  of  the  mouth  and  throat;  by  inhalation,  will  ir- ritate the lungs; by ingestion, of the stomach – it may  promote  nausea;  and  aect  other  internal  organs.  If  exposed to  toxic  mists  over a  long period  of  time,  this could cause  lasting damage  to both external and  internal  bodily-parts,  with  at  the  extreme  condition,  promoting the growth of malignant tumours. In order  to restrict misting and minimise operator health risks,  then  special-purpose  ltering  systems  have  been  de - veloped, which will be briey reviewed below. e  conventional  mist-collection  technology,  such as:  lters;  rotating  drums;  or  cyclones;  will  col - lect  particles  of  >1 µm  in  diameter,  but  cannot  cope  with smaller sub-µm particles. Further, it has been re - ported  that  brous  lters  once  they  are  wet,  lose  ef - ciency over time – see Fig. 212. erefore, the opti - mum manner of removing sub-µm mists are by tting  one of the following:  High-eciency Particulate Air l- ters (HEPA);  Electrostatic Precipitators (ESP’s);  or  Fi- bre-bed systems. Probably the two best systems for re- moval of sub-µm mist particles are the HEPA and ESP  systems. Each one has its disadvantages, with HEPA l - ters being expensive and become clogged, thereby los - ing eciency. So, when disposable lter replacements  are  needed  this  hidden  replacements  cost,  will  result  in both costly maintenance and disposal. While, ESP’s  need  frequent  maintenance  and  cleaning,  thus  rep - resenting a  continuous  on-going  cost  burden. Mean - while, Fibre-bed systems oer high eciency in mist  collection,  but  with  ease  of  maintenance,  although  they are larger requiring more electrical power to op - erate them.  Vegetable Oil-Based MWF’s Driven  by  the  health  and  safety  concerns  of  both  workers and manufacturers alike,  vegetable oil-based  MWF’s have been developed, to substitute for the same  machining operations as either the mineral-, or petro - leum-based  uids,  currently  undertake.  It  has  been  reported  that  compared  with  mineral  oil-based  cut - ting uids, the alternative vegetable-based MWF’s, en - hance cutting performance by extending tool life while  improving  machined  surface  texture,  with  the  addi - tional  benet  of  being  an  environmentally-friendly  MWF.  In  particular,  Soybean oils have  shown  con- siderable  promise  as  a  practical  alternative  to  ‘tradi - tional’ MWF’s, where they have improved component  surface  texture  and  reduced  tool  chatter.  One  of  the  principle  reasons  for  these  surface  texture  and  ma - chining improvements, is that the vegetable oil-based  MWF’s have enhanced lubricity, coupled with a slight  ‘polar-charge’  –  which  acts  to  attract  the  vegetable  oil  molecules to  the  metallic  surface being  tenacious  enough  to  resist  any  subsequent  wipe-o.  e  oppo - site is true for a mineral-based oil, where there is no  molecular  charge,  so  oers  little  improvement  in  lu - bricity.  Mineral-based  MWF’s  are  just  straight  hydrocar - bon,  while  their  vegetable  oil  counterparts  contain  oxygen,  which  is  tenaciously-attracted  to  the  sterile  elevated temperature of the recently-machined work - piece’s  metallic  surface,  thus  it  bonds  more  strongly  –  acting  as  a result as  a  better  lubricant. Yet  another  performance  benet  of  utilising  vegetable-based  oils  over their mineral-based equivalents, is that they have  a  higher  ‘ash-point’ 34 ,  which  reduces  both  the  ten- dency for smoke formation and re-risk. Yet another  reason  for  selecting  a vegetable-based  MWF  over  its  mineral-based counterpart, is that it has a high natural  viscosity 35 .  Hence,  as  the  machining  temperature  increases, the viscosity of the vegetable oil drops more slowly than for that of a mineral oil. Conversely, as the  temperature  falls, the vegetable oil remains more uid  than its counterpart mineral oil. us, facilitating more  ecient and quicker drainage from both the swarf and  workpiece.  e  high  viscosity index 36   of  vegetable  oil  ensures that it provides more lubricity-stability, across  the operating temperature range being found during a  range of machining operations. High viscosity allows  vegetable  oils  to  be  used  as  a  slideway  lubricant  and  for gear lubrication in gearboxes, acting as a so-called:  ‘multi-functional uid’ (i.e. see Section 8.9).  Along with  the above stated  benets,  there is  also  a down-side to vegetable-based uid applications, the  limitations  are  that  they  lack  sucient  oxidative  sta - 34  ‘Flash-point’ of oils, is the instantaneous ignition of the oil at  a specic temperature, without  the aid  of a  ame. So, in  the  case of a Soybean oil it has a ash-point of 232°C, while a typi- cal mineral oil has a ash-point of just 113°C.  35  ‘Viscosity’ , can be dened* as: ‘e resistance of a uid to shear force.’  erefore,  the  shear  force  per  unit  area  is  a  constant  times the velocity gradient, with the constant being the coef- cient  of  viscosity.  SI  units  are:  Newton-seconds  per  square  metre  (Ns  m –2 ),  denoted  by  the  Greek  symbol:  ‘µ’.  [Source:  Carvill, 1999]   *While  another  denition  for  a  uid’s viscosity  is:  ‘e bulk property of a uid, semi-uid, or semi-solid substance that causes it to resist ow.’ [Kalpakjian, 1984] 36  ‘Viscosity index’ ,  can  be  dened  as:  ‘A measure of a uid’s change of viscosity with temperature: the higher the index, the smaller the relative change in viscosity.’ [Kalpakjian, 1984] Cutting Fluids  bility  for  many  machining  applications.  us,  a  low  oxidative stability means that the oil will oxidise quite  quickly  during  use,  becoming thick  as  it polymerises  to a plastic-like consistency. Once the oil has become  too thick, or even too thin for that matter, the cutting  tool’s edge(s) will quickly wear-out. Vegetable oils be - come oxidised and as a result, will chemically change,  along  with  their  viscosity  and  lubricating  abilities.  ere is some concern among users of vegetable-based  cutting uids, that this oil reacts with the environment  (i.e.  oxygen  and  metals),  thus breaking-down,  which  is not the case for petroleum-based products. Both of  these  uid  products  oxidise  with  heat,  but  vegetable  oils are more susceptible to oxidation. While another  Figure 212. At the lter some droplets and volatiles are re- moved from the atmosphere, but the remainder pass through and are re-entrained. Other particulates are ‘indenitely’ re- tained, but with time reduce lter eciency. Optimum lters . maximise droplet removal, while minimising evaporation and re-entrainment – at a reasonable pressure-drop. [Source: Raynor P. & Leith, D. – Univ. of North Carolina, 2003]  Chapter  drawback to utilising vegetable-based oils, are its lack  of  hydrolytic stability 37 .  Typically,  when  making  an  emulsion; obviously oil and water are present; so if ox - ygen and some form of alkaline component is at hand,  it may cause certain ester linkages within the vegetable  oil  to  break  down.  ese  broken-down  components  act in a dierent manner to that of the original vegeta - ble oil, thereby aecting its cutting uid performance.  Conversely, mineral-based cutting oils are resistant to  hydrolytic reactions. Vegetable oils can support micro - bial growth more readily than the equivalent mineral- based cutting uids. Although this vegetable oil’s bio - degradability is ideal for subsequent waste treatment,  conversely,  when  this  product  is  ‘festering’  in  a  ma - chine’s sump, it becomes both smelly and sour, via its  bactericide and fungicide reactions. Finally, for many  companies, probably the biggest limitation in changing  over to vegetable-based products in machining opera - tions is its purchase cost. For example, canola oil, can  cost up to 300% more than its equivalent petroleum- based product and to compound the nancial problem  still further, costly ingredients are necessary to control  oxidation and enhance its biological stability – consid - erably adding to the nished product’s cost. 8.12 Fluid Machining Strategies: Dry; Near-Dry; or Wet So  far,  this  chapter  has  been  principally  concerned  with all aspects of ood/wet coolant applications to the  overall machining process. Several other complemen - tary  cutting  strategies  can be adopted,  these  include:  dry;  near-dry; together with  wet machining;  thus,  in  the following sections a discussion of these important  issues and concerns will be briey mentioned. 37  ‘Hydrolytic stability’:  ester  molecules consist  jointly  of con- densed  fatty  acids  and  alcohols;  so  the  vegetable  oils  will   naturally  exist  as  esters  –  oen  termed  ‘triglycerides’ ,  these  being a condensation of fatty acid, plus glycerine. Under the  right conditions, the triglyceride can split and revert back to a  fatty acid and glycerine, which acts dierently from that of the  original ester.  In the  case  of mineral-based oils,  they  do  not contain these ester linkages and as such, will not break down,  nor ‘hydrolise’. .. Wet- and Dry-Machining – the Issues and Concerns In  the  past  twenty-ve  years  the  cost  of  cutting  u- ids  has  risen  from  just  3%  of  the  overall  cost  of  the  machining  process,  to  that  of  >15%  of  a  production  shop’s cost. Cutting uids and especially ones that are  oil-based products have become something of a liabil - ity of late, this is due in the main, to many countries  ‘Environmental Protection Agencies’ , strictly regulat - ing their ensuing disposal – at the end of their natural  life. In many countries ‘spent’ cutting uids have been  re-classied  as  either  ‘toxic-’ ,  or  ‘hazardous-waste’ ,  moreover, if they have been found to have machined  certain  alloyed  and  exotic  material  workpieces,  they  are  under  even  harsher  disposal  regulations.  Due  to  the increasing popularity today of high-speed machin - ing (HSM) – more will be said on this subject in the  following chapter – coupled to increased cutting data  and the application of coolants via high-pressure sys - tems,  these  factors  have  signicantly  contributed  to  the  creation  of  air-borne  mists  within  the  workshop  environment  (i.e.  see  Fig.  212).  Such  coolant  mists  now  have  even  stricter  permissible  exposure  levels  (PEL’s) imposed in the working environment, to regu - late  and  control  these  air-borne  particulates,  thereby  minimising  workers  health  risks.  us,  the  cost  of:  uid maintenance; record-keeping; with strict compli - ance to current and proposed regulations, have rapidly  increased  the  overall price  of  cutting  uids. In many  manufacturing  companies  involved  in  a  signicant  amount  of  machining  operations,  they  are  consider - ing the strategy of cutting dry, to overcome the cutting  uid-based  costs  and  disposal  concerns  during  and   aer their subsequent usage.  For many companies involved in signicant work - piece  machining  operations,  they  are  unsure  if  they  could cut all their components ‘dry’. Furthermore, they  are under the impression that to achieve higher cutting  data  and  ‘hard-part’  machining,  then  cutting  uids  are  essential in  achieving  these objectives. Moreover,  many  companies  also  believe  that  the  cost  of  chang - ing from a ‘wet-’ to ‘dry-machining’ operations would  be prohibitively high. Neither of these impressions are  true. So, by machining ‘dry’ it can be considered as a  standard  operational  procedure  for  most  metal-cut - ting operations, including: turning, drilling and mill - ing  operations  (i.e  see  Figs.  39,  49  and  168a,  respec - tively). Moreover, it is not only possible to ‘hard-part’:  turn (Fig.  15) and bore (Fig. 65b); or mill (Fig. 172);  etc.;  but  these  can now  be  classied  as  highly-prot - able ‘dry-machining’ activities.  Cutting Fluids  Probably  the  chief  obstacle  to  dry-machining  ac- ceptance,  is  that  conventional  wisdom  dictates  that  MWF’s are vital in attaining acceptable machined n - ishes and will considerably extend the tooling’s life. In  many  circumstances  these  are  valid  points,  but  with  some  of  the  advanced  cemented  carbide  grades  and  high-technology  coatings,  such  tooling  can  be  oper - ated  at  higher  cutting  data  than  was  previously  the  case and, cope with their elevated machining tempera - tures. In fact,  if  interrupted cutting  occurs, the  hotter  the  cutting zone becomes, the more unsuitable will be  the  application of a cutting uid – as the thermal shock 38 becomes greater with a ‘wet-machining’ strategy. Present  tool  coating technologies  are  vital to  dry- machining applications, as they both control the tem - perature  uctuations,  while  restricting  heat  transfer  from  the  cutting  vicinity  to  the  insert,  or  tool.  Mul - tiple  coatings  act  as  a  heat  barrier  because  they  of - fer  a lower  thermal  conductivity  to  that  of  the  tool’s  substrate  and  the  workpiece  material.  us,  coated  inserts/tooling absorb less heat and as a result, can tol - erate  higher  cutting temperatures,  allowing  more  ag - gressive cutting data, whilst not debilitating the tool’s  life. Coating thickness is also important, as the  thin - ner the overall coatings, the better they can withstand  temperature  uctuations,  that  might  otherwise  arise,  if thicker coatings were utilised. e main reason for  this improved thermal shock performance of thinner,  rather than thicker tool coatings, is that a thinner coat  is less likely to incur the same stresses, hence, they are  less susceptible to cracking as a result. So, by running  thin coatings in ‘dry-machining’ operations, normally  extends tool edge life by up to 40%, over thicker coat - ings 39 .  38  ‘ermal shock/fatigue’ ,  the  cyclical  nature  of  both  rapid  heating followed by immediate cooling – in for example face- milling  (i.e  see  Fig.  213 – top),  or  when  interrupted  turning  (e.g. when eccentric turning, or OD/ID machining with either  splines  and  keyways  present),  promotes  potential  tool  edge  fracturing – resulting from the cyclic thermal stresses and in- creased temperature gradients,  being  exacerbated by  the  ap- plication of a cutting uid. 39  ‘in coats-v-thick coats’ , the former coating oers longer life  than the latter coating process. Today, it is normal to utilise the  coating  process  of:  physical vapour deposition (PVD)  as  this  type of coating is thinner and will adhere/bond more strongly,  than  the  alternative  chemical vapour deposition  process.  For  example, a TiAlN PVD coated insert/tool can have a hardness  of 3,500 Hv, withstanding cutting temperatures up to 800°C. ‘Dry-machining’ – some Factors for Consideration •   Adopting a ‘dry machining’ strategy will only make  sense, if  all the cutting processes in the part’s manu- facture can be performed  without coolant, •   Only  by  utilising  specialised  cutting  tool  geome- tries, can ‘dry-machining’ be possible and eective, •   Tooling typically having special hard multi-layered,  or  diamond-like coatings,  etc., to  isolate heat and  create  minimal thermal conduction across the tool/ chip interface, •   Employing  cutting  tool  materials  producing sharp edge geometries – to reduce heat, •   For drilling operations, utilise ‘so-glide’ coatings –  for  lubrication, with the necessary and appropriate  ecient chip transportation geometries, •   Speedy and ecient removal of  both chips and as- sociated  steam – by suction – are important factors  in ‘dry-machining’ , •   Utilise  new machining  concepts,  plus  the  latest  fully-enclosed machine tools – whenever possible, •   Employ faster, rather than slower cutting data, to al- low the majority of heat to be conned to the evacu- ated chips. .. Near-Dry Machining e strategy of ‘near-dry’ machining is not a new con- cept, it has been in existence for more than 50 years.  However,  this  machining  and  lubricating  approach  is  still  not  a  universal  practice,  which  is  surprising  when one considers the real benets that accrue from  the practice over  its ‘wet-machining’  counterpart.  As  its name implies, in ‘near-dry’ machining little lubri - cant is used – normally vegetable-based oils, meaning  that  both cutting  uid treatment  and its disposal are  eliminated. Further, instigating a ‘near-dry’ machining  strategy means that there are fewer worker health risks  from resultant mists, which might otherwise create: re - NB  From  a  metallurgical/materials  science  viewpoint,  the:  TiAlN – PVD tool coating can attribute its superior mechani- cal/physical  properties  to  an  amorphous  aluminium-oxide  lm that forms at the tool/chip interface, as some of the alu- minium of the coating surface oxidises at these elevated ma- chining temperatures. While, even more exotic multiple-type  diamond-like coatings can be applied and their like, which of- fer even greater cutting performance – in certain machining  circumstances, when applied to the tool’s cutting edge(s).  Chapter  spiratory problems: skin irritations; etc. e ‘near-dry’  cutting approach can be exploited across a wide range  of either ferrous, or non-ferrous workpiece metals.  Most machine tools are equipped with the capabi- lity of supplying ood coolant to the cutting process,  together with ‘through-coolant’ tooling systems, mean - ing that the cost to recongure for that of a ‘near-dry’  technology  is  not  prohibitive.  Assuming  the  worse- case  scenario  of  requiring  a  through-coolant  tool - ing  system,  then  probably  just  over  $5,000  at  today’s  prices  should  prove  sucient  capital  to  complete  the  task.  Some  re-tooling  to  complement  the  ‘near-dry’  machining  production  techniques  may  be  necessary,  allowing the precise application of lubricant to the cut - ting edge(s). Further, the user must consider a method  for ecient chip removal from the cutting area. Usu - ally,  with  external  ‘near-dry’  cutting  operations,  the  lubricant  is  transported  within  the  media  of  a  com - pressed air application, via the correct-sized aperture  nozzle – pointed toward the cutting zone. Control of  the volume of lubricant delivery to the tool and work - piece area is critical, with the common misconception  being  that  more  lubricant  is  better!  e  optimum  ar- rangement for ‘near-dry’ lubricant application, is when  the  minimum of over-spray and resultant misting does  not occur.  With  external  ‘near-dry’  operations,  dispensing  systems usually consists of reservoir metering pumps  and valves, being mounted on the machine tool’s exte - rior – at some convenient location. While the nozzles  are  strategically-mounted  so  that  they  can  easily  be  directly aimed at the tool’s cutting edge(s). Normally,  the  nozzles  are  a  manufactured  from  either  copper,  or  plastic  and  ‘snap-together’  –  being  much  smaller  in  size  than  their  ‘wet-machining’  counterparts.  For  internal  machining  operations,  having  tooling  with  ‘through-the-nose’  delivery,  the  lubricant  is  mixed  with  compressed  air  prior  to  delivery  to  the  cutting  zone.  e  admixing  of  compressed  air  and  lubricant  keeps the lubricant in suspension, with these oil par - ticles being  broken-down  into  minute  particles  prior  to  being  fed  into  the  compressed  air  jet  stream  – on  their way to the tooling. For  ‘conventional’  ood  coolant  delivery  the  sys - tems, the coolant channels are lled with cutting uid,  which  inevitably  nds  its  way  to  the  cutting  zone.  If  however,  in  a  ‘near-dry’  machining  conguration,  a  heavy  mist of lubricating oil oats through  the com - pressed  air,  attempting  to  negotiate  all  of  the  twists  and turns on its way to the cutting zone, this may pres - ent  a  potential  lubrication  clogging/starvation  prob - lem. Hence, for a successful ‘near-dry’ delivery system,  the  lubricant  channels  need  to  be  smooth  and  even,  with direct ows from the coolant pump to the cutting  zone.  A  basic  misapprehension  by  some  machine  tool  designers and manufacturers, is that copious volumes  of ood coolant are necessary to remove large quanti - ties  of  swarf.  In  fact,  just  the  opposite  can  occur,  as  wet chips will not only pack tightly together but have  a  surface  tension property  to  them,  tending to  make  them  adhere  to  machine  tool  surfaces  (i.e.  see  Foot - note 29,  ‘Lang’s chip-packing ratio’ in Chapter 2). is  is not generally the case for ‘near-dry’ lubrication, as  the chips here, have a thin layer of non-oxidising lu - bricant  surrounding  them  and  with  their  evacuation  velocity  –  aer  being  machined,  coupled  to  gravita - tional  eects,  means that they  will  fall to the bottom  of the swarf tray, or into the chip conveyor. It is good  working practice to use the external air-only supply’s  blow-o nozzles to clear away chips form the cutting  area 40 , however, it is not recommended to use the oil/ mist to achieve  chip clearance, as it will simply  blow  the  lubricant  straight  past  the  cutting  edge(s),  while  probably  creating  an  unwanted  oil-misting  problem.  It is possible to incorporate both ‘wet-’ and ‘near-dry’  lubrication  systems  onto  the  same  machine  tool.  It  has been reported that for external/internal work the  change-over  from one system  say, from  ‘wet-’ , to the  other – ‘near-dry’ , takes about 3 minutes to complete.  For  ‘near-dry’  machining  to  be  successful,  it  de - pends upon various factors, including: workpiece ma - terial to be machined; tool geometry and its coating(s);  speeds  and  feeds  selected;  plus  other  important  fac - tors. If applied correctly, ‘near-dry’ machining has sig - nicant direct and indirect benets to the machining  process as a whole.  Economics of: ‘Dry-’; ‘Near-Dry’; and ‘ Wet-Machining’. For  any  tool  and  workpiece  lubrication  strategy  to  operate  eectively,  a range  of  cost  factors  need  to be  considered,  regardless  of  the  method  of  machining  40  ‘Chilled compressed air’ , has been successfully utilised in the  past  for  not  only  removing  chips  from  the  cutting  vicinity,  but on certain materials, the continuous application of chilled  compressed  air  acts  simply  as  a  form  of ‘basic  lubricant’  for  the cutting process in hand.  Cutting Fluids  undertaken. In Fig. 213, a table has been constructed  to  show  the  relative  merits  of  the  three  machining  strategies  previously  discussed,  namely:  ‘dry-’;  ‘near- dry’; or ‘wet-machining’. e cost component for each  of these lubrication  strategies has been  broken down  into its relevant parts, with some of them not being ap - plicable to every lubrication application. If one ignores  the  individual  cumulative  factor  in  the  overall  cost  and simply looks at the ‘bottom-line’ , namely, the total  relative costs for each process, then a clear message is  being  given here! Explicitly,  that ‘wet-machining’-  in  certain  cases,  when  compared  to  ‘dry-machining’  is  Figure 213. Indicates the comparative costs for utilising either: ‘dry-’, ‘near-dry-’ or ‘wet-machining’ strategies.  Chapter  >330% more expensive overall, this being a good rea- son  to  look  carefully  at  employing  ‘dry-machining’  techniques – when applicable! In  Appendix  14,  a  MWF  ‘trouble-shooting  guide’  has been included, to help establish the relative causes  and  remedies  for  certain  uid-related  problems  –  as  they arise. References Journals and Conference Papers Antoun, G.S. e Pressure’s On to Improve Drilling [High- Pressure  and  Volume  Coolant  Supply].  Cutting  Tool  Eng’g., 59–68, Feb., 1999. Batzer, S. and Sutherland, J.  e Dry Cure for Coolant Ills.  Cutting Tool Eng’g., 34–44, June, 1998. Benes, J.  Life Support – for Cutting Fluids, American  Ma- chinist, 42–46, Feb., 2007. Benes, J.  Engineering Metalworking Fluids. American  Ma- chinist, 48–51, March, 2007. Boyles,  C.M.  Managed Fluid Care.  Cutting  Tool  Eng’g.,  40–45, Jan., 2002. Brutto, P.  Water Hazard [Leaching Cobalt Binder from WC  Tooling]. Cutting Tool Eng’g., 50–56, Dec., 1996. Da Silva, M.B., Machado, A.R. Wallbank, J.  On the Mecha- nism of Lubrication in Single Point Cutting.  Int.  Conf.  on:  Behaviour  of  Materials  in  Machining,  Straord- upon-Avon (England), Pub. by: IOM Communications  Ltd, 79–89, Nov. 1998. Davidian, S.  Setting Standards [Metalworking Fluid Stand- ards]. Cutting Tool Eng’g., 52–55, Sept., 2001. DeChire,  L.  Testing the Overall Performance of Cutting Fluids. Lubric. Eng’g., Vol. 34 (5), 244–251, 1978. DeChire,  L.  Mechanical Testing and Selection of Cutting Fluids. Lubric. Eng’g., Vol. 36 (1), 33–39, 1980. Deodhar, J.  Soluble Cutting Fluids: Chemistry, Management and Control.  Int.  Conf.  on  Industrial  Tooling  South- ampton, UK, Shirley Press Ltd., 151–158, Sept. 1995. Dunlap, C.  Should you try Dry? [Dry Machining]. Cutting  Tool Eng’g., 22–33, Feb., 1997. Eade, R.  Are Metalworking Fluids a reat to Health? Cut- ting Tool Eng’g., 80–86, Aug., 1998. El  Baradie,  M.A.  Cutting Fluids: Characterisation Part I.  Int. Conf. On Adv. In Matls and Process. Technol., Vol.  III, Dublin City Univ. Press, 1999–2010, Aug., 1993. El  Baradie, M.A.  Cutting Fluids: Recycling and Clean Ma- chining Part II. Int. Conf. On Adv. In Matls and Process.  Technol., Vol. III, Dublin City Univ. Press, 2011–2019,  Aug., 1993. Excell,  M.  Well Oiled Machines [Machine  Tool  Lubrica- tion]. Metalworking Production, 53–56, Dec., 1995. Folz,  G.  Treat MWFs [Metal Working  Fluids]  Right.  Cut- ting Tool Eng’g., 36–42, Oct., 2003. Graham, D.  Dry Out [Dry Machining]. Cutting Tool Eng’g.,  56–65, Mar., 2000. Gugger,  M.  Putting Fluids to the Test [Testing  Methods].  Cutting Tool Eng’g., 54–62, Aug., 1999. Howard,  R.  Types of Cutting Fluids used on Turning/Ma- chining Centres. Int. Conf. on Industrial Tooling (South- ampton, UK), Shirley Press, 140–150, Sept. 1995. King,  N.  Ah, the Smell of It [Microbiological  Colnat  Ef- fects]. Manufact. Engr., 7–9, Dec., 1991/Jan. 1992. Krahenbuhl,  U.  Lightening [Coolant  Lubricity].  Cutting  Tool Eng’g., 28–34, Sept., 2002. Leep, H.R.  Investigation of Synthetic Cutting Fluids in Drill- ing, Turning and Milling Processes.  Lubric.  Eng’g.,  Vol.  37 (12), 715–721, 1981. Manfreda,  J.  and  Elenteny,  D.  Cool Savings,  Cutting  Tool  Eng’g., 42–51, Feb., 2006. Phillips, D.  Under Pressure [High-Pressure Coolant Deliv- ery]. Cutting Tool Eng’g., 48–53, Jan., 2000. Phillips,  D.  Dry Run [Dry  Drilling].  Cutting  Tool  Eng’g.,  34–40, Feb., 2000. MCCabe, J.  Dry Holes – Dry Drilling Study. Cutting  Tool  Eng’g., 40–50, Feb., 2002. Protch, O.  Fluid Cutting. Cutting Tool Eng’g., 40–43, Dec.,  2001. Rahman,  M., Senthil  Kumar,  A.  and Salam,  M.U.  Experi- mental Evaluation on the Eect of Minimal Quantities of Lubricant in Milling. Int. J. of Mach. Tools and  Manu- fact., Vol. 42, 539–547, 2002. Shanley,  A.  Mist Collection: e Pressure is On.  Cutting  Tool Eng’g., 46–51, June, 2003. Sluhan, W.  Don’t Recycle – Keep your Coolant. Cutting Tool  Eng’g., 53–55, Oct., 1993. Sluhan, W.  Selecting Coolants: Why and How. Cutting Tool  Eng’g., 56–65, Oct., 1995. Sluhan,  W.  Does Your Machine Like Its Coolant? [Water- miscible Cutting Fluid Concerns]. Cutting Tool Eng’g.,  62–69, April, 1996. Sluhan,  W.  Humans and Cutting Fluids [Health  Issues].  Cutting Tool Eng’g., 88–92, June, 1996. Sluhan,  W.  Pure Water – Isn’t Hard to Find [Hard  Water  Problems]. Cutting Tool Eng’g., 28–32, Dec., 1996. Sluhan, W.  Bubble Trouble [Foaming Eects]. Cutting Tool  Eng’g., 24–28, April, 1997. Sluhan,  W.  Itching for a Solution [Causes  of  Dermatitis].  Cutting Tool Eng’g., 36–43, Dec., 1997. Sluhan, W.  e Good, the Bad and the Smelly [Bacterial Ef- fects]. Cutting Tool Eng’g., 24–32, Mar., 1998. Smith, A. Lagerberg, S. Dahlam, P. and Kaminski, J.  High- pressure [Coolant] Jet-assisted Turning,  Int.  Conf.  on  Industrial  Tooling  Southampton,  UK,  Molyneux  Press  Ltd., 62–71, Sept. 1999. Cutting Fluids  Smith, G.T. Managing and Controlling Cutting Fluids in a Flexible Manufacturing Environment.  Proc.  of  Manag- ing Integrated Manufacturing, Keele Univ. Press, Vol.1,  491–503, 1993. Smith,  G.T.  Wet and Dry Machining – Understanding the Key Issues.  Metalworking  Production,  22–24,  Oct.,  2000. Smith, P.L.  Coolants and Cancer: Fact or Fiction? American  Machinist, 46–50, Dec., 1996. readgill, J.  Animal, Vegetable, or Mineral [Sump-cleaning  Strategies]. Cutting Tool Eng’g., 30–35, Sept., 1993. Walz,  T.  Fine Ideas [Ultra-ltration].  Cutting  Tool  Eng’g.,  48–52, May, 2002. Woods,  S.  Going Green  [Vegetable  Oils],  Cutting  Tool  Eng’g., 48–51, Feb., 2005. Yang, C.C.  e Eects of Water Hardness on the Lubricity of a Semi-synthetic Cutting Fluid. DeChire, L. Testing the Overall Performance of Cutting Fluids.  Lubric.  Eng’g.,  Vol. 35 (3), 133–136, 1979. Woods,  S.  Going Green [Alternative:  Vegetable-based  MWF’s]. Cutting Tool Eng’g., 48–51, Feb., 2005. Woods,  S.  Nearly Dry [Nearly-dry  Machining].  Cutting  Tool Eng’g., 58–64, Mar., 2006. Books, Booklets and Guides Byers, J.P. Metalworking Fluids. Marcel Dekkar (NY), 1994. Carvill,  J.  Mechanical Engineer’s Data Handbook.  Butter- worth-Heinemann Pub., 1997. Hartley, D.  Cutting Fluids – eir Care and Control. Reprint  from: Maintenance Eng’g., May, 1979. Mang,  T.  Wassemischbare Kühlschmierstoe für die Zer- spanung [Water-miscible  Metalworking  Fluids].  Vol.  61, Kontakt and Studium, Tribotechnik. Expert Verlag,  Grafenau, 1980. Kronenberg,  M.  Machining Science and Application.  Per- gamon Press (NY/London), 1966. Metalworking Fluids. Pub. by: Verlag/Cincinnati Milacron,  1991. Metal Working Fluids Guide.  Kuwait  Petroleum  Inter- national Lubricants Pub. Moubray,  J.  Reliability-centred Maintenance,  Butterworth- Heinemann , 1996. Nachtman, E.S. and Kalpakjian, S.  Lubricants and Lubrica- tion in Metalworking Operations. Marcel Dekkar (NY),  1985. Robertson,  W.S.  Lubrication in Practice.  Esso  Petrol.  Co.  Ltd.,/Macmillan Educ. Ltd., 1987. Schey, J.A.  Tribology in Metalworking – Friction, Wear and Lubrication. ASM Pub. (Ohio, USA), 1983. Sluhan, C.  Cutting and Grinding Fluids: Selection and Ap- plication. Soc. Of Manufact. Engrs., (Dearborn, Mich.,  USA), 1992. Smith,  G.T.  CNC Machining Technology: Vol. 2: Cutting, Fluids and Workholding Technologies.  Springer-Verlag,  1993. Smith, G.T.  Condition Monitoring of Machine Tools (Chap- ter  9). In:  Handbook  of Condition  Monitoring, 1 st  Ed.  (Edited  by:  Rao,  B.K.N.),  Elsevier  Advanced  Technol - ogy, 1996. Talking About – Cutting Fluids. Castrol  (U.K.)  Ltd,  Pub.  No.: IND 71b/9/91, Sept., 1991. Talking About – Health and Safety (3 rd  Ed.).  Castrol (UK)  Ltd., 1990. Yust, M.S. and Becket, G.J.P.  Microbiology eory and Prac- tice in Metalworking Fluids. Reprint from:  Ind. Lubric.  & Trib., Nov./Dec. 1980.  Chapter  . Coolant. Cutting Tool  Eng’g., 53 55 , Oct., 1993. Sluhan, W.  Selecting Coolants: Why and How. Cutting Tool  Eng’g., 56 – 65,  Oct., 19 95. Sluhan,  W.  Does Your Machine Like Its Coolant? [Water- miscible Cutting Fluid Concerns]. Cutting Tool Eng’g.,  62–69, April, 1996. Sluhan, . [Metalworking Fluid Stand- ards]. Cutting Tool Eng’g., 52 55 , Sept., 2001. DeChire,  L.  Testing the Overall Performance of Cutting Fluids. Lubric. Eng’g., Vol. 34  (5) , 244– 251 , 1978. DeChire, . Supply].  Cutting Tool  Eng’g., 59 –68, Feb., 1999. Batzer, S. and Sutherland, J.  e Dry Cure for Coolant Ills.  Cutting Tool Eng’g., 34–44, June, 1998. Benes, J.  Life Support – for Cutting Fluids, American 

Ngày đăng: 21/06/2014, 22:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan