Cutting Fluids‘ Everything flows and nothing_3 pot

10 178 0
Cutting Fluids‘ Everything flows and nothing_3 pot

Đang tải... (xem toàn văn)

Thông tin tài liệu

Figure 202. A cutting uid emulsion’s diametral size (0.2 to 1.5 µm) in comparison with micro-organisms and ‘tramp oil’, together with the ‘pH scale’. [Courtesy of Kuwait Petroleum International Lubricants] . Cutting Fluids  Figure 203. Bacterial contamination: aqueous cutting uid.  Chapter  Figure 204. Computer-Aided Design (CAD), utilised to select a corrosion inhibitor for an aqueous-based cutting uid. [Courtesy of Cimcool] . Cutting Fluids  gies 14 .  As  an  example  of  this  phenomenon,  anionic  emulsiers normally have corrosion inhibiting charac - teristics, but these properties are usually so slight that  any  side-eects  are  usually  disregarded.  However,  by  using CAD, it is possible to nd emulsiers – normally  several  are  needed,  whose  side-eects  add  up  syner - getically. When the correct emulsiers are selected and in the  right proportions, not only is the desired emulsifying  action obtained, but at least some of the required cor - rosion protection also occurs. In Fig. 204, an example  of  the  ‘construction’  of  a  corrosion  inhibitor  system  using a variety of inhibitors – either singly, or in com - bination – can be comprehended. Here, the ‘zero-line’  on the vertical axis of the graph represents: ‘no eect’ ,  while values greater, or less than zero represent a: posi - tive; or negative eects; respectively.  Such CAD for chemical compounds makes it pos - sible  to  develop  ‘atomised’  cutting  uids  far  faster  than by previous techniques and oers the prospect of  discovering  entirely  new  cutting  uid  combinations.  Computer  analysis,  oers  a  way  to  develop,  analyse  and test new cutting uids, enabling very rapid modi - cations to be incorporated in order to meet new tech - nical  and  commercial  requirements.  Further,  these  CAD-based  techniques guarantee a chemically-stable  product  with  the  optimum  properties,  reducing  the  risk of selecting the  wrong type of cutting uid  both  by the manufacturer and user. CAD product develop - ment still necessitates practical product testing, during  its  development  phase  utilising  standardised  proce - dures of: ‘calibration and laboratory test methods’ – to  model the computerised-uid data in a real-time cut - ting environment.  .. Cutting Fluid – Quality Control For practical reasons industrial cutting uid manufac- turers  have  to  use  mass  produced  raw  materials  and  chemicals, which may be less pure than those used in  their  formulations  in  the  laboratory  (Fig.  205).  Not  only are there variations in quality, owing to variance  in the production process, but dierences can also oc - 14  ‘Synergy’ ,  refers  to  the  outcome  when  substances  are  com- bined and produce ‘side-eects’ , which add to, or even amplify  each other, giving rise to a much stronger resultant eect.  cur depending on the raw material source and the sea- sons  of  the  year.  In  order  to  ensure  constant  quality  of  the  nished  product  despite  these  variations  and  the  factors  which  determine  the  quality  of  the  raw   materials, they must be checked prior to entering the  cutting  uid  production  processing  stage.  e  labo - ratory-based  technique  of  computer-aided  statistical  process control that ensures: ‘preventative quality con - trol’ ,  will  enable  the  researcher  to  set  the  upper  and  lower quality levels for a particular raw material – un - der test. us, on the basis of these  user-dened sta - tistically-acceptable levels, the correlation between the  analysis  and  the  practical  results  can  be  determined.  Raw  materials  analysis  using  computer-aided  design  in conjunction with sophisticated analysis equipment,  plays a vital role in any new cutting uid development  process.  An  important  criterion  for  the  quality  of  the   - nal  cutting  uid  formulation  is  its  stability.  By  com - parison,  synthetic cutting  uids produce fewer prob - lems than semi-synthetic and emulsion cutting uids,  in  their  development.  In  the  case  of  the  semi-syn - thetic and emulsion cutting uids, not only must cool - ing  water  and  lubricating  oil  be  brought  together  –  two naturally incompatible substances, they must also  ‘persuaded’  to  remain  mixed  together  under  widely  varying and extreme cutting and environmental con - ditions.  When  dierent  degrees  of  water  hardness,  varying  mix  ratios  and  a  diverse  range  of  impurities  occur, they will strongly inuence the overall water-oil  system. e conventional way of stabilising such a sys - tem is to add plenty of emulsiers. is action can lead  to  excessive  foaming,  especially  if  the  water  is  so,  which  in  itself  necessitates  adding  anti-foam  agents.  Anti–foam agents are an expensive alternative – par - ticularly  in  a  large  central-based  ‘Niagara’  reservoir- type  system  feeding  several  machine  tools  in  say,  an  FMC/S (Fig. 203a), which here, by ‘anti-foaming dop - ing’ in any event, will only work for a limited period  of time.  More  important  for  cutting  uid  stability,  is  the  size  and  distribution  of  the  oil  droplets  in  the  water  phase  (i.e.  see  Fig  206-inset  photomicrograph).  It  is  the  even  distribution  of  the many  oil  droplets  which  ensures that the oil-water system is stable. e growth  of micro-organisms (Fig. 203b) aects the droplet size  and as a result, as these droplets spherically-increase in  size, the number and distribution of droplets decreases.  us,  an  oil-water  system  with  many  evenly-spaced  and  small  droplets,  will  be  more  stable  than  systems   Chapter  Figure 205. Laboratory-based testing procedures on cutting uid coolant products. Cutting Fluids  where  there  are  bigger,  but  fewer  droplets  present.  Both the size and distribution of these oil droplets has  an important  inuence on the emulsion’s consequent  foaming behaviour, which in turn, is strongly aected  by the water hardness and any turbulence produced by  the machine tool, or from a centralised coolant supply  system (Fig. 203a).  Product Testing ere are a number of possible tests for checking the  quality  of  a  cutting  uid  and  those  most  commonly  utilised are  ‘stability tests’. Such tests measure not only  the  physical stability,  but  also  tests  for:  bacteriologi- cal stability – this latter  term is sometimes  known as  Figure 206. The method used to check a soluble cutting uid’s dilution, utilising a Refractometer. [Courtesy of Rocol Ltd.].  Chapter  a  biostability test;  biostatic properties;  or  resistance to bacteria growth 15 .  Foaming behaviour:  a  slight  ten- dency to foam is important for some types of machin - ing  operations,  particularly  when  deep-hole  drilling  operations  are  undertaken  and  more  specically,  in  grinding  operations.  ere  are  certain  cleaning  sys - tems available, such as  ‘full-jacket cyclones’ and ‘hydro- cyclones’ ,  which  promote  foam formation.  However,  there  are  no  standard  techniques  for  the  measure- ment  of  foam  formation  and  collapse,  although  the  laboratory  circulating pump method, is  a  reasonable  approximation of practical conditions. In this method,  the cutting uid is forced through a spray-head so that  the resultant spray falls onto the surface of the liquid  and the time taken for foam to form and then collapse,  is  a  measured  –  giving  an  indication  of  foaming  be - haviour.  Adhesion tests are oen undertaken, with low  adhesion representing a  tendency for the cutting uid  product  to  build-up layers of  deposit.  is  adhesion  test is  usually  used for synthetic  products  and  again,  there is  no recognised standard test method; although  one  technique  used  to  soak  a  pile  of  washers  in  the  cutting uid for a certain time, then drying them out  and  subsequently  testing  for  adhesion,  is  sometimes  employed.  Compatibility tests for  cutting  uids,  with  particular  reference  to  paints  and  elastomers  by  visual  inspection  of  painted  sheet  metal  is  oen  car - ried out 16 . Acid/alkaline tests are oen undertaken on  the cutting uid, as this aects both the machine tool  and health of the setter/operator 17 . Once a cutting uid manufacturer has produced a  new formulated product, which has been subject to a  stringent  laboratory  testing  programme,  followed  by  exhaustive  practical  trials  and  consequent  analyses,  it is then made available, initially to their ‘prime cus - tomers’ – for an ‘alpha-trial’ testing programme  aer  which, the cutting uid is oered on the ‘open-market’  15  ‘Bacteriological test methods’ , typical  of this  type  of testing  regime are the German Standards, denoted by DIN51367 and  DIN513368, but similar test Standards are listed in most of the  world’s technological countries. 16  ‘Compatibility tests’ ,  specially-prepared  painted  sheet  metal is fully- immersed in the cutting uid for a certain time, then  visually inspected  for paint de-lamination, etc., according  to  the German Standard: DIN53521. 17  ‘Acid/alkaline tests’ , are important cutting uid tests and they  are normally measured under  laboratory  conditions with an  electrochemical pH meter, in accordance to say, the German  Standard DIN51369. for customers world-wide. erefore, it is vital that the  correct cutting uid is used in the machine tools, as it  will have serious consequences to the: machine tool’s  subsequent  maintenance  programme;  likely  produc - tion output; machined workpiece quality and reliabil - ity; together with the various health issues relating to  that  of  the  setter/operator.  e  following  section  has  been included to help with the important decisions re - lating to the choice of cutting uid selection.  8.7 Selecting the Correct Cutting Fluid When choosing a cutting uid many factors have to be  considered, with the relative importance varying with  each individual circumstance. For the latter reason, it  is  not possible  to oer  general rules for the selection  of  a  cutting  uid.  Inevitably,  a  compromise  is  neces - sary, although a comprehension of the factors involved  makes  it  possible  to  achieve  the  best  choice,  under  given circumstances. So, when choosing a cutting uid  it should always be borne in mind that the machining  process  plays  an  important  role  in:  productivity  and  eciency;  operator  health;  safety;  plus  the  quality  of  work created.  .. Factors Affecting Choice Probably  the  main  factors  that  must  be  considered  when  selecting  a  specic cutting  uid are not always  apparently  obvious,  but  some  questions  should  be  raised, which might include: • Business philosophy –  what  are  the  relative  con- cerns  and  weightings  given  to  goals  such  as:  e - ciency; quality-conciousness; market and economic  position; of the company? • Production programme – what is the scale of pro- duction, is it a: single item (i.e. one-o); a batch; or  mass production? Moreover, what machining pro - cesses are involved in the part’s production? • Hardware – what production plant and equipment  is there available for the machining of the compo - nents? Are the machine tools supplied with cutting  uid  individually,  or  delivered  from  a  centralised  system? Are particular cutting uids recommended  by the manufacturer of these machine tools? Cutting Fluids  • Protection of people and the environment –  to  what  extent  are  the  personnel  exposed  to  cutting  uids: before; during; and aer use? Are there local  constraints on uid disposal?  e  above criteria concerning  cutting uid  selection,  can be sub-divided into two distinct groupings – com - mercial and production, as follows. Commercial Criteria e  commercial criteria  determine the  ‘weight’  to  be  given to various production decisions. For instance, if  the time factor is more important than the cost factor,  then higher cutting speeds will be used and so the de - mand placed on the cutting uid will be greater. If, dif - ferent materials and types of machining processes are  involved in the production process, then a ‘universal’  cutting uid might be a better choice than a number of  dierent uid products, even if the latter uid compo - sitions individually produced a better performance.  Production Criteria In  either  one-o,  or  batch  production,  individual  machines  tools  are  likely  to  have  their  own  separate  cutting  uid  supply,  however  in  a  mass  production  environment,  uid  centralised systems  are  the norm.  e production criteria for the choice of cutting uid  includes the: type of machining process; cutting con - ditions – workpiece material, cutting data, tool mate - rial, etc., together with the machine  tool type and its  conguration 18 .  us,  on  the  basis  of  these  produc- tion-based decision criteria, an initial choice will nor - 18  ‘Machine tool conguration’ ,  take  for  example,  the  case  of  an  ‘orthogonal’ *  machining  centre,  it  relates  to  whether  the  machine has a horizontal, or vertical spindle orientation, with  one, or multiple spindles present, having three, four, or mul- tiple  linear  and  rotary  axis  control  and  of  the  conventional,  or high-speed machining (HSM) variety. Most machine tools  today fall into the ‘orthogonal’ machining category, but some  ‘non-orthogonal’  machining  centres  exists,  which  oer  con- tinuous kinematics that have multiple-axis control – for even  simple straight-line motion, oen available with omni-direc- tional spindle orientations – for ease of cutter access to say, a  complex, or sculptured machine part geometry.   *Orthogonality  of axes means that each axis is positioned at  90°  with respect to each other, such as on a three-axis verti- cal machining centre (i.e. X-, Y- and Z-axes, with the Z-axis  normally incorporating the machine’s spindle). mally  be  made  regarding  the  type  of  cutting  uid  to  be used – whether it is an aqueous-, or oil-based uid  type that is required.  .. Selection Procedure When selecting a cutting uid, it is important to take  the  uid  manufacturer’s  instructions  into  consider - ation.  If  their  recommendations  are  ignored,  it  may  render  any  previous  guarantees  invalid.  Many  of  these cutting uid manufacturers specify that certain  products be utilised, normally only applying them to  either special machining circumstances, or where dif - cult cutting conditions are likely to be encountered.  Equally, other cutting uid producers only specify the  general type of instructions, such as: what type of cut - ting uid to employ, for example, aqueous, or not, to  be used, on the contrary, some uid manufacturers do  not specify anything! Usually  it is possible to rely  on  the manufacturer’s specication tables which indicate  their  most  suitable  product  for  a  particular  range  of  machining  operations.  However,  before  consulting  a  cutting  uid  manufacturer’s  set  of  tables,  the  follow - ing factors must be either  known, or established. ese  crucial decisions include: • Type of machining operation – care must be taken  to ensure that correct and ecient planning of the  machining  strategy  for  the  successful  completion  of the part is known and, the optimum machining  techniques to achieve this objective are conrmed, • Water characteristics –  hard/so,  chloride,  sul- phate,  bicarbonate  content  has  been  both  tested  and accurately established, • Type of workpiece material to be machined – with  due regard to machining of: work-hardening mater- ials, or ‘sticky’  materials  – aluminium  and  copper  alloys, etc., • Type of machine tool ltration system – having ei- ther:  no  ltration;  sump  only;  paper  lter;  centri - fuge; etc.  NB  In  the  case  of  the  centrifuge,  semi-synthetic products are  not recommended, while washable l- ters should only be utilised with synthetic, or semi- synthetic products. As a general ‘rule of thumb’ , emulsions with EP addi - tives should be employed for heavy cutting work, whilst  synthetic products are normally best when cutting at  high  speeds. By way of an illustration, if one consid -  Chapter  ers  multiple  machining  operations  undertaken  on  machining centres, the cutting uid should be chosen  for the  range between  the highest and lowest  cutting  speeds.  Once  a  particular  uid  product  has  been  se - lected, it is still necessary to carry out a practical test  as only aer such testing, will it conrm if the correct  choice was made. At this stage in the selection proce - dure  and  even  at  some  point  later,  support  from  the  cutting  tool  manufacturer  in  the  form  of:  systematic  sampling procedures; laboratory testing and technical  advice could prove very informative – particularly for  applications where heavy cutting uid consumption is  anticipated.  8.8 Care, Handling, Control and Usage – of Cutting Fluids So that the properties of a cutting uid can be main- tained giving it a long and reliable service life, correct:  storage and handling; usage and mixing with labelling  –  having  instructions  for  use;  and  care;  are  essential  requirements.  An  indispensable  part  of  any  overall  cutting  uid  control, is  suitable handling and  storage  at  the  user’s  premises,  as  it  provides  a  continuous  replenishment  and service facility for the monitoring of uids at, or  near to the machine shop.  All containers of cutting oil  should  always be clearly marked with their end usage for use within the factory. When storing these cutting  oils,  the  grade  most  frequently  utilised  are  best  kept  on simple robust  stillages,  or  for  larger  quantities, in  covered tanks, with an adequate supply of: taps; hand- pumps;  funnels;  measures;  and  drip-trays;  to  ensure  proper  handling  and  to  avoid  intermixing  of  grades.  is potential uid contamination is one of the most  important  aspects  when  dealing  with  soluble  oils,  in  order to obviate any emulsication troubles and pos - sible coolant separation issues.  In  large  manufacturing  companies,  where  bulk  delivery  of  cutting  uids  are  being  made-up  prior  to  delivery,  it  is  important  that  all  storage  tanks  for  the  reception  are  properly  identied,  with  appropri - ate markings immediately changed once a new grade  is  adopted.  Unfortunately,  one  oil  looks  much  the  same  as  any  other  and  if  not  properly  identied  (i.e.  marked-up), as to the grade identication and its end  usage, this could lead to some costly machining mis - takes  (e.g.  part-scrappage  problems)  within  the  pro - duction machining facility. e reception of drums of  cutting  uid  and  oils,  requires  certain  safeguards,  to  protect  the  mutual  interests  of both  the supplier  and  user  alike.  For  instance,  the  supplier  should  be  noti - ed  at  once  if  there  is  obvious  drum  damage,  or  the  odd drum is leaking. Full drums of uid should never  be just dropped-o the delivery vehicle from its plat - form, as a rim, or seam may be damaged and leakage  of the  contents could potentially  be a problem,  apart  from the real risk of personal injury of a heavy drum’s  unchecked  motion!  For example,  a  typical  full  drum  weighs about 200 kg and if dropped from the vehicle’s  loading  platform  –  normally  a  height  of  just  over  a   metre,  the  impact  force  will  be  considerably  greater  than its ‘dead weight’ – due to gravitational inuence,  thus  the  uncontrolled  careering  drum  is  a  major  ac - cident  waiting  to  happen!  So,  when  unloading  full  drums from a road vehicle, always use: a drum skid 19 ;  hoist, or fork-li truck. When  the handling  of cutting and lubricating oils  has developed into a lthy job, this is reected in the  storage facility, which in some companies is the most  neglected part of the factory. Under such conditions, it  is oen dicult, if not impossible to avoid both wast - age  and  contamination of lubricants, thereby leading  to issuing the wrong oil for the present machine tool’s  cutting  requirements.  Equally,  a  clean  well-organised  oil  storage  facility  is  an  invaluable  asset  to  any  engi - neering plant and no eort should be spared to create  and maintain these optimum conditions, this being es - sential to a trouble-free operation.  If soluble cutting uid – ‘coolant’ , is mixed in bulk,  the  storage  tank  should  be  clearly  marked  with  the:  product’s  name;  reference  code;  and  concentration.  is  simple  but  vital  tank  identication  avoids  mis - takes in issuing the wrong coolant, or dilution concen - tration to a prescribed machine tool, while providing a  reminder of the required contents when mixing a fresh  uid batch.  Soluble  oil  concentrate  must  not  be  exposed  to  cold  climatic  conditions  and  allowed  to  freeze,  since  this  ‘cryogenic  eect’  might  adversely  aect  the  19  ‘Oil-drum skids’ , when robustly designed/produced, allow the  controlled sliding to ground-level of  full  drums  o  a vehicle’s  loading platform, without potential health risks to the compa- ny’s work-force. Cutting Fluids  concentrate’s  stability  –  when  subsequently  used.  Further, bulk drum storage outside should if possible,  be  under  protective  cover,  but  if  this  is  not  the  case,  then  drums  should  be  placed  onto  their  sides  and  not  stored  upright  (i.e.  ‘bung-side  up!’).  If  they  were  to  be  stored  upright,  then  any  standing  rain  water  can collect on the drum’s top and owing to daily tem - perature uctuations, any water can be sucked into the  barrel – even through the unopened top. ese small  amounts  of  water  may  destabilise  the  concentrate,  leading  in  the  worst  scenario  to  complete  separation  of  the  concentrate  into  distinct  layers.  In  this  state,  the concentrate becomes completely unusable, as uid  in  such  a  condition,  will  be  unlikely  to  adequately  remix.  Consequently,  it  is  advisable  that  some  form  of space heating for undercover uid storage is desir - able, to minimise  wide  temperature  uctuations, this  being  particularly  relevant  during  winter  months,  as  the  oil  viscosity  appreciably  changes  (i.e.  thickens),  with  more  sluggish  ow-rates  causing  delays  in  both  its delivery and usage. When not in use, all lubricant  containers should be kept closed, thus avoiding entry  of  abrasive  foreign  matter.  So,  whenever  possible,  indoor storage of cutting uids and lubricants is to be  recommended.  As  all oil storage facilities have a real potential for  a catastrophic and explosive  re hazard. Sucient re  extinguishers – of the correct type and size, should be  strategically placed at easily-accessible  points  around  the oil storage facility and positioned at ground level  with  unobstructed  access  to  them.  Any  oily  paper  waste and sawdust 20  present, requires prompt disposal  to minimise re risk.  Any oil storage facility is strictly a  non-smoking zone, for obvious reasons.  .. Product Mixing – Preparation of a Aqueous-Based Cutting Fluids As  mentioned,  cutting  uids  are  usually  supplied  to  the customer in the form of concentrates and the ease  20  ‘Sawdust’ soaked in oil  is a likely re source, so rather than  use this to soak up oil-spillages, use specially-produced gran- ules that are non-ammable and oil absorbent. NB  ese oil absorbent granules are usually readily available  and  can  be  purchased  from  most  leading-lubricant  supply  companies.  with which they can be mixed together with water var- ies,  depending  upon  the  amount  of  oil  they  contain.  Concentrates with high oil concentration may require  vigorous stirring in order to form an emulsion. While  other products containing little oil are oen supplied  as  ‘preformed emulsions’ , in which the concentrate has  previously  been mixed  by  the cutting  uid  manufac - turer with water to form a stable emulsion. ese lat - ter ‘preformed concentrates’ , only require them to be  stirred into water at the correct dilution ratio, in order  to prepare them for use.  Correct  preparation  of  the  emulsion  is  essential  if  the  cutting  uid  is  to  provide  its  optimum  perfor - mance. By preference, the water supply should not be  excessively hard (i.e. <300 ppm – total hardness) and,  it should be of ‘drinking quality’ – thereby not infected  with any bacteria.  Hand Mixing With the production need for relatively small volumes  of  aqueous-based  coolants,  the  emulsion  can  be  pre - pared as follows: 1.  Choose a suitable-sized volume mixing vessel – not  the machine sump, nor a galvanised container, 2.  Carefully ll with the measured amount of water, 3.  Slowly add a measured amount of concentrate while  continuously  stirring  –  with  a  top-to-bottom  stir - ring  action  –  this  being  the  most  ecient  action,  until the emulsion is fully-formed, 4.  Steadily add the newly-mixed emulsion to the ma - chine tool’s sump. Automatic Mixing When  larger  volumes  of  emulsion  cutting  uid  are  required,  then  it  is  advisable  to  use  a  purpose-built  and designed uid mixer (Fig. 208). ese proprietary  mixing devices incorporate the following features: •   ey can directly-connect to a standard water tap, •   ey can be screwed directly into a large uid con- centrate drum, •   ere  is  adjustment  for  the  automatic  dispensing  of the correct emulsion dilution ratio of: ‘oil-to-wa - ter’ ,  •   e uid mixer incorporates a non-return valve, to  ensure that the emulsion cannot leak-back into the  drum’s contents.  Chapter  . methods’ , typical  of this  type  of testing  regime are the German Standards, denoted by DIN5 136 7 and DIN5 133 68, but similar test Standards are listed in most of the  world’s technological countries. 16 . systematic  sampling procedures; laboratory testing and technical  advice could prove very informative – particularly for  applications where heavy cutting uid consumption is  anticipated.  8.8 Care, Handling, Control and Usage – of Cutting Fluids So that the properties of a cutting uid can be main- tained giving it a long and reliable service life, correct:  storage and handling; usage and mixing with labelling  – . be  given to various production decisions. For instance, if  the time factor is more important than the cost factor,  then higher cutting speeds will be used and so the de - mand placed on the cutting uid will be greater. If, dif - ferent materials and types of machining processes are  involved in the production process, then a ‘universal’  cutting uid might be a better choice than a number of  dierent uid products, even if the latter uid compo - sitions individually produced a better performance.  Production

Ngày đăng: 21/06/2014, 22:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan